dw-hdmi.c 75.1 KB
Newer Older
1
/*
2 3 4
 * DesignWare High-Definition Multimedia Interface (HDMI) driver
 *
 * Copyright (C) 2013-2015 Mentor Graphics Inc.
5
 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc.
6
 * Copyright (C) 2010, Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7 8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */
14
#include <linux/module.h>
15 16 17 18
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
S
Sachin Kamat 已提交
19
#include <linux/hdmi.h>
20
#include <linux/mutex.h>
21
#include <linux/of_device.h>
22
#include <linux/regmap.h>
23
#include <linux/spinlock.h>
24

25
#include <drm/drm_of.h>
26
#include <drm/drmP.h>
27
#include <drm/drm_atomic_helper.h>
28 29
#include <drm/drm_edid.h>
#include <drm/drm_encoder_slave.h>
30
#include <drm/drm_scdc_helper.h>
31
#include <drm/drm_probe_helper.h>
32
#include <drm/bridge/dw_hdmi.h>
33

34 35 36
#include <uapi/linux/media-bus-format.h>
#include <uapi/linux/videodev2.h>

37 38
#include "dw-hdmi.h"
#include "dw-hdmi-audio.h"
39
#include "dw-hdmi-cec.h"
40

41 42
#include <media/cec-notifier.h>

43
#define DDC_SEGMENT_ADDR	0x30
44

45 46
#define HDMI_EDID_LEN		512

47 48 49 50 51
/* DW-HDMI Controller >= 0x200a are at least compliant with SCDC version 1 */
#define SCDC_MIN_SOURCE_VERSION	0x1

#define HDMI14_MAX_TMDSCLK	340000000

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
enum hdmi_datamap {
	RGB444_8B = 0x01,
	RGB444_10B = 0x03,
	RGB444_12B = 0x05,
	RGB444_16B = 0x07,
	YCbCr444_8B = 0x09,
	YCbCr444_10B = 0x0B,
	YCbCr444_12B = 0x0D,
	YCbCr444_16B = 0x0F,
	YCbCr422_8B = 0x16,
	YCbCr422_10B = 0x14,
	YCbCr422_12B = 0x12,
};

static const u16 csc_coeff_default[3][4] = {
	{ 0x2000, 0x0000, 0x0000, 0x0000 },
	{ 0x0000, 0x2000, 0x0000, 0x0000 },
	{ 0x0000, 0x0000, 0x2000, 0x0000 }
};

static const u16 csc_coeff_rgb_out_eitu601[3][4] = {
	{ 0x2000, 0x6926, 0x74fd, 0x010e },
	{ 0x2000, 0x2cdd, 0x0000, 0x7e9a },
	{ 0x2000, 0x0000, 0x38b4, 0x7e3b }
};

static const u16 csc_coeff_rgb_out_eitu709[3][4] = {
	{ 0x2000, 0x7106, 0x7a02, 0x00a7 },
	{ 0x2000, 0x3264, 0x0000, 0x7e6d },
	{ 0x2000, 0x0000, 0x3b61, 0x7e25 }
};

static const u16 csc_coeff_rgb_in_eitu601[3][4] = {
	{ 0x2591, 0x1322, 0x074b, 0x0000 },
	{ 0x6535, 0x2000, 0x7acc, 0x0200 },
	{ 0x6acd, 0x7534, 0x2000, 0x0200 }
};

static const u16 csc_coeff_rgb_in_eitu709[3][4] = {
	{ 0x2dc5, 0x0d9b, 0x049e, 0x0000 },
	{ 0x62f0, 0x2000, 0x7d11, 0x0200 },
	{ 0x6756, 0x78ab, 0x2000, 0x0200 }
};

struct hdmi_vmode {
	bool mdataenablepolarity;

	unsigned int mpixelclock;
	unsigned int mpixelrepetitioninput;
	unsigned int mpixelrepetitionoutput;
102
	unsigned int mtmdsclock;
103 104 105
};

struct hdmi_data_info {
106 107 108 109
	unsigned int enc_in_bus_format;
	unsigned int enc_out_bus_format;
	unsigned int enc_in_encoding;
	unsigned int enc_out_encoding;
110 111 112 113 114
	unsigned int pix_repet_factor;
	unsigned int hdcp_enable;
	struct hdmi_vmode video_mode;
};

115 116 117 118 119 120 121 122 123
struct dw_hdmi_i2c {
	struct i2c_adapter	adap;

	struct mutex		lock;	/* used to serialize data transfers */
	struct completion	cmp;
	u8			stat;

	u8			slave_reg;
	bool			is_regaddr;
124
	bool			is_segment;
125 126
};

127 128 129
struct dw_hdmi_phy_data {
	enum dw_hdmi_phy_type type;
	const char *name;
130
	unsigned int gen;
131
	bool has_svsret;
132 133 134
	int (*configure)(struct dw_hdmi *hdmi,
			 const struct dw_hdmi_plat_data *pdata,
			 unsigned long mpixelclock);
135 136
};

137
struct dw_hdmi {
138
	struct drm_connector connector;
139
	struct drm_bridge bridge;
140

141 142 143
	unsigned int version;

	struct platform_device *audio;
144
	struct platform_device *cec;
145 146 147
	struct device *dev;
	struct clk *isfr_clk;
	struct clk *iahb_clk;
148
	struct clk *cec_clk;
149
	struct dw_hdmi_i2c *i2c;
150 151

	struct hdmi_data_info hdmi_data;
152 153
	const struct dw_hdmi_plat_data *plat_data;

154 155 156 157
	int vic;

	u8 edid[HDMI_EDID_LEN];

158 159 160 161 162 163
	struct {
		const struct dw_hdmi_phy_ops *ops;
		const char *name;
		void *data;
		bool enabled;
	} phy;
164

165 166 167 168
	struct drm_display_mode previous_mode;

	struct i2c_adapter *ddc;
	void __iomem *regs;
169
	bool sink_is_hdmi;
170
	bool sink_has_audio;
171

172
	struct mutex mutex;		/* for state below and previous_mode */
173
	enum drm_connector_force force;	/* mutex-protected force state */
174
	bool disabled;			/* DRM has disabled our bridge */
175
	bool bridge_is_on;		/* indicates the bridge is on */
176 177
	bool rxsense;			/* rxsense state */
	u8 phy_mask;			/* desired phy int mask settings */
178
	u8 mc_clkdis;			/* clock disable register */
179

180
	spinlock_t audio_lock;
181
	struct mutex audio_mutex;
182
	unsigned int sample_rate;
183 184 185
	unsigned int audio_cts;
	unsigned int audio_n;
	bool audio_enable;
186

187 188
	unsigned int reg_shift;
	struct regmap *regm;
189 190
	void (*enable_audio)(struct dw_hdmi *hdmi);
	void (*disable_audio)(struct dw_hdmi *hdmi);
191 192

	struct cec_notifier *cec_notifier;
193 194
};

195 196 197 198 199 200 201 202
#define HDMI_IH_PHY_STAT0_RX_SENSE \
	(HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \
	 HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3)

#define HDMI_PHY_RX_SENSE \
	(HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \
	 HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3)

203 204
static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
205
	regmap_write(hdmi->regm, offset << hdmi->reg_shift, val);
206 207 208 209
}

static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
210 211 212 213 214
	unsigned int val = 0;

	regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val);

	return val;
215 216
}

217
static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg)
218
{
219
	regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data);
220 221
}

222
static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg,
223
			     u8 shift, u8 mask)
224
{
225
	hdmi_modb(hdmi, data << shift, mask, reg);
226 227
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi)
{
	/* Software reset */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ);

	/* Set Standard Mode speed (determined to be 100KHz on iMX6) */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV);

	/* Set done, not acknowledged and arbitration interrupt polarities */
	hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL,
		    HDMI_I2CM_CTLINT);

	/* Clear DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_I2CM_STAT0);

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);
}

static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi,
			    unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		dev_dbg(hdmi->dev, "set read register address to 0\n");
		i2c->slave_reg = 0x00;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
266 267 268 269 270 271
		if (i2c->is_segment)
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT,
				    HDMI_I2CM_OPERATION);
		else
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ,
				    HDMI_I2CM_OPERATION);
272 273 274 275 276 277 278 279 280 281 282

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;

		*buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI);
	}
283
	i2c->is_segment = false;
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	return 0;
}

static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi,
			     unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		/* Use the first write byte as register address */
		i2c->slave_reg = buf[0];
		length--;
		buf++;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO);
		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
		hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE,
			    HDMI_I2CM_OPERATION);

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;
	}

	return 0;
}

static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap,
			    struct i2c_msg *msgs, int num)
{
	struct dw_hdmi *hdmi = i2c_get_adapdata(adap);
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	u8 addr = msgs[0].addr;
	int i, ret = 0;

	dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr);

	for (i = 0; i < num; i++) {
		if (msgs[i].len == 0) {
			dev_dbg(hdmi->dev,
				"unsupported transfer %d/%d, no data\n",
				i + 1, num);
			return -EOPNOTSUPP;
		}
	}

	mutex_lock(&i2c->lock);

	/* Unmute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0);

	/* Set slave device address taken from the first I2C message */
	hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE);

	/* Set slave device register address on transfer */
	i2c->is_regaddr = false;

352 353 354
	/* Set segment pointer for I2C extended read mode operation */
	i2c->is_segment = false;

355 356 357
	for (i = 0; i < num; i++) {
		dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n",
			i + 1, num, msgs[i].len, msgs[i].flags);
358 359 360 361 362 363 364 365 366 367 368 369
		if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) {
			i2c->is_segment = true;
			hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR);
			hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR);
		} else {
			if (msgs[i].flags & I2C_M_RD)
				ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf,
						       msgs[i].len);
			else
				ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf,
							msgs[i].len);
		}
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
		if (ret < 0)
			break;
	}

	if (!ret)
		ret = num;

