dw-hdmi.c 67.5 KB
Newer Older
1
/*
2 3 4
 * DesignWare High-Definition Multimedia Interface (HDMI) driver
 *
 * Copyright (C) 2013-2015 Mentor Graphics Inc.
5
 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc.
6
 * Copyright (C) 2010, Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7 8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */
14
#include <linux/module.h>
15 16 17 18
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
S
Sachin Kamat 已提交
19
#include <linux/hdmi.h>
20
#include <linux/mutex.h>
21
#include <linux/of_device.h>
22
#include <linux/regmap.h>
23
#include <linux/spinlock.h>
24

25
#include <drm/drm_of.h>
26
#include <drm/drmP.h>
27
#include <drm/drm_atomic_helper.h>
28 29 30
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_encoder_slave.h>
31
#include <drm/bridge/dw_hdmi.h>
32

33 34 35
#include <uapi/linux/media-bus-format.h>
#include <uapi/linux/videodev2.h>

36 37
#include "dw-hdmi.h"
#include "dw-hdmi-audio.h"
38

39
#define DDC_SEGMENT_ADDR	0x30
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#define HDMI_EDID_LEN		512

enum hdmi_datamap {
	RGB444_8B = 0x01,
	RGB444_10B = 0x03,
	RGB444_12B = 0x05,
	RGB444_16B = 0x07,
	YCbCr444_8B = 0x09,
	YCbCr444_10B = 0x0B,
	YCbCr444_12B = 0x0D,
	YCbCr444_16B = 0x0F,
	YCbCr422_8B = 0x16,
	YCbCr422_10B = 0x14,
	YCbCr422_12B = 0x12,
};

static const u16 csc_coeff_default[3][4] = {
	{ 0x2000, 0x0000, 0x0000, 0x0000 },
	{ 0x0000, 0x2000, 0x0000, 0x0000 },
	{ 0x0000, 0x0000, 0x2000, 0x0000 }
};

static const u16 csc_coeff_rgb_out_eitu601[3][4] = {
	{ 0x2000, 0x6926, 0x74fd, 0x010e },
	{ 0x2000, 0x2cdd, 0x0000, 0x7e9a },
	{ 0x2000, 0x0000, 0x38b4, 0x7e3b }
};

static const u16 csc_coeff_rgb_out_eitu709[3][4] = {
	{ 0x2000, 0x7106, 0x7a02, 0x00a7 },
	{ 0x2000, 0x3264, 0x0000, 0x7e6d },
	{ 0x2000, 0x0000, 0x3b61, 0x7e25 }
};

static const u16 csc_coeff_rgb_in_eitu601[3][4] = {
	{ 0x2591, 0x1322, 0x074b, 0x0000 },
	{ 0x6535, 0x2000, 0x7acc, 0x0200 },
	{ 0x6acd, 0x7534, 0x2000, 0x0200 }
};

static const u16 csc_coeff_rgb_in_eitu709[3][4] = {
	{ 0x2dc5, 0x0d9b, 0x049e, 0x0000 },
	{ 0x62f0, 0x2000, 0x7d11, 0x0200 },
	{ 0x6756, 0x78ab, 0x2000, 0x0200 }
};

struct hdmi_vmode {
	bool mdataenablepolarity;

	unsigned int mpixelclock;
	unsigned int mpixelrepetitioninput;
	unsigned int mpixelrepetitionoutput;
};

struct hdmi_data_info {
95 96 97 98
	unsigned int enc_in_bus_format;
	unsigned int enc_out_bus_format;
	unsigned int enc_in_encoding;
	unsigned int enc_out_encoding;
99 100 101 102 103
	unsigned int pix_repet_factor;
	unsigned int hdcp_enable;
	struct hdmi_vmode video_mode;
};

104 105 106 107 108 109 110 111 112
struct dw_hdmi_i2c {
	struct i2c_adapter	adap;

	struct mutex		lock;	/* used to serialize data transfers */
	struct completion	cmp;
	u8			stat;

	u8			slave_reg;
	bool			is_regaddr;
113
	bool			is_segment;
114 115
};

116 117 118
struct dw_hdmi_phy_data {
	enum dw_hdmi_phy_type type;
	const char *name;
119
	unsigned int gen;
120
	bool has_svsret;
121 122 123
	int (*configure)(struct dw_hdmi *hdmi,
			 const struct dw_hdmi_plat_data *pdata,
			 unsigned long mpixelclock);
124 125
};

126
struct dw_hdmi {
127
	struct drm_connector connector;
128
	struct drm_bridge bridge;
129

130 131 132
	unsigned int version;

	struct platform_device *audio;
133 134 135
	struct device *dev;
	struct clk *isfr_clk;
	struct clk *iahb_clk;
136
	struct dw_hdmi_i2c *i2c;
137 138

	struct hdmi_data_info hdmi_data;
139 140
	const struct dw_hdmi_plat_data *plat_data;

141 142 143 144 145
	int vic;

	u8 edid[HDMI_EDID_LEN];
	bool cable_plugin;

146 147 148 149 150 151
	struct {
		const struct dw_hdmi_phy_ops *ops;
		const char *name;
		void *data;
		bool enabled;
	} phy;
152

153 154 155 156
	struct drm_display_mode previous_mode;

	struct i2c_adapter *ddc;
	void __iomem *regs;
157
	bool sink_is_hdmi;
158
	bool sink_has_audio;
159

160
	struct mutex mutex;		/* for state below and previous_mode */
161
	enum drm_connector_force force;	/* mutex-protected force state */
162
	bool disabled;			/* DRM has disabled our bridge */
163
	bool bridge_is_on;		/* indicates the bridge is on */
164 165
	bool rxsense;			/* rxsense state */
	u8 phy_mask;			/* desired phy int mask settings */
166

167
	spinlock_t audio_lock;
168
	struct mutex audio_mutex;
169
	unsigned int sample_rate;
170 171 172
	unsigned int audio_cts;
	unsigned int audio_n;
	bool audio_enable;
173

174 175
	unsigned int reg_shift;
	struct regmap *regm;
176 177
	void (*enable_audio)(struct dw_hdmi *hdmi);
	void (*disable_audio)(struct dw_hdmi *hdmi);
178 179
};

180 181 182 183 184 185 186 187
#define HDMI_IH_PHY_STAT0_RX_SENSE \
	(HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \
	 HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3)

#define HDMI_PHY_RX_SENSE \
	(HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \
	 HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3)

188 189
static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
190
	regmap_write(hdmi->regm, offset << hdmi->reg_shift, val);
191 192 193 194
}

static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
195 196 197 198 199
	unsigned int val = 0;

	regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val);

	return val;
200 201
}

202
static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg)
203
{
204
	regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data);
205 206
}

207
static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg,
208
			     u8 shift, u8 mask)
209
{
210
	hdmi_modb(hdmi, data << shift, mask, reg);
211 212
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi)
{
	/* Software reset */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ);

	/* Set Standard Mode speed (determined to be 100KHz on iMX6) */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV);

	/* Set done, not acknowledged and arbitration interrupt polarities */
	hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL,
		    HDMI_I2CM_CTLINT);

	/* Clear DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_I2CM_STAT0);

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);
}

static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi,
			    unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		dev_dbg(hdmi->dev, "set read register address to 0\n");
		i2c->slave_reg = 0x00;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
251 252 253 254 255 256
		if (i2c->is_segment)
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT,
				    HDMI_I2CM_OPERATION);
		else
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ,
				    HDMI_I2CM_OPERATION);
257 258 259 260 261 262 263 264 265 266 267

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;

		*buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI);
	}
268
	i2c->is_segment = false;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

	return 0;
}

static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi,
			     unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		/* Use the first write byte as register address */
		i2c->slave_reg = buf[0];
		length--;
		buf++;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO);
		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
		hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE,
			    HDMI_I2CM_OPERATION);

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;
	}

	return 0;
}

static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap,
			    struct i2c_msg *msgs, int num)
{
	struct dw_hdmi *hdmi = i2c_get_adapdata(adap);
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	u8 addr = msgs[0].addr;
	int i, ret = 0;

	dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr);

	for (i = 0; i < num; i++) {
		if (msgs[i].len == 0) {
			dev_dbg(hdmi->dev,
				"unsupported transfer %d/%d, no data\n",
				i + 1, num);
			return -EOPNOTSUPP;
		}
	}

	mutex_lock(&i2c->lock);

	/* Unmute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0);

	/* Set slave device address taken from the first I2C message */
	hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE);

	/* Set slave device register address on transfer */
	i2c->is_regaddr = false;

337 338 339
	/* Set segment pointer for I2C extended read mode operation */
	i2c->is_segment = false;

340 341 342
	for (i = 0; i < num; i++) {
		dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n",
			i + 1, num, msgs[i].len, msgs[i].flags);
343 344 345 346 347 348 349 350 351 352 353 354
		if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) {
			i2c->is_segment = true;
			hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR);
			hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR);
		} else {
			if (msgs[i].flags & I2C_M_RD)
				ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf,
						       msgs[i].len);
			else
				ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf,
							msgs[i].len);
		}
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
		if (ret < 0)
			break;
	}

	if (!ret)
		ret = num;

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);

	mutex_unlock(&i2c->lock);

	return ret;
}

static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm dw_hdmi_algorithm = {
	.master_xfer	= dw_hdmi_i2c_xfer,
	.functionality	= dw_hdmi_i2c_func,
};

static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi)
{
	struct i2c_adapter *adap;
	struct dw_hdmi_i2c *i2c;
	int ret;

	i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
	if (!i2c)
		return ERR_PTR(-ENOMEM);

	mutex_init(&i2c->lock);
	init_completion(&i2c->cmp);

	adap = &i2c->adap;
	adap->class = I2C_CLASS_DDC;
	adap->owner = THIS_MODULE;
	adap->dev.parent = hdmi->dev;
	adap->algo = &dw_hdmi_algorithm;
	strlcpy(adap->name, "DesignWare HDMI", sizeof(adap->name));
	i2c_set_adapdata(adap, hdmi);

	ret = i2c_add_adapter(adap);
	if (ret) {
		dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
		devm_kfree(hdmi->dev, i2c);
		return ERR_PTR(ret);
	}

	hdmi->i2c = i2c;

	dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name);

	return adap;
}

416 417
static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts,
			   unsigned int n)
418
{
419 420
	/* Must be set/cleared first */
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
421 422