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);

	mutex_unlock(&i2c->lock);

	return ret;
}

static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm dw_hdmi_algorithm = {
	.master_xfer	= dw_hdmi_i2c_xfer,
	.functionality	= dw_hdmi_i2c_func,
};

static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi)
{
	struct i2c_adapter *adap;
	struct dw_hdmi_i2c *i2c;
	int ret;

	i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
	if (!i2c)
		return ERR_PTR(-ENOMEM);

	mutex_init(&i2c->lock);
	init_completion(&i2c->cmp);

	adap = &i2c->adap;
	adap->class = I2C_CLASS_DDC;
	adap->owner = THIS_MODULE;
	adap->dev.parent = hdmi->dev;
	adap->algo = &dw_hdmi_algorithm;
	strlcpy(adap->name, "DesignWare HDMI", sizeof(adap->name));
	i2c_set_adapdata(adap, hdmi);

	ret = i2c_add_adapter(adap);
	if (ret) {
		dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
		devm_kfree(hdmi->dev, i2c);
		return ERR_PTR(ret);
	}

	hdmi->i2c = i2c;

	dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name);

	return adap;
}

431 432
static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts,
			   unsigned int n)
433
{
434 435
	/* Must be set/cleared first */
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
436 437

	/* nshift factor = 0 */
438
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3);
439 440 441

	hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) |
		    HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
442 443 444 445 446 447
	hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2);
	hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1);

	hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3);
	hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2);
	hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1);
448 449
}

450
static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk)
451 452
{
	unsigned int n = (128 * freq) / 1000;
453 454 455 456 457 458
	unsigned int mult = 1;

	while (freq > 48000) {
		mult *= 2;
		freq /= 2;
	}
459 460 461

	switch (freq) {
	case 32000:
462
		if (pixel_clk == 25175000)
463
			n = 4576;
464
		else if (pixel_clk == 27027000)
465
			n = 4096;
466
		else if (pixel_clk == 74176000 || pixel_clk == 148352000)
467 468 469
			n = 11648;
		else
			n = 4096;
470
		n *= mult;
471 472 473
		break;

	case 44100:
474
		if (pixel_clk == 25175000)
475
			n = 7007;
476
		else if (pixel_clk == 74176000)
477
			n = 17836;
478
		else if (pixel_clk == 148352000)
479
			n = 8918;
480 481
		else
			n = 6272;
482
		n *= mult;
483 484 485
		break;

	case 48000:
486
		if (pixel_clk == 25175000)
487
			n = 6864;
488
		else if (pixel_clk == 27027000)
489
			n = 6144;
490
		else if (pixel_clk == 74176000)
491
			n = 11648;
492
		else if (pixel_clk == 148352000)
493
			n = 5824;
494 495
		else
			n = 6144;
496
		n *= mult;
497 498 499 500 501 502 503 504 505
		break;

	default:
		break;
	}

	return n;
}

506
static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi,
507
	unsigned long pixel_clk, unsigned int sample_rate)
508
{
509
	unsigned long ftdms = pixel_clk;
510
	unsigned int n, cts;
511
	u64 tmp;
512

513
	n = hdmi_compute_n(sample_rate, pixel_clk);
514

515 516 517 518 519 520 521 522 523 524 525 526 527 528
	/*
	 * Compute the CTS value from the N value.  Note that CTS and N
	 * can be up to 20 bits in total, so we need 64-bit math.  Also
	 * note that our TDMS clock is not fully accurate; it is accurate
	 * to kHz.  This can introduce an unnecessary remainder in the
	 * calculation below, so we don't try to warn about that.
	 */
	tmp = (u64)ftdms * n;
	do_div(tmp, 128 * sample_rate);
	cts = tmp;

	dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n",
		__func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000,
		n, cts);
529

530 531 532 533 534
	spin_lock_irq(&hdmi->audio_lock);
	hdmi->audio_n = n;
	hdmi->audio_cts = cts;
	hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0);
	spin_unlock_irq(&hdmi->audio_lock);
535 536
}

537
static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi)
538
{
539
	mutex_lock(&hdmi->audio_mutex);
540
	hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate);
541
	mutex_unlock(&hdmi->audio_mutex);
542 543
}

544
static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi)
545
{
546
	mutex_lock(&hdmi->audio_mutex);
547
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock,
548
				 hdmi->sample_rate);
549
	mutex_unlock(&hdmi->audio_mutex);
550 551
}

552 553 554 555
void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate)
{
	mutex_lock(&hdmi->audio_mutex);
	hdmi->sample_rate = rate;
556
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mtmdsclock,
557
				 hdmi->sample_rate);
558 559 560 561
	mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate);

562 563
static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi, bool enable)
{
564 565 566 567 568
	if (enable)
		hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_AUDCLK_DISABLE;
	else
		hdmi->mc_clkdis |= HDMI_MC_CLKDIS_AUDCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
569 570
}

571 572 573 574 575 576 577 578 579 580 581 582 583
static void dw_hdmi_ahb_audio_enable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
}

static void dw_hdmi_ahb_audio_disable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
}

static void dw_hdmi_i2s_audio_enable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
584 585 586 587 588 589
	hdmi_enable_audio_clk(hdmi, true);
}

static void dw_hdmi_i2s_audio_disable(struct dw_hdmi *hdmi)
{
	hdmi_enable_audio_clk(hdmi, false);
590 591
}

592 593 594 595 596 597
void dw_hdmi_audio_enable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = true;
598 599
	if (hdmi->enable_audio)
		hdmi->enable_audio(hdmi);
600 601 602 603 604 605 606 607 608 609
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable);

void dw_hdmi_audio_disable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = false;
610 611
	if (hdmi->disable_audio)
		hdmi->disable_audio(hdmi);
612 613 614 615
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable);

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_RGB161616_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_YUV16_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYVY12_1X24:
		return true;

	default:
		return false;
	}
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670
static bool hdmi_bus_fmt_is_yuv420(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		return true;

	default:
		return false;
	}
}

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
static int hdmi_bus_fmt_color_depth(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		return 8;

	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		return 10;

	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYVY12_1X24:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		return 12;

	case MEDIA_BUS_FMT_RGB161616_1X48:
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		return 16;

	default:
		return 0;
	}
}

702 703 704 705 706 707 708
/*
 * this submodule is responsible for the video data synchronization.
 * for example, for RGB 4:4:4 input, the data map is defined as
 *			pin{47~40} <==> R[7:0]
 *			pin{31~24} <==> G[7:0]
 *			pin{15~8}  <==> B[7:0]
 */
709
static void hdmi_video_sample(struct dw_hdmi *hdmi)
710 711 712 713
{
	int color_format = 0;
	u8 val;

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	switch (hdmi->hdmi_data.enc_in_bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
		color_format = 0x01;
		break;
	case MEDIA_BUS_FMT_RGB101010_1X30:
		color_format = 0x03;
		break;
	case MEDIA_BUS_FMT_RGB121212_1X36:
		color_format = 0x05;
		break;
	case MEDIA_BUS_FMT_RGB161616_1X48:
		color_format = 0x07;
		break;

	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		color_format = 0x09;
		break;
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		color_format = 0x0B;
		break;
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		color_format = 0x0D;
		break;
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		color_format = 0x0F;
		break;

	case MEDIA_BUS_FMT_UYVY8_1X16:
		color_format = 0x16;
		break;
	case MEDIA_BUS_FMT_UYVY10_1X20:
		color_format = 0x14;
		break;
	case MEDIA_BUS_FMT_UYVY12_1X24:
		color_format = 0x12;
		break;

	default:
		return;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
	}

	val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
		((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
		HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
	hdmi_writeb(hdmi, val, HDMI_TX_INVID0);

	/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
	val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
	hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1);
}

777
static int is_color_space_conversion(struct dw_hdmi *hdmi)
778
{
779
	return hdmi->hdmi_data.enc_in_bus_format != hdmi->hdmi_data.enc_out_bus_format;
780 781
}

782
static int is_color_space_decimation(struct dw_hdmi *hdmi)
783
{
784
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
785
		return 0;
786 787 788

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format))
789
		return 1;
790

791
	return 0;
792 793
}

794
static int is_color_space_interpolation(struct dw_hdmi *hdmi)
795
{
796
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format))
797
		return 0;
798 799 800

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
801
		return 1;
802

803
	return 0;
804 805
}

806
static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi)
807 808
{
	const u16 (*csc_coeff)[3][4] = &csc_coeff_default;
809
	unsigned i;
810 811 812
	u32 csc_scale = 1;

	if (is_color_space_conversion(hdmi)) {
813 814 815
		if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
816 817 818
				csc_coeff = &csc_coeff_rgb_out_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_out_eitu709;
819 820 821 822
		} else if (hdmi_bus_fmt_is_rgb(
					hdmi->hdmi_data.enc_in_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
823 824 825 826 827 828 829
				csc_coeff = &csc_coeff_rgb_in_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_in_eitu709;
			csc_scale = 0;
		}
	}

830 831 832 833 834 835
	/* The CSC registers are sequential, alternating MSB then LSB */
	for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) {
		u16 coeff_a = (*csc_coeff)[0][i];
		u16 coeff_b = (*csc_coeff)[1][i];
		u16 coeff_c = (*csc_coeff)[2][i];

836
		hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2);
837 838 839
		hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2);
		hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2);
		hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2);
840
		hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2);
841 842
		hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2);
	}
843

844 845
	hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
		  HDMI_CSC_SCALE);
846 847
}

848
static void hdmi_video_csc(struct dw_hdmi *hdmi)
849 850 851 852 853 854 855 856 857 858 859
{
	int color_depth = 0;
	int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
	int decimation = 0;