	/* nshift factor = 0 */
423
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3);
424 425 426

	hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) |
		    HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
427 428 429 430 431 432
	hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2);
	hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1);

	hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3);
	hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2);
	hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1);
433 434
}

435
static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk)
436 437
{
	unsigned int n = (128 * freq) / 1000;
438 439 440 441 442 443
	unsigned int mult = 1;

	while (freq > 48000) {
		mult *= 2;
		freq /= 2;
	}
444 445 446

	switch (freq) {
	case 32000:
447
		if (pixel_clk == 25175000)
448
			n = 4576;
449
		else if (pixel_clk == 27027000)
450
			n = 4096;
451
		else if (pixel_clk == 74176000 || pixel_clk == 148352000)
452 453 454
			n = 11648;
		else
			n = 4096;
455
		n *= mult;
456 457 458
		break;

	case 44100:
459
		if (pixel_clk == 25175000)
460
			n = 7007;
461
		else if (pixel_clk == 74176000)
462
			n = 17836;
463
		else if (pixel_clk == 148352000)
464
			n = 8918;
465 466
		else
			n = 6272;
467
		n *= mult;
468 469 470
		break;

	case 48000:
471
		if (pixel_clk == 25175000)
472
			n = 6864;
473
		else if (pixel_clk == 27027000)
474
			n = 6144;
475
		else if (pixel_clk == 74176000)
476
			n = 11648;
477
		else if (pixel_clk == 148352000)
478
			n = 5824;
479 480
		else
			n = 6144;
481
		n *= mult;
482 483 484 485 486 487 488 489 490
		break;

	default:
		break;
	}

	return n;
}

491
static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi,
492
	unsigned long pixel_clk, unsigned int sample_rate)
493
{
494
	unsigned long ftdms = pixel_clk;
495
	unsigned int n, cts;
496
	u64 tmp;
497

498
	n = hdmi_compute_n(sample_rate, pixel_clk);
499

500 501 502 503 504 505 506 507 508 509 510 511 512 513
	/*
	 * Compute the CTS value from the N value.  Note that CTS and N
	 * can be up to 20 bits in total, so we need 64-bit math.  Also
	 * note that our TDMS clock is not fully accurate; it is accurate
	 * to kHz.  This can introduce an unnecessary remainder in the
	 * calculation below, so we don't try to warn about that.
	 */
	tmp = (u64)ftdms * n;
	do_div(tmp, 128 * sample_rate);
	cts = tmp;

	dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n",
		__func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000,
		n, cts);
514

515 516 517 518 519
	spin_lock_irq(&hdmi->audio_lock);
	hdmi->audio_n = n;
	hdmi->audio_cts = cts;
	hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0);
	spin_unlock_irq(&hdmi->audio_lock);
520 521
}

522
static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi)
523
{
524
	mutex_lock(&hdmi->audio_mutex);
525
	hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate);
526
	mutex_unlock(&hdmi->audio_mutex);
527 528
}

529
static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi)
530
{
531
	mutex_lock(&hdmi->audio_mutex);
532
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
533
				 hdmi->sample_rate);
534
	mutex_unlock(&hdmi->audio_mutex);
535 536
}

537 538 539 540 541
void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate)
{
	mutex_lock(&hdmi->audio_mutex);
	hdmi->sample_rate = rate;
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
542
				 hdmi->sample_rate);
543 544 545 546
	mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate);

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static void dw_hdmi_ahb_audio_enable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
}

static void dw_hdmi_ahb_audio_disable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
}

static void dw_hdmi_i2s_audio_enable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
}

562 563 564 565 566 567
void dw_hdmi_audio_enable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = true;
568 569
	if (hdmi->enable_audio)
		hdmi->enable_audio(hdmi);
570 571 572 573 574 575 576 577 578 579
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable);

void dw_hdmi_audio_disable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = false;
580 581
	if (hdmi->disable_audio)
		hdmi->disable_audio(hdmi);
582 583 584 585
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable);

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_RGB161616_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_YUV16_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYVY12_1X24:
		return true;

	default:
		return false;
	}
}

static int hdmi_bus_fmt_color_depth(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		return 8;

	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		return 10;

	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYVY12_1X24:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		return 12;

	case MEDIA_BUS_FMT_RGB161616_1X48:
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		return 16;

	default:
		return 0;
	}
}

658 659 660 661 662 663 664
/*
 * this submodule is responsible for the video data synchronization.
 * for example, for RGB 4:4:4 input, the data map is defined as
 *			pin{47~40} <==> R[7:0]
 *			pin{31~24} <==> G[7:0]
 *			pin{15~8}  <==> B[7:0]
 */
665
static void hdmi_video_sample(struct dw_hdmi *hdmi)
666 667 668 669
{
	int color_format = 0;
	u8 val;