	/* YCC422 interpolation to 444 mode */
	if (is_color_space_interpolation(hdmi))
		interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1;
	else if (is_color_space_decimation(hdmi))
		decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3;

860 861
	switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) {
	case 8:
862
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
863 864
		break;
	case 10:
865
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP;
866 867
		break;
	case 12:
868
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP;
869 870
		break;
	case 16:
871
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP;
872 873 874
		break;

	default:
875
		return;
876
	}
877 878 879

	/* Configure the CSC registers */
	hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG);
880 881
	hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK,
		  HDMI_CSC_SCALE);
882

883
	dw_hdmi_update_csc_coeffs(hdmi);
884 885 886 887 888 889 890
}

/*
 * HDMI video packetizer is used to packetize the data.
 * for example, if input is YCC422 mode or repeater is used,
 * data should be repacked this module can be bypassed.
 */
891
static void hdmi_video_packetize(struct dw_hdmi *hdmi)
892 893 894 895 896
{
	unsigned int color_depth = 0;
	unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit;
	unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
	struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
897
	u8 val, vp_conf;
898

899
	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
900 901
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) {
902 903 904
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 8:
905 906
			color_depth = 4;
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
907 908
			break;
		case 10:
909
			color_depth = 5;
910 911
			break;
		case 12:
912
			color_depth = 6;
913 914
			break;
		case 16:
915
			color_depth = 7;
916 917 918
			break;
		default:
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
919
		}
920 921 922 923 924
	} else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 0:
		case 8:
925
			remap_size = HDMI_VP_REMAP_YCC422_16bit;
926 927
			break;
		case 10:
928
			remap_size = HDMI_VP_REMAP_YCC422_20bit;
929 930
			break;
		case 12:
931
			remap_size = HDMI_VP_REMAP_YCC422_24bit;
932 933 934
			break;

		default:
935
			return;
936
		}
937
		output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422;
938
	} else {
939
		return;
940
	}
941 942 943 944 945 946 947 948 949

	/* set the packetizer registers */
	val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
		HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
		((hdmi_data->pix_repet_factor <<
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_VP_PR_CD);

950 951
	hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF);
952 953 954

	/* Data from pixel repeater block */
	if (hdmi_data->pix_repet_factor > 1) {
955 956
		vp_conf = HDMI_VP_CONF_PR_EN_ENABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER;
957
	} else { /* data from packetizer block */
958 959
		vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
960 961
	}

962 963 964 965
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_PR_EN_MASK |
		  HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF);

966 967
	hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET,
		  HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF);
968 969 970 971

	hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP);

	if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
972 973 974
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_ENABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
975
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
976 977 978
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_ENABLE;
979
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
980 981 982
		vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
983 984 985 986
	} else {
		return;
	}

987 988 989 990
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK |
		  HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF);

991 992 993 994
	hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
			HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PP_STUFFING_MASK |
		  HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF);
995

996 997
	hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
		  HDMI_VP_CONF);
998 999
}

1000 1001 1002 1003
/* -----------------------------------------------------------------------------
 * Synopsys PHY Handling
 */

1004
static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi,
1005
				       unsigned char bit)
1006
{
1007 1008
	hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET,
		  HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0);
1009 1010
}

1011
static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec)
1012
{
1013 1014 1015
	u32 val;

	while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) {
1016 1017
		if (msec-- == 0)
			return false;
1018
		udelay(1000);
1019
	}
1020 1021
	hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0);

1022 1023 1024
	return true;
}

1025 1026
void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data,
			   unsigned char addr)
1027 1028 1029 1030
{
	hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR);
	hdmi_writeb(hdmi, (unsigned char)(data >> 8),
1031
		    HDMI_PHY_I2CM_DATAO_1_ADDR);
1032
	hdmi_writeb(hdmi, (unsigned char)(data >> 0),
1033
		    HDMI_PHY_I2CM_DATAO_0_ADDR);
1034
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE,
1035
		    HDMI_PHY_I2CM_OPERATION_ADDR);
1036 1037
	hdmi_phy_wait_i2c_done(hdmi, 1000);
}
1038
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write);
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048
/* Filter out invalid setups to avoid configuring SCDC and scrambling */
static bool dw_hdmi_support_scdc(struct dw_hdmi *hdmi)
{
	struct drm_display_info *display = &hdmi->connector.display_info;

	/* Completely disable SCDC support for older controllers */
	if (hdmi->version < 0x200a)
		return false;

1049 1050 1051 1052
	/* Disable if no DDC bus */
	if (!hdmi->ddc)
		return false;

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	/* Disable if SCDC is not supported, or if an HF-VSDB block is absent */
	if (!display->hdmi.scdc.supported ||
	    !display->hdmi.scdc.scrambling.supported)
		return false;

	/*
	 * Disable if display only support low TMDS rates and scrambling
	 * for low rates is not supported either
	 */
	if (!display->hdmi.scdc.scrambling.low_rates &&
	    display->max_tmds_clock <= 340000)
		return false;

	return true;
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/*
 * HDMI2.0 Specifies the following procedure for High TMDS Bit Rates:
 * - The Source shall suspend transmission of the TMDS clock and data
 * - The Source shall write to the TMDS_Bit_Clock_Ratio bit to change it
 * from a 0 to a 1 or from a 1 to a 0
 * - The Source shall allow a minimum of 1 ms and a maximum of 100 ms from
 * the time the TMDS_Bit_Clock_Ratio bit is written until resuming
 * transmission of TMDS clock and data
 *
 * To respect the 100ms maximum delay, the dw_hdmi_set_high_tmds_clock_ratio()
 * helper should called right before enabling the TMDS Clock and Data in
 * the PHY configuration callback.
 */
void dw_hdmi_set_high_tmds_clock_ratio(struct dw_hdmi *hdmi)
{
1084
	unsigned long mtmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock;
1085 1086

	/* Control for TMDS Bit Period/TMDS Clock-Period Ratio */
1087
	if (dw_hdmi_support_scdc(hdmi)) {
1088 1089 1090 1091 1092 1093 1094 1095
		if (mtmdsclock > HDMI14_MAX_TMDSCLK)
			drm_scdc_set_high_tmds_clock_ratio(hdmi->ddc, 1);
		else
			drm_scdc_set_high_tmds_clock_ratio(hdmi->ddc, 0);
	}
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_high_tmds_clock_ratio);

1096
static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable)
1097
{
1098
	hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0,
1099 1100 1101 1102
			 HDMI_PHY_CONF0_PDZ_OFFSET,
			 HDMI_PHY_CONF0_PDZ_MASK);
}

1103
static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable)
1104 1105 1106 1107 1108 1109
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_ENTMDS_OFFSET,
			 HDMI_PHY_CONF0_ENTMDS_MASK);
}

1110
static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable)
1111 1112
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
1113 1114
			 HDMI_PHY_CONF0_SVSRET_OFFSET,
			 HDMI_PHY_CONF0_SVSRET_MASK);
1115 1116
}

1117
void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable)
1118 1119 1120 1121 1122
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET,
			 HDMI_PHY_CONF0_GEN2_PDDQ_MASK);
}
1123
EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_pddq);
1124

1125
void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable)
1126 1127 1128 1129 1130
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_MASK);
}
1131
EXPORT_SYMBOL_GPL(dw_hdmi_phy_gen2_txpwron);
1132

1133
static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable)
1134 1135 1136 1137 1138 1139
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDATAENPOL_OFFSET,
			 HDMI_PHY_CONF0_SELDATAENPOL_MASK);
}

1140
static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable)
1141 1142 1143 1144 1145 1146
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDIPIF_OFFSET,
			 HDMI_PHY_CONF0_SELDIPIF_MASK);
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
void dw_hdmi_phy_reset(struct dw_hdmi *hdmi)
{
	/* PHY reset. The reset signal is active high on Gen2 PHYs. */
	hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
	hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_reset);

void dw_hdmi_phy_i2c_set_addr(struct dw_hdmi *hdmi, u8 address)
{
	hdmi_phy_test_clear(hdmi, 1);
	hdmi_writeb(hdmi, address, HDMI_PHY_I2CM_SLAVE_ADDR);
	hdmi_phy_test_clear(hdmi, 0);
}
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_set_addr);

1163 1164
static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi)
{
1165
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
	unsigned int i;
	u16 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_powerdown(hdmi, true);
		return;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 0);

	/*
	 * Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went
	 * to low power mode.
	 */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0);
		if (!(val & HDMI_PHY_TX_PHY_LOCK))
			break;

		usleep_range(1000, 2000);
	}

	if (val & HDMI_PHY_TX_PHY_LOCK)
		dev_warn(hdmi->dev, "PHY failed to power down\n");
	else
		dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i);

	dw_hdmi_phy_gen2_pddq(hdmi, 1);
}

1197 1198
static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi)
{
1199
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	unsigned int i;
	u8 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_powerdown(hdmi, false);

		/* Toggle TMDS enable. */
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_tmds(hdmi, 1);
		return 0;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 1);
	dw_hdmi_phy_gen2_pddq(hdmi, 0);

	/* Wait for PHY PLL lock */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
		if (val)
			break;

		usleep_range(1000, 2000);
	}

	if (!val) {
		dev_err(hdmi->dev, "PHY PLL failed to lock\n");
		return -ETIMEDOUT;
	}

	dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i);
	return 0;
}

1233 1234 1235 1236 1237 1238 1239 1240
/*
 * PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available
 * information the DWC MHL PHY has the same register layout and is thus also
 * supported by this function.
 */
static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi,
		const struct dw_hdmi_plat_data *pdata,
		unsigned long mpixelclock)
1241
{
1242 1243 1244
	const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg;
	const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr;
	const struct dw_hdmi_phy_config *phy_config = pdata->phy_config;
1245

1246 1247
	/* TOFIX Will need 420 specific PHY configuration tables */

1248 1249
	/* PLL/MPLL Cfg - always match on final entry */
	for (; mpll_config->mpixelclock != ~0UL; mpll_config++)
1250
		if (mpixelclock <= mpll_config->mpixelclock)
1251 1252 1253
			break;

	for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++)
1254
		if (mpixelclock <= curr_ctrl->mpixelclock)
1255 1256 1257
			break;

	for (; phy_config->mpixelclock != ~0UL; phy_config++)
1258
		if (mpixelclock <= phy_config->mpixelclock)
1259 1260 1261 1262
			break;

	if (mpll_config->mpixelclock == ~0UL ||
	    curr_ctrl->mpixelclock == ~0UL ||
1263
	    phy_config->mpixelclock == ~0UL)
1264
		return -EINVAL;
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce,
			      HDMI_3D_TX_PHY_CPCE_CTRL);
	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp,
			      HDMI_3D_TX_PHY_GMPCTRL);
	dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0],
			      HDMI_3D_TX_PHY_CURRCTRL);

	dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL);
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK,
			      HDMI_3D_TX_PHY_MSM_CTRL);

	dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr,
			      HDMI_3D_TX_PHY_CKSYMTXCTRL);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr,
			      HDMI_3D_TX_PHY_VLEVCTRL);

	/* Override and disable clock termination. */
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE,
			      HDMI_3D_TX_PHY_CKCALCTRL);

	return 0;
}

static int hdmi_phy_configure(struct dw_hdmi *hdmi)
{
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
	const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
	unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock;
1295
	unsigned long mtmdsclock = hdmi->hdmi_data.video_mode.mtmdsclock;
1296
	int ret;
1297

1298
	dw_hdmi_phy_power_off(hdmi);
1299

1300 1301
	dw_hdmi_set_high_tmds_clock_ratio(hdmi);

1302
	/* Leave low power consumption mode by asserting SVSRET. */
1303
	if (phy->has_svsret)
1304 1305
		dw_hdmi_phy_enable_svsret(hdmi, 1);

1306
	dw_hdmi_phy_reset(hdmi);
1307 1308 1309

	hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST);

1310
	dw_hdmi_phy_i2c_set_addr(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2);
1311

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	/* Write to the PHY as configured by the platform */
	if (pdata->configure_phy)
		ret = pdata->configure_phy(hdmi, pdata, mpixelclock);
	else
		ret = phy->configure(hdmi, pdata, mpixelclock);
	if (ret) {
		dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n",
			mpixelclock);
		return ret;
	}
1322

1323
	/* Wait for resuming transmission of TMDS clock and data */
1324
	if (mtmdsclock > HDMI14_MAX_TMDSCLK)
1325 1326
		msleep(100);

1327
	return dw_hdmi_phy_power_on(hdmi);
1328 1329
}

1330 1331
static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data,
			    struct drm_display_mode *mode)
1332 1333 1334 1335 1336
{
	int i, ret;

	/* HDMI Phy spec says to do the phy initialization sequence twice */
	for (i = 0; i < 2; i++) {
1337 1338
		dw_hdmi_phy_sel_data_en_pol(hdmi, 1);
		dw_hdmi_phy_sel_interface_control(hdmi, 0);
1339

1340
		ret = hdmi_phy_configure(hdmi);
1341 1342 1343 1344 1345 1346 1347
		if (ret)
			return ret;
	}

	return 0;
}

1348 1349 1350 1351 1352
static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data)
{
	dw_hdmi_phy_power_off(hdmi);
}

1353 1354
enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi,
					       void *data)
1355 1356 1357 1358
{
	return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ?
		connector_status_connected : connector_status_disconnected;
}
1359
EXPORT_SYMBOL_GPL(dw_hdmi_phy_read_hpd);
1360

1361 1362
void dw_hdmi_phy_update_hpd(struct dw_hdmi *hdmi, void *data,
			    bool force, bool disabled, bool rxsense)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
{
	u8 old_mask = hdmi->phy_mask;

	if (force || disabled || !rxsense)
		hdmi->phy_mask |= HDMI_PHY_RX_SENSE;
	else
		hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE;

	if (old_mask != hdmi->phy_mask)
		hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
}
1374
EXPORT_SYMBOL_GPL(dw_hdmi_phy_update_hpd);
1375

1376
void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi, void *data)
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
{
	/*
	 * Configure the PHY RX SENSE and HPD interrupts polarities and clear
	 * any pending interrupt.
	 */
	hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0);
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);

	/* Enable cable hot plug irq. */
	hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);

	/* Clear and unmute interrupts. */
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
}
1395
EXPORT_SYMBOL_GPL(dw_hdmi_phy_setup_hpd);
1396

1397 1398 1399 1400
static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = {
	.init = dw_hdmi_phy_init,
	.disable = dw_hdmi_phy_disable,
	.read_hpd = dw_hdmi_phy_read_hpd,
1401 1402
	.update_hpd = dw_hdmi_phy_update_hpd,
	.setup_hpd = dw_hdmi_phy_setup_hpd,
1403 1404 1405 1406 1407 1408
};

/* -----------------------------------------------------------------------------
 * HDMI TX Setup
 */

1409
static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi)
1410
{
1411
	u8 de;
1412 1413 1414 1415 1416 1417 1418

	if (hdmi->hdmi_data.video_mode.mdataenablepolarity)
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH;
	else
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW;

	/* disable rx detect */
1419 1420
	hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE,
		  HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0);
1421

1422
	hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG);
1423

1424 1425
	hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE,
		  HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1);
1426 1427
}

1428
static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1429
{
1430 1431
	struct hdmi_avi_infoframe frame;
	u8 val;
1432

1433
	/* Initialise info frame from DRM mode */
1434 1435
	drm_hdmi_avi_infoframe_from_display_mode(&frame,
						 &hdmi->connector, mode);
1436

1437
	if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
1438
		frame.colorspace = HDMI_COLORSPACE_YUV444;
1439
	else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
1440
		frame.colorspace = HDMI_COLORSPACE_YUV422;
1441 1442
	else if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format))
		frame.colorspace = HDMI_COLORSPACE_YUV420;
1443
	else
1444
		frame.colorspace = HDMI_COLORSPACE_RGB;
1445 1446

	/* Set up colorimetry */
1447 1448 1449 1450 1451 1452 1453
	switch (hdmi->hdmi_data.enc_out_encoding) {
	case V4L2_YCBCR_ENC_601:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
1454
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
1455
		break;
1456 1457 1458 1459 1460 1461
	case V4L2_YCBCR_ENC_709:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_709;
		frame.extended_colorimetry =
1462
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_709;
1463 1464 1465 1466 1467 1468
		break;
	default: /* Carries no data */
		frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
		break;
1469 1470
	}

1471 1472 1473 1474 1475 1476 1477 1478 1479
	frame.scan_mode = HDMI_SCAN_MODE_NONE;

	/*
	 * The Designware IP uses a different byte format from standard
	 * AVI info frames, though generally the bits are in the correct
	 * bytes.
	 */

	/*
1480 1481 1482
	 * AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6,
	 * scan info in bits 4,5 rather than 0,1 and active aspect present in
	 * bit 6 rather than 4.
1483
	 */
1484
	val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3);
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	if (frame.active_aspect & 15)
		val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT;
	if (frame.top_bar || frame.bottom_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR;
	if (frame.left_bar || frame.right_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR;
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0);

	/* AVI data byte 2 differences: none */
	val = ((frame.colorimetry & 0x3) << 6) |
	      ((frame.picture_aspect & 0x3) << 4) |
	      (frame.active_aspect & 0xf);
1497 1498
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1);

1499 1500 1501 1502 1503 1504
	/* AVI data byte 3 differences: none */
	val = ((frame.extended_colorimetry & 0x7) << 4) |
	      ((frame.quantization_range & 0x3) << 2) |
	      (frame.nups & 0x3);
	if (frame.itc)
		val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID;
1505 1506
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2);

1507 1508 1509
	/* AVI data byte 4 differences: none */
	val = frame.video_code & 0x7f;
	hdmi_writeb(hdmi, val, HDMI_FC_AVIVID);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519

	/* AVI Data Byte 5- set up input and output pixel repetition */
	val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) <<
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) |
		((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput <<
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_FC_PRCONF);

1520 1521 1522 1523 1524 1525
	/*
	 * AVI data byte 5 differences: content type in 0,1 rather than 4,5,
	 * ycc range in bits 2,3 rather than 6,7
	 */
	val = ((frame.ycc_quantization_range & 0x3) << 2) |
	      (frame.content_type & 0x3);
1526 1527 1528
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3);

	/* AVI Data Bytes 6-13 */
1529 1530 1531 1532 1533 1534 1535 1536
	hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0);
	hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1);
	hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0);
	hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1);
	hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0);
	hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1);
	hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0);
	hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1);
1537 1538
}

1539 1540 1541 1542 1543 1544 1545
static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi,
						 struct drm_display_mode *mode)
{
	struct hdmi_vendor_infoframe frame;
	u8 buffer[10];
	ssize_t err;

1546 1547 1548
	err = drm_hdmi_vendor_infoframe_from_display_mode(&frame,
							  &hdmi->connector,
							  mode);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	if (err < 0)
		/*
		 * Going into that statement does not means vendor infoframe
		 * fails. It just informed us that vendor infoframe is not
		 * needed for the selected mode. Only 4k or stereoscopic 3D
		 * mode requires vendor infoframe. So just simply return.
		 */
		return;

	err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer));
	if (err < 0) {
		dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n",
			err);
		return;
	}
	hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);

	/* Set the length of HDMI vendor specific InfoFrame payload */
	hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE);

	/* Set 24bit IEEE Registration Identifier */
	hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0);
	hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1);
	hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2);

	/* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */
	hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0);
	hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1);

	if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
		hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2);

	/* Packet frame interpolation */
	hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1);