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	switch (hdmi->hdmi_data.enc_in_bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
		color_format = 0x01;
		break;
	case MEDIA_BUS_FMT_RGB101010_1X30:
		color_format = 0x03;
		break;
	case MEDIA_BUS_FMT_RGB121212_1X36:
		color_format = 0x05;
		break;
	case MEDIA_BUS_FMT_RGB161616_1X48:
		color_format = 0x07;
		break;

	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		color_format = 0x09;
		break;
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		color_format = 0x0B;
		break;
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		color_format = 0x0D;
		break;
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		color_format = 0x0F;
		break;

	case MEDIA_BUS_FMT_UYVY8_1X16:
		color_format = 0x16;
		break;
	case MEDIA_BUS_FMT_UYVY10_1X20:
		color_format = 0x14;
		break;
	case MEDIA_BUS_FMT_UYVY12_1X24:
		color_format = 0x12;
		break;

	default:
		return;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	}

	val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
		((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
		HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
	hdmi_writeb(hdmi, val, HDMI_TX_INVID0);

	/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
	val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
	hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1);
}

733
static int is_color_space_conversion(struct dw_hdmi *hdmi)
734
{
735
	return hdmi->hdmi_data.enc_in_bus_format != hdmi->hdmi_data.enc_out_bus_format;
736 737
}

738
static int is_color_space_decimation(struct dw_hdmi *hdmi)
739
{
740
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
741
		return 0;
742 743 744

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format))
745
		return 1;
746

747
	return 0;
748 749
}

750
static int is_color_space_interpolation(struct dw_hdmi *hdmi)
751
{
752
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format))
753
		return 0;
754 755 756

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
757
		return 1;
758

759
	return 0;
760 761
}

762
static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi)
763 764
{
	const u16 (*csc_coeff)[3][4] = &csc_coeff_default;
765
	unsigned i;
766 767 768
	u32 csc_scale = 1;

	if (is_color_space_conversion(hdmi)) {
769 770 771
		if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
772 773 774
				csc_coeff = &csc_coeff_rgb_out_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_out_eitu709;
775 776 777 778
		} else if (hdmi_bus_fmt_is_rgb(
					hdmi->hdmi_data.enc_in_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
779 780 781 782 783 784 785
				csc_coeff = &csc_coeff_rgb_in_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_in_eitu709;
			csc_scale = 0;
		}
	}

786 787 788 789 790 791
	/* The CSC registers are sequential, alternating MSB then LSB */
	for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) {
		u16 coeff_a = (*csc_coeff)[0][i];
		u16 coeff_b = (*csc_coeff)[1][i];
		u16 coeff_c = (*csc_coeff)[2][i];

792
		hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2);
793 794 795
		hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2);
		hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2);
		hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2);
796
		hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2);
797 798
		hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2);
	}
799

800 801
	hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
		  HDMI_CSC_SCALE);
802 803
}

804
static void hdmi_video_csc(struct dw_hdmi *hdmi)
805 806 807 808 809 810 811 812 813 814 815
{
	int color_depth = 0;
	int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
	int decimation = 0;

	/* YCC422 interpolation to 444 mode */
	if (is_color_space_interpolation(hdmi))
		interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1;
	else if (is_color_space_decimation(hdmi))
		decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3;

816 817
	switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) {
	case 8:
818
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
819 820
		break;
	case 10:
821
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP;
822 823
		break;
	case 12:
824
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP;
825 826
		break;
	case 16:
827
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP;
828 829 830
		break;

	default:
831
		return;
832
	}
833 834 835

	/* Configure the CSC registers */
	hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG);
836 837
	hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK,
		  HDMI_CSC_SCALE);
838

839
	dw_hdmi_update_csc_coeffs(hdmi);
840 841 842 843 844 845 846
}

/*
 * HDMI video packetizer is used to packetize the data.
 * for example, if input is YCC422 mode or repeater is used,
 * data should be repacked this module can be bypassed.
 */
847
static void hdmi_video_packetize(struct dw_hdmi *hdmi)
848 849 850 851 852
{
	unsigned int color_depth = 0;
	unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit;
	unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
	struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
853
	u8 val, vp_conf;
854

855 856 857 858 859
	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) {
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 8:
860 861
			color_depth = 4;
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
862 863
			break;
		case 10:
864
			color_depth = 5;
865 866
			break;
		case 12:
867
			color_depth = 6;
868 869
			break;
		case 16:
870
			color_depth = 7;
871 872 873
			break;
		default:
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
874
		}
875 876 877 878 879
	} else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 0:
		case 8:
880
			remap_size = HDMI_VP_REMAP_YCC422_16bit;
881 882
			break;
		case 10:
883
			remap_size = HDMI_VP_REMAP_YCC422_20bit;
884 885
			break;
		case 12:
886
			remap_size = HDMI_VP_REMAP_YCC422_24bit;
887 888 889
			break;

		default:
890
			return;
891
		}
892
		output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422;
893
	} else {
894
		return;
895
	}
896 897 898 899 900 901 902 903 904