	/* Auto packets per frame and line spacing */
	hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2);

	/* Configures the Frame Composer On RDRB mode */
	hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);
}

1593
static void hdmi_av_composer(struct dw_hdmi *hdmi,
1594 1595
			     const struct drm_display_mode *mode)
{
1596 1597
	u8 inv_val, bytes;
	struct drm_hdmi_info *hdmi_info = &hdmi->connector.display_info.hdmi;
1598 1599
	struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode;
	int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len;
1600
	unsigned int vdisplay, hdisplay;
1601

1602
	vmode->mtmdsclock = vmode->mpixelclock = mode->clock * 1000;
1603 1604 1605

	dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock);

1606 1607 1608
	if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format))
		vmode->mtmdsclock /= 2;

1609
	/* Set up HDMI_FC_INVIDCONF */
1610
	inv_val = (hdmi->hdmi_data.hdcp_enable ||
1611 1612 1613
		   (dw_hdmi_support_scdc(hdmi) &&
		    (vmode->mtmdsclock > HDMI14_MAX_TMDSCLK ||
		     hdmi_info->scdc.scrambling.low_rates)) ?
1614 1615 1616
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE :
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE);

1617
	inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
1618
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
1619
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW;
1620

1621
	inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
1622
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
1623
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW;
1624 1625 1626 1627 1628 1629 1630 1631

	inv_val |= (vmode->mdataenablepolarity ?
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);

	if (hdmi->vic == 39)
		inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH;
	else
1632
		inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1633
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
1634
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
1635

1636
	inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1637
		HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
1638
		HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
1639

1640 1641 1642
	inv_val |= hdmi->sink_is_hdmi ?
		HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
		HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE;
1643 1644 1645

	hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF);

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	hdisplay = mode->hdisplay;
	hblank = mode->htotal - mode->hdisplay;
	h_de_hs = mode->hsync_start - mode->hdisplay;
	hsync_len = mode->hsync_end - mode->hsync_start;

	/*
	 * When we're setting a YCbCr420 mode, we need
	 * to adjust the horizontal timing to suit.
	 */
	if (hdmi_bus_fmt_is_yuv420(hdmi->hdmi_data.enc_out_bus_format)) {
		hdisplay /= 2;
		hblank /= 2;
		h_de_hs /= 2;
		hsync_len /= 2;
	}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
	vdisplay = mode->vdisplay;
	vblank = mode->vtotal - mode->vdisplay;
	v_de_vs = mode->vsync_start - mode->vdisplay;
	vsync_len = mode->vsync_end - mode->vsync_start;

	/*
	 * When we're setting an interlaced mode, we need
	 * to adjust the vertical timing to suit.
	 */
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vdisplay /= 2;
		vblank /= 2;
		v_de_vs /= 2;
		vsync_len /= 2;
	}

1678
	/* Scrambling Control */
1679
	if (dw_hdmi_support_scdc(hdmi)) {
1680
		if (vmode->mtmdsclock > HDMI14_MAX_TMDSCLK ||
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		    hdmi_info->scdc.scrambling.low_rates) {
			/*
			 * HDMI2.0 Specifies the following procedure:
			 * After the Source Device has determined that
			 * SCDC_Present is set (=1), the Source Device should
			 * write the accurate Version of the Source Device
			 * to the Source Version field in the SCDCS.
			 * Source Devices compliant shall set the
			 * Source Version = 1.
			 */
1691
			drm_scdc_readb(hdmi->ddc, SCDC_SINK_VERSION,
1692
				       &bytes);
1693
			drm_scdc_writeb(hdmi->ddc, SCDC_SOURCE_VERSION,
1694 1695 1696
				min_t(u8, bytes, SCDC_MIN_SOURCE_VERSION));

			/* Enabled Scrambling in the Sink */
1697
			drm_scdc_set_scrambling(hdmi->ddc, 1);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

			/*
			 * To activate the scrambler feature, you must ensure
			 * that the quasi-static configuration bit
			 * fc_invidconf.HDCP_keepout is set at configuration
			 * time, before the required mc_swrstzreq.tmdsswrst_req
			 * reset request is issued.
			 */
			hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ,
				    HDMI_MC_SWRSTZ);
			hdmi_writeb(hdmi, 1, HDMI_FC_SCRAMBLER_CTRL);
		} else {
			hdmi_writeb(hdmi, 0, HDMI_FC_SCRAMBLER_CTRL);
			hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ,
				    HDMI_MC_SWRSTZ);
1713
			drm_scdc_set_scrambling(hdmi->ddc, 0);
1714 1715 1716
		}
	}

1717
	/* Set up horizontal active pixel width */
1718 1719
	hdmi_writeb(hdmi, hdisplay >> 8, HDMI_FC_INHACTV1);
	hdmi_writeb(hdmi, hdisplay, HDMI_FC_INHACTV0);
1720 1721

	/* Set up vertical active lines */
1722 1723
	hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1);
	hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747

	/* Set up horizontal blanking pixel region width */
	hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1);
	hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0);

	/* Set up vertical blanking pixel region width */
	hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK);

	/* Set up HSYNC active edge delay width (in pixel clks) */
	hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1);
	hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY);

	/* Set up HSYNC active pulse width (in pixel clks) */
	hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1);
	hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH);
}

/* HDMI Initialization Step B.4 */
1748
static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi)
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
{
	/* control period minimum duration */
	hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR);
	hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR);
	hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC);

	/* Set to fill TMDS data channels */
	hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM);
	hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM);
	hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM);

	/* Enable pixel clock and tmds data path */
1761 1762 1763 1764 1765 1766 1767
	hdmi->mc_clkdis |= HDMI_MC_CLKDIS_HDCPCLK_DISABLE |
			   HDMI_MC_CLKDIS_CSCCLK_DISABLE |
			   HDMI_MC_CLKDIS_AUDCLK_DISABLE |
			   HDMI_MC_CLKDIS_PREPCLK_DISABLE |
			   HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
	hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
1768

1769 1770
	hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
1771 1772 1773

	/* Enable csc path */
	if (is_color_space_conversion(hdmi)) {
1774 1775
		hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE;
		hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
1776
	}
1777

1778 1779
	/* Enable color space conversion if needed */
	if (is_color_space_conversion(hdmi))
1780 1781 1782 1783 1784
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH,
			    HDMI_MC_FLOWCTRL);
	else
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS,
			    HDMI_MC_FLOWCTRL);
1785 1786 1787
}

/* Workaround to clear the overflow condition */
1788
static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi)
1789
{
1790 1791
	unsigned int count;
	unsigned int i;
1792 1793
	u8 val;

1794 1795 1796 1797 1798 1799 1800
	/*
	 * Under some circumstances the Frame Composer arithmetic unit can miss
	 * an FC register write due to being busy processing the previous one.
	 * The issue can be worked around by issuing a TMDS software reset and
	 * then write one of the FC registers several times.
	 *
	 * The number of iterations matters and depends on the HDMI TX revision
1801 1802 1803 1804
	 * (and possibly on the platform). So far i.MX6Q (v1.30a), i.MX6DL
	 * (v1.31a) and multiple Allwinner SoCs (v1.32a) have been identified
	 * as needing the workaround, with 4 iterations for v1.30a and 1
	 * iteration for others.
1805 1806
	 * The Amlogic Meson GX SoCs (v2.01a) have been identified as needing
	 * the workaround with a single iteration.
1807 1808
	 * The Rockchip RK3288 SoC (v2.00a) and RK3328/RK3399 SoCs (v2.11a) have
	 * been identified as needing the workaround with a single iteration.
1809
	 */
1810

1811 1812 1813 1814 1815
	switch (hdmi->version) {
	case 0x130a:
		count = 4;
		break;
	case 0x131a:
1816
	case 0x132a:
1817
	case 0x200a:
1818
	case 0x201a:
1819
	case 0x211a:
1820
	case 0x212a:
1821 1822 1823
		count = 1;
		break;
	default:
1824 1825 1826
		return;
	}

1827 1828 1829 1830 1831
	/* TMDS software reset */
	hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ);

	val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF);
	for (i = 0; i < count; i++)
1832 1833 1834
		hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF);
}

1835
static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi)
1836 1837 1838 1839 1840
{
	hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK,
		    HDMI_IH_MUTE_FC_STAT2);
}

1841
static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
{
	int ret;

	hdmi_disable_overflow_interrupts(hdmi);

	hdmi->vic = drm_match_cea_mode(mode);

	if (!hdmi->vic) {
		dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n");
	} else {
		dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic);
	}

	if ((hdmi->vic == 6) || (hdmi->vic == 7) ||
1856 1857 1858
	    (hdmi->vic == 21) || (hdmi->vic == 22) ||
	    (hdmi->vic == 2) || (hdmi->vic == 3) ||
	    (hdmi->vic == 17) || (hdmi->vic == 18))
1859
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601;
1860
	else
1861
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709;
1862

1863
	hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0;
1864 1865
	hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0;

1866
	/* TOFIX: Get input format from plat data or fallback to RGB888 */
1867
	if (hdmi->plat_data->input_bus_format)
1868 1869 1870 1871 1872 1873
		hdmi->hdmi_data.enc_in_bus_format =
			hdmi->plat_data->input_bus_format;
	else
		hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_RGB888_1X24;

	/* TOFIX: Get input encoding from plat data or fallback to none */
1874
	if (hdmi->plat_data->input_bus_encoding)
1875 1876 1877 1878
		hdmi->hdmi_data.enc_in_encoding =
			hdmi->plat_data->input_bus_encoding;
	else
		hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT;
1879

1880 1881
	/* TOFIX: Default to RGB888 output format */
	hdmi->hdmi_data.enc_out_bus_format = MEDIA_BUS_FMT_RGB888_1X24;
1882 1883 1884 1885 1886 1887 1888 1889 1890

	hdmi->hdmi_data.pix_repet_factor = 0;
	hdmi->hdmi_data.hdcp_enable = 0;
	hdmi->hdmi_data.video_mode.mdataenablepolarity = true;

	/* HDMI Initialization Step B.1 */
	hdmi_av_composer(hdmi, mode);

	/* HDMI Initializateion Step B.2 */
1891
	ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data, &hdmi->previous_mode);
1892 1893
	if (ret)
		return ret;
1894
	hdmi->phy.enabled = true;
1895 1896

	/* HDMI Initialization Step B.3 */
1897
	dw_hdmi_enable_video_path(hdmi);
1898

1899 1900
	if (hdmi->sink_has_audio) {
		dev_dbg(hdmi->dev, "sink has audio support\n");
1901 1902 1903

		/* HDMI Initialization Step E - Configure audio */
		hdmi_clk_regenerator_update_pixel_clock(hdmi);
1904
		hdmi_enable_audio_clk(hdmi, true);
1905 1906 1907 1908 1909
	}

	/* not for DVI mode */
	if (hdmi->sink_is_hdmi) {
		dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__);
1910 1911

		/* HDMI Initialization Step F - Configure AVI InfoFrame */
1912
		hdmi_config_AVI(hdmi, mode);
1913
		hdmi_config_vendor_specific_infoframe(hdmi, mode);
1914 1915
	} else {
		dev_dbg(hdmi->dev, "%s DVI mode\n", __func__);
1916 1917 1918 1919 1920 1921 1922
	}

	hdmi_video_packetize(hdmi);
	hdmi_video_csc(hdmi);
	hdmi_video_sample(hdmi);
	hdmi_tx_hdcp_config(hdmi);

1923
	dw_hdmi_clear_overflow(hdmi);
1924 1925 1926 1927

	return 0;
}

1928
static void dw_hdmi_setup_i2c(struct dw_hdmi *hdmi)
1929 1930 1931 1932 1933 1934 1935 1936 1937
{
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL,
		    HDMI_PHY_I2CM_INT_ADDR);

	hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
		    HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL,
		    HDMI_PHY_I2CM_CTLINT_ADDR);
}

1938
static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi)
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
{
	u8 ih_mute;

	/*
	 * Boot up defaults are:
	 * HDMI_IH_MUTE   = 0x03 (disabled)
	 * HDMI_IH_MUTE_* = 0x00 (enabled)
	 *
	 * Disable top level interrupt bits in HDMI block
	 */
	ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) |
		  HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		  HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;

	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);

	/* by default mask all interrupts */
	hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT);

	/* Disable interrupts in the IH_MUTE_* registers */
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0);

	/* Enable top level interrupt bits in HDMI block */
	ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		    HDMI_IH_MUTE_MUTE_ALL_INTERRUPT);
	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
}

1989
static void dw_hdmi_poweron(struct dw_hdmi *hdmi)
1990
{
1991
	hdmi->bridge_is_on = true;
1992
	dw_hdmi_setup(hdmi, &hdmi->previous_mode);
1993 1994
}

1995
static void dw_hdmi_poweroff(struct dw_hdmi *hdmi)
1996
{
1997 1998 1999 2000 2001
	if (hdmi->phy.enabled) {
		hdmi->phy.ops->disable(hdmi, hdmi->phy.data);
		hdmi->phy.enabled = false;
	}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	hdmi->bridge_is_on = false;
}

static void dw_hdmi_update_power(struct dw_hdmi *hdmi)
{
	int force = hdmi->force;

	if (hdmi->disabled) {
		force = DRM_FORCE_OFF;
	} else if (force == DRM_FORCE_UNSPECIFIED) {
2012
		if (hdmi->rxsense)
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
			force = DRM_FORCE_ON;
		else
			force = DRM_FORCE_OFF;
	}

	if (force == DRM_FORCE_OFF) {
		if (hdmi->bridge_is_on)
			dw_hdmi_poweroff(hdmi);
	} else {
		if (!hdmi->bridge_is_on)
			dw_hdmi_poweron(hdmi);
	}
2025 2026
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
/*
 * Adjust the detection of RXSENSE according to whether we have a forced
 * connection mode enabled, or whether we have been disabled.  There is
 * no point processing RXSENSE interrupts if we have a forced connection
 * state, or DRM has us disabled.
 *
 * We also disable rxsense interrupts when we think we're disconnected
 * to avoid floating TDMS signals giving false rxsense interrupts.
 *
 * Note: we still need to listen for HPD interrupts even when DRM has us
 * disabled so that we can detect a connect event.
 */
static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi)
{
2041 2042 2043 2044
	if (hdmi->phy.ops->update_hpd)
		hdmi->phy.ops->update_hpd(hdmi, hdmi->phy.data,
					  hdmi->force, hdmi->disabled,
					  hdmi->rxsense);
2045 2046
}

2047 2048
static enum drm_connector_status
dw_hdmi_connector_detect(struct drm_connector *connector, bool force)
2049
{
2050
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
2051
					     connector);
2052

2053 2054 2055
	mutex_lock(&hdmi->mutex);
	hdmi->force = DRM_FORCE_UNSPECIFIED;
	dw_hdmi_update_power(hdmi);
2056
	dw_hdmi_update_phy_mask(hdmi);
2057 2058
	mutex_unlock(&hdmi->mutex);

2059
	return hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data);
2060 2061
}

2062
static int dw_hdmi_connector_get_modes(struct drm_connector *connector)
2063
{
2064
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
2065 2066
					     connector);
	struct edid *edid;
2067
	int ret = 0;
2068 2069 2070 2071 2072 2073 2074 2075 2076

	if (!hdmi->ddc)
		return 0;

	edid = drm_get_edid(connector, hdmi->ddc);
	if (edid) {
		dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n",
			edid->width_cm, edid->height_cm);

2077
		hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid);
2078
		hdmi->sink_has_audio = drm_detect_monitor_audio(edid);
2079
		drm_connector_update_edid_property(connector, edid);
2080
		cec_notifier_set_phys_addr_from_edid(hdmi->cec_notifier, edid);
2081 2082 2083 2084 2085 2086
		ret = drm_add_edid_modes(connector, edid);
		kfree(edid);
	} else {
		dev_dbg(hdmi->dev, "failed to get edid\n");
	}

2087
	return ret;
2088 2089
}

2090 2091 2092 2093 2094 2095 2096 2097
static void dw_hdmi_connector_force(struct drm_connector *connector)
{
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
					     connector);

	mutex_lock(&hdmi->mutex);
	hdmi->force = connector->force;
	dw_hdmi_update_power(hdmi);
2098
	dw_hdmi_update_phy_mask(hdmi);
2099 2100 2101
	mutex_unlock(&hdmi->mutex);
}

2102
static const struct drm_connector_funcs dw_hdmi_connector_funcs = {
2103 2104
	.fill_modes = drm_helper_probe_single_connector_modes,
	.detect = dw_hdmi_connector_detect,
2105
	.destroy = drm_connector_cleanup,
2106 2107 2108 2109 2110 2111
	.force = dw_hdmi_connector_force,
	.reset = drm_atomic_helper_connector_reset,
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};

2112
static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = {
2113
	.get_modes = dw_hdmi_connector_get_modes,
2114 2115
};

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
static int dw_hdmi_bridge_attach(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;
	struct drm_encoder *encoder = bridge->encoder;
	struct drm_connector *connector = &hdmi->connector;

	connector->interlace_allowed = 1;
	connector->polled = DRM_CONNECTOR_POLL_HPD;

	drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs);

	drm_connector_init(bridge->dev, connector, &dw_hdmi_connector_funcs,
			   DRM_MODE_CONNECTOR_HDMIA);

2130
	drm_connector_attach_encoder(connector, encoder);
2131 2132 2133 2134

	return 0;
}

2135 2136 2137
static enum drm_mode_status
dw_hdmi_bridge_mode_valid(struct drm_bridge *bridge,
			  const struct drm_display_mode *mode)
2138 2139 2140
{
	struct dw_hdmi *hdmi = bridge->driver_private;
	struct drm_connector *connector = &hdmi->connector;
2141
	enum drm_mode_status mode_status = MODE_OK;
2142

2143 2144 2145 2146 2147 2148 2149 2150
	/* We don't support double-clocked modes */
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_BAD;

	if (hdmi->plat_data->mode_valid)
		mode_status = hdmi->plat_data->mode_valid(connector, mode);

	return mode_status;
2151 2152
}

2153
static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge,
2154 2155
				    const struct drm_display_mode *orig_mode,
				    const struct drm_display_mode *mode)
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);

	/* Store the display mode for plugin/DKMS poweron events */
	memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode));

	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_disable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = true;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_enable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = false;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

2189
static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = {
2190
	.attach = dw_hdmi_bridge_attach,
2191 2192 2193
	.enable = dw_hdmi_bridge_enable,
	.disable = dw_hdmi_bridge_disable,
	.mode_set = dw_hdmi_bridge_mode_set,
2194
	.mode_valid = dw_hdmi_bridge_mode_valid,
2195 2196
};

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	unsigned int stat;

	stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
	if (!stat)
		return IRQ_NONE;

	hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0);

	i2c->stat = stat;

	complete(&i2c->cmp);

	return IRQ_HANDLED;
}

2215
static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id)
2216
{
2217
	struct dw_hdmi *hdmi = dev_id;
2218
	u8 intr_stat;
2219 2220 2221 2222
	irqreturn_t ret = IRQ_NONE;

	if (hdmi->i2c)
		ret = dw_hdmi_i2c_irq(hdmi);
2223 2224

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
2225
	if (intr_stat) {
2226
		hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
2227 2228
		return IRQ_WAKE_THREAD;
	}
2229