	/* set the packetizer registers */
	val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
		HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
		((hdmi_data->pix_repet_factor <<
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_VP_PR_CD);

905 906
	hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF);
907 908 909

	/* Data from pixel repeater block */
	if (hdmi_data->pix_repet_factor > 1) {
910 911
		vp_conf = HDMI_VP_CONF_PR_EN_ENABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER;
912
	} else { /* data from packetizer block */
913 914
		vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
915 916
	}

917 918 919 920
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_PR_EN_MASK |
		  HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF);

921 922
	hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET,
		  HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF);
923 924 925 926

	hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP);

	if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
927 928 929
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_ENABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
930
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
931 932 933
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_ENABLE;
934
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
935 936 937
		vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
938 939 940 941
	} else {
		return;
	}

942 943 944 945
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK |
		  HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF);

946 947 948 949
	hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
			HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PP_STUFFING_MASK |
		  HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF);
950

951 952
	hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
		  HDMI_VP_CONF);
953 954
}

955 956 957 958
/* -----------------------------------------------------------------------------
 * Synopsys PHY Handling
 */

959
static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi,
960
				       unsigned char bit)
961
{
962 963
	hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET,
		  HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0);
964 965
}

966
static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec)
967
{
968 969 970
	u32 val;

	while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) {
971 972
		if (msec-- == 0)
			return false;
973
		udelay(1000);
974
	}
975 976
	hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0);

977 978 979
	return true;
}

980 981
void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data,
			   unsigned char addr)
982 983 984 985
{
	hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR);
	hdmi_writeb(hdmi, (unsigned char)(data >> 8),
986
		    HDMI_PHY_I2CM_DATAO_1_ADDR);
987
	hdmi_writeb(hdmi, (unsigned char)(data >> 0),
988
		    HDMI_PHY_I2CM_DATAO_0_ADDR);
989
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE,
990
		    HDMI_PHY_I2CM_OPERATION_ADDR);
991 992
	hdmi_phy_wait_i2c_done(hdmi, 1000);
}
993
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write);
994

995
static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable)
996
{
997
	hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0,
998 999 1000 1001
			 HDMI_PHY_CONF0_PDZ_OFFSET,
			 HDMI_PHY_CONF0_PDZ_MASK);
}

1002
static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable)
1003 1004 1005 1006 1007 1008
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_ENTMDS_OFFSET,
			 HDMI_PHY_CONF0_ENTMDS_MASK);
}

1009
static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable)
1010 1011
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
1012 1013
			 HDMI_PHY_CONF0_SVSRET_OFFSET,
			 HDMI_PHY_CONF0_SVSRET_MASK);
1014 1015
}

1016
static void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable)
1017 1018 1019 1020 1021 1022
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET,
			 HDMI_PHY_CONF0_GEN2_PDDQ_MASK);
}

1023
static void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable)
1024 1025 1026 1027 1028 1029
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_MASK);
}

1030
static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable)
1031 1032 1033 1034 1035 1036
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDATAENPOL_OFFSET,
			 HDMI_PHY_CONF0_SELDATAENPOL_MASK);
}

1037
static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable)
1038 1039 1040 1041 1042 1043
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDIPIF_OFFSET,
			 HDMI_PHY_CONF0_SELDIPIF_MASK);
}

1044 1045
static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi)
{
1046
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	unsigned int i;
	u16 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_powerdown(hdmi, true);
		return;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 0);

	/*
	 * Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went
	 * to low power mode.
	 */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0);
		if (!(val & HDMI_PHY_TX_PHY_LOCK))
			break;

		usleep_range(1000, 2000);
	}

	if (val & HDMI_PHY_TX_PHY_LOCK)
		dev_warn(hdmi->dev, "PHY failed to power down\n");
	else
		dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i);

	dw_hdmi_phy_gen2_pddq(hdmi, 1);
}

1078 1079
static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi)
{
1080
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	unsigned int i;
	u8 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_powerdown(hdmi, false);

		/* Toggle TMDS enable. */
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_tmds(hdmi, 1);
		return 0;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 1);
	dw_hdmi_phy_gen2_pddq(hdmi, 0);

	/* Wait for PHY PLL lock */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
		if (val)
			break;

		usleep_range(1000, 2000);
	}

	if (!val) {
		dev_err(hdmi->dev, "PHY PLL failed to lock\n");
		return -ETIMEDOUT;
	}

	dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i);
	return 0;
}

1114 1115 1116 1117 1118 1119 1120 1121
/*
 * PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available
 * information the DWC MHL PHY has the same register layout and is thus also
 * supported by this function.
 */
static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi,
		const struct dw_hdmi_plat_data *pdata,
		unsigned long mpixelclock)
1122
{
1123 1124 1125
	const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg;
	const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr;
	const struct dw_hdmi_phy_config *phy_config = pdata->phy_config;
1126