2230
	return ret;
2231 2232
}

2233
void dw_hdmi_setup_rx_sense(struct dw_hdmi *hdmi, bool hpd, bool rx_sense)
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
{
	mutex_lock(&hdmi->mutex);

	if (!hdmi->force) {
		/*
		 * If the RX sense status indicates we're disconnected,
		 * clear the software rxsense status.
		 */
		if (!rx_sense)
			hdmi->rxsense = false;

		/*
		 * Only set the software rxsense status when both
		 * rxsense and hpd indicates we're connected.
		 * This avoids what seems to be bad behaviour in
		 * at least iMX6S versions of the phy.
		 */
		if (hpd)
			hdmi->rxsense = true;

		dw_hdmi_update_power(hdmi);
		dw_hdmi_update_phy_mask(hdmi);
	}
	mutex_unlock(&hdmi->mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_setup_rx_sense);

2261
static irqreturn_t dw_hdmi_irq(int irq, void *dev_id)
2262
{
2263
	struct dw_hdmi *hdmi = dev_id;
2264
	u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat;
2265 2266 2267

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
	phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0);
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0);

	phy_pol_mask = 0;
	if (intr_stat & HDMI_IH_PHY_STAT0_HPD)
		phy_pol_mask |= HDMI_PHY_HPD;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0)
		phy_pol_mask |= HDMI_PHY_RX_SENSE0;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1)
		phy_pol_mask |= HDMI_PHY_RX_SENSE1;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2)
		phy_pol_mask |= HDMI_PHY_RX_SENSE2;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3)
		phy_pol_mask |= HDMI_PHY_RX_SENSE3;

	if (phy_pol_mask)
		hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0);
2284

2285 2286 2287 2288 2289 2290 2291 2292
	/*
	 * RX sense tells us whether the TDMS transmitters are detecting
	 * load - in other words, there's something listening on the
	 * other end of the link.  Use this to decide whether we should
	 * power on the phy as HPD may be toggled by the sink to merely
	 * ask the source to re-read the EDID.
	 */
	if (intr_stat &
2293
	    (HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD)) {
2294 2295 2296
		dw_hdmi_setup_rx_sense(hdmi,
				       phy_stat & HDMI_PHY_HPD,
				       phy_stat & HDMI_PHY_RX_SENSE);
2297

2298 2299 2300 2301 2302
		if ((phy_stat & (HDMI_PHY_RX_SENSE | HDMI_PHY_HPD)) == 0)
			cec_notifier_set_phys_addr(hdmi->cec_notifier,
						   CEC_PHYS_ADDR_INVALID);
	}

2303 2304 2305
	if (intr_stat & HDMI_IH_PHY_STAT0_HPD) {
		dev_dbg(hdmi->dev, "EVENT=%s\n",
			phy_int_pol & HDMI_PHY_HPD ? "plugin" : "plugout");
2306 2307
		if (hdmi->bridge.dev)
			drm_helper_hpd_irq_event(hdmi->bridge.dev);
2308 2309 2310
	}

	hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0);
2311 2312
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
2313 2314 2315 2316

	return IRQ_HANDLED;
}

2317 2318 2319 2320
static const struct dw_hdmi_phy_data dw_hdmi_phys[] = {
	{
		.type = DW_HDMI_PHY_DWC_HDMI_TX_PHY,
		.name = "DWC HDMI TX PHY",
2321
		.gen = 1,
2322 2323 2324
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC,
		.name = "DWC MHL PHY + HEAC PHY",
2325
		.gen = 2,
2326
		.has_svsret = true,
2327
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2328 2329 2330
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY,
		.name = "DWC MHL PHY",
2331
		.gen = 2,
2332
		.has_svsret = true,
2333
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2334 2335 2336
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC,
		.name = "DWC HDMI 3D TX PHY + HEAC PHY",
2337
		.gen = 2,
2338
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2339 2340 2341
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY,
		.name = "DWC HDMI 3D TX PHY",
2342
		.gen = 2,
2343
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2344 2345 2346
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
		.name = "DWC HDMI 2.0 TX PHY",
2347
		.gen = 2,
2348
		.has_svsret = true,
2349
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2350 2351 2352
	}, {
		.type = DW_HDMI_PHY_VENDOR_PHY,
		.name = "Vendor PHY",
2353 2354 2355 2356 2357 2358 2359 2360
	}
};

static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi)
{
	unsigned int i;
	u8 phy_type;

2361 2362 2363
	phy_type = hdmi->plat_data->phy_force_vendor ?
				DW_HDMI_PHY_VENDOR_PHY :
				hdmi_readb(hdmi, HDMI_CONFIG2_ID);
2364

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	if (phy_type == DW_HDMI_PHY_VENDOR_PHY) {
		/* Vendor PHYs require support from the glue layer. */
		if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) {
			dev_err(hdmi->dev,
				"Vendor HDMI PHY not supported by glue layer\n");
			return -ENODEV;
		}

		hdmi->phy.ops = hdmi->plat_data->phy_ops;
		hdmi->phy.data = hdmi->plat_data->phy_data;
		hdmi->phy.name = hdmi->plat_data->phy_name;
		return 0;
	}

	/* Synopsys PHYs are handled internally. */
2380 2381
	for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) {
		if (dw_hdmi_phys[i].type == phy_type) {
2382 2383 2384
			hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops;
			hdmi->phy.name = dw_hdmi_phys[i].name;
			hdmi->phy.data = (void *)&dw_hdmi_phys[i];
2385 2386 2387 2388 2389 2390 2391 2392

			if (!dw_hdmi_phys[i].configure &&
			    !hdmi->plat_data->configure_phy) {
				dev_err(hdmi->dev, "%s requires platform support\n",
					hdmi->phy.name);
				return -ENODEV;
			}

2393 2394 2395 2396
			return 0;
		}
	}

2397
	dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type);
2398 2399 2400
	return -ENODEV;
}

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
static void dw_hdmi_cec_enable(struct dw_hdmi *hdmi)
{
	mutex_lock(&hdmi->mutex);
	hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CECCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_cec_disable(struct dw_hdmi *hdmi)
{
	mutex_lock(&hdmi->mutex);
	hdmi->mc_clkdis |= HDMI_MC_CLKDIS_CECCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
	mutex_unlock(&hdmi->mutex);
}

static const struct dw_hdmi_cec_ops dw_hdmi_cec_ops = {
	.write = hdmi_writeb,
	.read = hdmi_readb,
	.enable = dw_hdmi_cec_enable,
	.disable = dw_hdmi_cec_disable,
};

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
static const struct regmap_config hdmi_regmap_8bit_config = {
	.reg_bits	= 32,
	.val_bits	= 8,
	.reg_stride	= 1,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR,
};

static const struct regmap_config hdmi_regmap_32bit_config = {
	.reg_bits	= 32,
	.val_bits	= 32,
	.reg_stride	= 4,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2,
};

2438 2439 2440
static struct dw_hdmi *
__dw_hdmi_probe(struct platform_device *pdev,
		const struct dw_hdmi_plat_data *plat_data)
2441
{
2442
	struct device *dev = &pdev->dev;
2443
	struct device_node *np = dev->of_node;
2444
	struct platform_device_info pdevinfo;
2445
	struct device_node *ddc_node;
2446
	struct dw_hdmi_cec_data cec;
2447
	struct dw_hdmi *hdmi;
2448
	struct resource *iores = NULL;
2449
	int irq;
2450
	int ret;
2451
	u32 val = 1;
2452 2453
	u8 prod_id0;
	u8 prod_id1;
2454
	u8 config0;
2455
	u8 config3;
2456

2457
	hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
2458
	if (!hdmi)
2459
		return ERR_PTR(-ENOMEM);
2460

2461
	hdmi->plat_data = plat_data;
2462
	hdmi->dev = dev;
2463
	hdmi->sample_rate = 48000;
2464
	hdmi->disabled = true;
2465 2466
	hdmi->rxsense = true;
	hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE);
2467
	hdmi->mc_clkdis = 0x7f;
2468

2469
	mutex_init(&hdmi->mutex);
2470
	mutex_init(&hdmi->audio_mutex);
2471
	spin_lock_init(&hdmi->audio_lock);
2472

2473
	ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0);
2474
	if (ddc_node) {
2475
		hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node);
2476 2477
		of_node_put(ddc_node);
		if (!hdmi->ddc) {
2478
			dev_dbg(hdmi->dev, "failed to read ddc node\n");
2479
			return ERR_PTR(-EPROBE_DEFER);
2480
		}
2481 2482 2483 2484 2485

	} else {
		dev_dbg(hdmi->dev, "no ddc property found\n");
	}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	if (!plat_data->regm) {
		const struct regmap_config *reg_config;

		of_property_read_u32(np, "reg-io-width", &val);
		switch (val) {
		case 4:
			reg_config = &hdmi_regmap_32bit_config;
			hdmi->reg_shift = 2;
			break;
		case 1:
			reg_config = &hdmi_regmap_8bit_config;
			break;
		default:
			dev_err(dev, "reg-io-width must be 1 or 4\n");
			return ERR_PTR(-EINVAL);
		}

		iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		hdmi->regs = devm_ioremap_resource(dev, iores);
		if (IS_ERR(hdmi->regs)) {
			ret = PTR_ERR(hdmi->regs);
			goto err_res;
		}

		hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config);
		if (IS_ERR(hdmi->regm)) {
			dev_err(dev, "Failed to configure regmap\n");
			ret = PTR_ERR(hdmi->regm);
			goto err_res;
		}
	} else {
		hdmi->regm = plat_data->regm;
2518
	}
2519 2520 2521 2522

	hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr");
	if (IS_ERR(hdmi->isfr_clk)) {
		ret = PTR_ERR(hdmi->isfr_clk);
2523
		dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret);
2524
		goto err_res;
2525 2526 2527 2528
	}

	ret = clk_prepare_enable(hdmi->isfr_clk);
	if (ret) {
2529
		dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret);
2530
		goto err_res;
2531 2532 2533 2534 2535
	}

	hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb");
	if (IS_ERR(hdmi->iahb_clk)) {
		ret = PTR_ERR(hdmi->iahb_clk);
2536
		dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret);
2537 2538 2539 2540 2541
		goto err_isfr;
	}

	ret = clk_prepare_enable(hdmi->iahb_clk);
	if (ret) {
2542
		dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret);
2543 2544 2545
		goto err_isfr;
	}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	hdmi->cec_clk = devm_clk_get(hdmi->dev, "cec");
	if (PTR_ERR(hdmi->cec_clk) == -ENOENT) {
		hdmi->cec_clk = NULL;
	} else if (IS_ERR(hdmi->cec_clk)) {
		ret = PTR_ERR(hdmi->cec_clk);
		if (ret != -EPROBE_DEFER)
			dev_err(hdmi->dev, "Cannot get HDMI cec clock: %d\n",
				ret);

		hdmi->cec_clk = NULL;
		goto err_iahb;
	} else {
		ret = clk_prepare_enable(hdmi->cec_clk);
		if (ret) {
			dev_err(hdmi->dev, "Cannot enable HDMI cec clock: %d\n",
				ret);
			goto err_iahb;
		}
	}