1127 1128
	/* PLL/MPLL Cfg - always match on final entry */
	for (; mpll_config->mpixelclock != ~0UL; mpll_config++)
1129
		if (mpixelclock <= mpll_config->mpixelclock)
1130 1131 1132
			break;

	for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++)
1133
		if (mpixelclock <= curr_ctrl->mpixelclock)
1134 1135 1136
			break;

	for (; phy_config->mpixelclock != ~0UL; phy_config++)
1137
		if (mpixelclock <= phy_config->mpixelclock)
1138 1139 1140 1141
			break;

	if (mpll_config->mpixelclock == ~0UL ||
	    curr_ctrl->mpixelclock == ~0UL ||
1142
	    phy_config->mpixelclock == ~0UL)
1143
		return -EINVAL;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce,
			      HDMI_3D_TX_PHY_CPCE_CTRL);
	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp,
			      HDMI_3D_TX_PHY_GMPCTRL);
	dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0],
			      HDMI_3D_TX_PHY_CURRCTRL);

	dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL);
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK,
			      HDMI_3D_TX_PHY_MSM_CTRL);

	dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr,
			      HDMI_3D_TX_PHY_CKSYMTXCTRL);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr,
			      HDMI_3D_TX_PHY_VLEVCTRL);

	/* Override and disable clock termination. */
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE,
			      HDMI_3D_TX_PHY_CKCALCTRL);

	return 0;
}

static int hdmi_phy_configure(struct dw_hdmi *hdmi)
{
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
	const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
	unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock;
	int ret;
1175

1176
	dw_hdmi_phy_power_off(hdmi);
1177

1178
	/* Leave low power consumption mode by asserting SVSRET. */
1179
	if (phy->has_svsret)
1180 1181
		dw_hdmi_phy_enable_svsret(hdmi, 1);

1182 1183 1184
	/* PHY reset. The reset signal is active high on Gen2 PHYs. */
	hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
	hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
1185 1186 1187 1188 1189

	hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST);

	hdmi_phy_test_clear(hdmi, 1);
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2,
1190
		    HDMI_PHY_I2CM_SLAVE_ADDR);
1191 1192
	hdmi_phy_test_clear(hdmi, 0);

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	/* Write to the PHY as configured by the platform */
	if (pdata->configure_phy)
		ret = pdata->configure_phy(hdmi, pdata, mpixelclock);
	else
		ret = phy->configure(hdmi, pdata, mpixelclock);
	if (ret) {
		dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n",
			mpixelclock);
		return ret;
	}
1203

1204
	return dw_hdmi_phy_power_on(hdmi);
1205 1206
}

1207 1208
static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data,
			    struct drm_display_mode *mode)
1209 1210 1211 1212 1213
{
	int i, ret;

	/* HDMI Phy spec says to do the phy initialization sequence twice */
	for (i = 0; i < 2; i++) {
1214 1215
		dw_hdmi_phy_sel_data_en_pol(hdmi, 1);
		dw_hdmi_phy_sel_interface_control(hdmi, 0);
1216

1217
		ret = hdmi_phy_configure(hdmi);
1218 1219 1220 1221 1222 1223 1224
		if (ret)
			return ret;
	}

	return 0;
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data)
{
	dw_hdmi_phy_power_off(hdmi);
}

static enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi,
						      void *data)
{
	return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ?
		connector_status_connected : connector_status_disconnected;
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static void dw_hdmi_phy_update_hpd(struct dw_hdmi *hdmi, void *data,
				   bool force, bool disabled, bool rxsense)
{
	u8 old_mask = hdmi->phy_mask;

	if (force || disabled || !rxsense)
		hdmi->phy_mask |= HDMI_PHY_RX_SENSE;
	else
		hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE;

	if (old_mask != hdmi->phy_mask)
		hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
}

static void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi, void *data)
{
	/*
	 * Configure the PHY RX SENSE and HPD interrupts polarities and clear
	 * any pending interrupt.
	 */
	hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0);
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);

	/* Enable cable hot plug irq. */
	hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);

	/* Clear and unmute interrupts. */
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
}

1271 1272 1273 1274
static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = {
	.init = dw_hdmi_phy_init,
	.disable = dw_hdmi_phy_disable,
	.read_hpd = dw_hdmi_phy_read_hpd,
1275 1276
	.update_hpd = dw_hdmi_phy_update_hpd,
	.setup_hpd = dw_hdmi_phy_setup_hpd,
1277 1278 1279 1280 1281 1282
};

/* -----------------------------------------------------------------------------
 * HDMI TX Setup
 */

1283
static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi)
1284
{
1285
	u8 de;
1286 1287 1288 1289 1290 1291 1292

	if (hdmi->hdmi_data.video_mode.mdataenablepolarity)
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH;
	else
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW;

	/* disable rx detect */
1293 1294
	hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE,
		  HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0);
1295

1296
	hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG);
1297

1298 1299
	hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE,
		  HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1);
1300 1301
}

1302
static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1303
{
1304 1305
	struct hdmi_avi_infoframe frame;
	u8 val;
1306

1307 1308
	/* Initialise info frame from DRM mode */
	drm_hdmi_avi_infoframe_from_display_mode(&frame, mode);
1309

1310
	if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
1311
		frame.colorspace = HDMI_COLORSPACE_YUV444;
1312
	else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
1313
		frame.colorspace = HDMI_COLORSPACE_YUV422;
1314
	else
1315
		frame.colorspace = HDMI_COLORSPACE_RGB;
1316 1317

	/* Set up colorimetry */
1318 1319 1320 1321 1322 1323 1324
	switch (hdmi->hdmi_data.enc_out_encoding) {
	case V4L2_YCBCR_ENC_601:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
1325
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
1326
		break;
1327 1328 1329 1330 1331 1332
	case V4L2_YCBCR_ENC_709:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_709;
		frame.extended_colorimetry =
1333
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_709;
1334 1335 1336 1337 1338 1339
		break;
	default: /* Carries no data */
		frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
		break;
1340 1341
	}

1342 1343 1344 1345 1346 1347 1348 1349 1350
	frame.scan_mode = HDMI_SCAN_MODE_NONE;

	/*
	 * The Designware IP uses a different byte format from standard
	 * AVI info frames, though generally the bits are in the correct
	 * bytes.
	 */

	/*
1351 1352 1353
	 * AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6,
	 * scan info in bits 4,5 rather than 0,1 and active aspect present in
	 * bit 6 rather than 4.
1354
	 */
1355
	val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	if (frame.active_aspect & 15)
		val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT;
	if (frame.top_bar || frame.bottom_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR;
	if (frame.left_bar || frame.right_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR;
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0);

	/* AVI data byte 2 differences: none */
	val = ((frame.colorimetry & 0x3) << 6) |
	      ((frame.picture_aspect & 0x3) << 4) |
	      (frame.active_aspect & 0xf);
1368 1369
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1);

1370 1371 1372 1373 1374 1375
	/* AVI data byte 3 differences: none */
	val = ((frame.extended_colorimetry & 0x7) << 4) |
	      ((frame.quantization_range & 0x3) << 2) |
	      (frame.nups & 0x3);
	if (frame.itc)
		val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID;
1376 1377
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2);

1378 1379 1380
	/* AVI data byte 4 differences: none */
	val = frame.video_code & 0x7f;
	hdmi_writeb(hdmi, val, HDMI_FC_AVIVID);
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

	/* AVI Data Byte 5- set up input and output pixel repetition */
	val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) <<
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) |
		((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput <<
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_FC_PRCONF);

1391 1392 1393 1394 1395 1396
	/*
	 * AVI data byte 5 differences: content type in 0,1 rather than 4,5,
	 * ycc range in bits 2,3 rather than 6,7
	 */
	val = ((frame.ycc_quantization_range & 0x3) << 2) |
	      (frame.content_type & 0x3);
1397 1398 1399
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3);

	/* AVI Data Bytes 6-13 */
1400 1401 1402 1403 1404 1405 1406 1407
	hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0);
	hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1);
	hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0);
	hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1);
	hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0);
	hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1);
	hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0);
	hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1);
1408 1409
}

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi,
						 struct drm_display_mode *mode)
{
	struct hdmi_vendor_infoframe frame;
	u8 buffer[10];
	ssize_t err;

	err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, mode);
	if (err < 0)
		/*
		 * Going into that statement does not means vendor infoframe
		 * fails. It just informed us that vendor infoframe is not
		 * needed for the selected mode. Only 4k or stereoscopic 3D
		 * mode requires vendor infoframe. So just simply return.
		 */
		return;

	err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer));
	if (err < 0) {
		dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n",
			err);
		return;
	}
	hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);

	/* Set the length of HDMI vendor specific InfoFrame payload */
	hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE);

	/* Set 24bit IEEE Registration Identifier */
	hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0);
	hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1);
	hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2);

	/* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */
	hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0);
	hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1);

	if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
		hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2);

	/* Packet frame interpolation */
	hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1);

	/* Auto packets per frame and line spacing */
	hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2);

	/* Configures the Frame Composer On RDRB mode */
	hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);
}

1462
static void hdmi_av_composer(struct dw_hdmi *hdmi,
1463 1464 1465 1466 1467
			     const struct drm_display_mode *mode)
{
	u8 inv_val;
	struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode;
	int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len;
1468
	unsigned int vdisplay;
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	vmode->mpixelclock = mode->clock * 1000;

	dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock);

	/* Set up HDMI_FC_INVIDCONF */
	inv_val = (hdmi->hdmi_data.hdcp_enable ?
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE :
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE);

1479
	inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
1480
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
1481
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW;
1482

1483
	inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
1484
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
1485
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW;
1486 1487 1488 1489 1490 1491 1492 1493

	inv_val |= (vmode->mdataenablepolarity ?
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);

	if (hdmi->vic == 39)
		inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH;
	else
1494
		inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1495
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
1496
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
1497

1498
	inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1499
		HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
1500
		HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
1501