2566
	/* Product and revision IDs */
2567 2568
	hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8)
		      | (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0);
2569 2570 2571 2572 2573 2574
	prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0);
	prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1);

	if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX ||
	    (prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) {
		dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n",
2575
			hdmi->version, prod_id0, prod_id1);
2576 2577 2578 2579
		ret = -ENODEV;
		goto err_iahb;
	}

2580 2581 2582 2583 2584
	ret = dw_hdmi_detect_phy(hdmi);
	if (ret < 0)
		goto err_iahb;

	dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n",
2585
		 hdmi->version >> 12, hdmi->version & 0xfff,
2586
		 prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without",
2587
		 hdmi->phy.name);
2588 2589 2590

	initialize_hdmi_ih_mutes(hdmi);

2591
	irq = platform_get_irq(pdev, 0);
2592 2593
	if (irq < 0) {
		ret = irq;
2594
		goto err_iahb;
2595
	}
2596

2597 2598 2599 2600
	ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq,
					dw_hdmi_irq, IRQF_SHARED,
					dev_name(dev), hdmi);
	if (ret)
2601
		goto err_iahb;
2602

2603 2604 2605 2606 2607 2608
	hdmi->cec_notifier = cec_notifier_get(dev);
	if (!hdmi->cec_notifier) {
		ret = -ENOMEM;
		goto err_iahb;
	}

2609 2610 2611 2612 2613 2614
	/*
	 * To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator
	 * N and cts values before enabling phy
	 */
	hdmi_init_clk_regenerator(hdmi);

2615 2616 2617 2618 2619 2620 2621
	/* If DDC bus is not specified, try to register HDMI I2C bus */
	if (!hdmi->ddc) {
		hdmi->ddc = dw_hdmi_i2c_adapter(hdmi);
		if (IS_ERR(hdmi->ddc))
			hdmi->ddc = NULL;
	}

2622 2623
	hdmi->bridge.driver_private = hdmi;
	hdmi->bridge.funcs = &dw_hdmi_bridge_funcs;
2624
#ifdef CONFIG_OF
2625
	hdmi->bridge.of_node = pdev->dev.of_node;
2626
#endif
2627

2628
	dw_hdmi_setup_i2c(hdmi);
2629 2630
	if (hdmi->phy.ops->setup_hpd)
		hdmi->phy.ops->setup_hpd(hdmi, hdmi->phy.data);
2631

2632 2633 2634 2635
	memset(&pdevinfo, 0, sizeof(pdevinfo));
	pdevinfo.parent = dev;
	pdevinfo.id = PLATFORM_DEVID_AUTO;

2636
	config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID);
2637
	config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID);
2638

2639
	if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) {
2640 2641
		struct dw_hdmi_audio_data audio;

2642 2643 2644 2645
		audio.phys = iores->start;
		audio.base = hdmi->regs;
		audio.irq = irq;
		audio.hdmi = hdmi;
2646
		audio.eld = hdmi->connector.eld;
2647 2648
		hdmi->enable_audio = dw_hdmi_ahb_audio_enable;
		hdmi->disable_audio = dw_hdmi_ahb_audio_disable;
2649 2650 2651 2652 2653 2654

		pdevinfo.name = "dw-hdmi-ahb-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2655 2656 2657 2658 2659 2660
	} else if (config0 & HDMI_CONFIG0_I2S) {
		struct dw_hdmi_i2s_audio_data audio;

		audio.hdmi	= hdmi;
		audio.write	= hdmi_writeb;
		audio.read	= hdmi_readb;
2661
		hdmi->enable_audio = dw_hdmi_i2s_audio_enable;
2662
		hdmi->disable_audio = dw_hdmi_i2s_audio_disable;
2663 2664 2665 2666 2667 2668

		pdevinfo.name = "dw-hdmi-i2s-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2669 2670
	}

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	if (config0 & HDMI_CONFIG0_CEC) {
		cec.hdmi = hdmi;
		cec.ops = &dw_hdmi_cec_ops;
		cec.irq = irq;

		pdevinfo.name = "dw-hdmi-cec";
		pdevinfo.data = &cec;
		pdevinfo.size_data = sizeof(cec);
		pdevinfo.dma_mask = 0;

		hdmi->cec = platform_device_register_full(&pdevinfo);
	}

2684 2685 2686 2687
	/* Reset HDMI DDC I2C master controller and mute I2CM interrupts */
	if (hdmi->i2c)
		dw_hdmi_i2c_init(hdmi);

2688
	return hdmi;
2689 2690

err_iahb:
2691 2692 2693 2694 2695
	if (hdmi->i2c) {
		i2c_del_adapter(&hdmi->i2c->adap);
		hdmi->ddc = NULL;
	}

2696 2697 2698
	if (hdmi->cec_notifier)
		cec_notifier_put(hdmi->cec_notifier);

2699
	clk_disable_unprepare(hdmi->iahb_clk);
2700 2701
	if (hdmi->cec_clk)
		clk_disable_unprepare(hdmi->cec_clk);
2702 2703
err_isfr:
	clk_disable_unprepare(hdmi->isfr_clk);
2704 2705
err_res:
	i2c_put_adapter(hdmi->ddc);
2706

2707
	return ERR_PTR(ret);
2708 2709
}

2710
static void __dw_hdmi_remove(struct dw_hdmi *hdmi)
2711
{
2712 2713
	if (hdmi->audio && !IS_ERR(hdmi->audio))
		platform_device_unregister(hdmi->audio);
2714 2715
	if (!IS_ERR(hdmi->cec))
		platform_device_unregister(hdmi->cec);
2716

2717 2718 2719
	/* Disable all interrupts */
	hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);

2720 2721 2722
	if (hdmi->cec_notifier)
		cec_notifier_put(hdmi->cec_notifier);

2723 2724
	clk_disable_unprepare(hdmi->iahb_clk);
	clk_disable_unprepare(hdmi->isfr_clk);
2725 2726
	if (hdmi->cec_clk)
		clk_disable_unprepare(hdmi->cec_clk);
2727 2728 2729 2730 2731

	if (hdmi->i2c)
		i2c_del_adapter(&hdmi->i2c->adap);
	else
		i2c_put_adapter(hdmi->ddc);
2732
}
2733 2734 2735 2736

/* -----------------------------------------------------------------------------
 * Probe/remove API, used from platforms based on the DRM bridge API.
 */
2737 2738
struct dw_hdmi *dw_hdmi_probe(struct platform_device *pdev,
			      const struct dw_hdmi_plat_data *plat_data)
2739 2740 2741 2742 2743
{
	struct dw_hdmi *hdmi;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
2744
		return hdmi;
2745

2746
	drm_bridge_add(&hdmi->bridge);
2747

2748
	return hdmi;
2749 2750 2751
}
EXPORT_SYMBOL_GPL(dw_hdmi_probe);

2752
void dw_hdmi_remove(struct dw_hdmi *hdmi)
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
{
	drm_bridge_remove(&hdmi->bridge);

	__dw_hdmi_remove(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_remove);

/* -----------------------------------------------------------------------------
 * Bind/unbind API, used from platforms based on the component framework.
 */
2763 2764 2765
struct dw_hdmi *dw_hdmi_bind(struct platform_device *pdev,
			     struct drm_encoder *encoder,
			     const struct dw_hdmi_plat_data *plat_data)
2766 2767 2768 2769 2770 2771
{
	struct dw_hdmi *hdmi;
	int ret;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
2772
		return hdmi;
2773 2774 2775

	ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL);
	if (ret) {
2776
		dw_hdmi_remove(hdmi);
2777
		DRM_ERROR("Failed to initialize bridge with drm\n");
2778
		return ERR_PTR(ret);
2779 2780
	}

2781
	return hdmi;
2782 2783 2784
}
EXPORT_SYMBOL_GPL(dw_hdmi_bind);

2785
void dw_hdmi_unbind(struct dw_hdmi *hdmi)
2786 2787 2788
{
	__dw_hdmi_remove(hdmi);
}
2789
EXPORT_SYMBOL_GPL(dw_hdmi_unbind);
2790 2791

MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
2792 2793
MODULE_AUTHOR("Andy Yan <andy.yan@rock-chips.com>");
MODULE_AUTHOR("Yakir Yang <ykk@rock-chips.com>");
2794
MODULE_AUTHOR("Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com>");
2795
MODULE_DESCRIPTION("DW HDMI transmitter driver");
2796
MODULE_LICENSE("GPL");
2797
MODULE_ALIAS("platform:dw-hdmi");