1502 1503 1504
	inv_val |= hdmi->sink_is_hdmi ?
		HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
		HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE;
1505 1506 1507

	hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF);

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	vdisplay = mode->vdisplay;
	vblank = mode->vtotal - mode->vdisplay;
	v_de_vs = mode->vsync_start - mode->vdisplay;
	vsync_len = mode->vsync_end - mode->vsync_start;

	/*
	 * When we're setting an interlaced mode, we need
	 * to adjust the vertical timing to suit.
	 */
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vdisplay /= 2;
		vblank /= 2;
		v_de_vs /= 2;
		vsync_len /= 2;
	}

1524 1525 1526 1527 1528
	/* Set up horizontal active pixel width */
	hdmi_writeb(hdmi, mode->hdisplay >> 8, HDMI_FC_INHACTV1);
	hdmi_writeb(hdmi, mode->hdisplay, HDMI_FC_INHACTV0);

	/* Set up vertical active lines */
1529 1530
	hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1);
	hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

	/* Set up horizontal blanking pixel region width */
	hblank = mode->htotal - mode->hdisplay;
	hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1);
	hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0);

	/* Set up vertical blanking pixel region width */
	hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK);

	/* Set up HSYNC active edge delay width (in pixel clks) */
	h_de_hs = mode->hsync_start - mode->hdisplay;
	hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1);
	hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY);

	/* Set up HSYNC active pulse width (in pixel clks) */
	hsync_len = mode->hsync_end - mode->hsync_start;
	hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1);
	hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH);
}

/* HDMI Initialization Step B.4 */
1558
static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi)
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
{
	u8 clkdis;

	/* control period minimum duration */
	hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR);
	hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR);
	hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC);

	/* Set to fill TMDS data channels */
	hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM);
	hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM);
	hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM);

	/* Enable pixel clock and tmds data path */
	clkdis = 0x7F;
	clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
	hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);

	clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
	hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);

	/* Enable csc path */
	if (is_color_space_conversion(hdmi)) {
		clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE;
		hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);
	}
1585

1586 1587
	/* Enable color space conversion if needed */
	if (is_color_space_conversion(hdmi))
1588 1589 1590 1591 1592
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH,
			    HDMI_MC_FLOWCTRL);
	else
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS,
			    HDMI_MC_FLOWCTRL);
1593 1594
}

1595
static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi)
1596
{
1597
	hdmi_modb(hdmi, 0, HDMI_MC_CLKDIS_AUDCLK_DISABLE, HDMI_MC_CLKDIS);
1598 1599 1600
}

/* Workaround to clear the overflow condition */
1601
static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi)
1602
{
1603 1604
	unsigned int count;
	unsigned int i;
1605 1606
	u8 val;

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
	/*
	 * Under some circumstances the Frame Composer arithmetic unit can miss
	 * an FC register write due to being busy processing the previous one.
	 * The issue can be worked around by issuing a TMDS software reset and
	 * then write one of the FC registers several times.
	 *
	 * The number of iterations matters and depends on the HDMI TX revision
	 * (and possibly on the platform). So far only i.MX6Q (v1.30a) and
	 * i.MX6DL (v1.31a) have been identified as needing the workaround, with
	 * 4 and 1 iterations respectively.
	 */
1618

1619 1620 1621 1622 1623 1624 1625 1626
	switch (hdmi->version) {
	case 0x130a:
		count = 4;
		break;
	case 0x131a:
		count = 1;
		break;
	default:
1627 1628 1629
		return;
	}

1630 1631 1632 1633 1634
	/* TMDS software reset */
	hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ);

	val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF);
	for (i = 0; i < count; i++)
1635 1636 1637
		hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF);
}

1638
static void hdmi_enable_overflow_interrupts(struct dw_hdmi *hdmi)
1639 1640 1641 1642 1643
{
	hdmi_writeb(hdmi, 0, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0, HDMI_IH_MUTE_FC_STAT2);
}

1644
static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi)
1645 1646 1647 1648 1649
{
	hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK,
		    HDMI_IH_MUTE_FC_STAT2);
}

1650
static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
{
	int ret;

	hdmi_disable_overflow_interrupts(hdmi);

	hdmi->vic = drm_match_cea_mode(mode);

	if (!hdmi->vic) {
		dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n");
	} else {
		dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic);
	}

	if ((hdmi->vic == 6) || (hdmi->vic == 7) ||
1665 1666 1667
	    (hdmi->vic == 21) || (hdmi->vic == 22) ||
	    (hdmi->vic == 2) || (hdmi->vic == 3) ||
	    (hdmi->vic == 17) || (hdmi->vic == 18))
1668
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601;
1669
	else
1670
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709;
1671

1672
	hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0;
1673 1674
	hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0;

1675
	/* TOFIX: Get input format from plat data or fallback to RGB888 */
1676
	if (hdmi->plat_data->input_bus_format)
1677 1678 1679 1680 1681 1682
		hdmi->hdmi_data.enc_in_bus_format =
			hdmi->plat_data->input_bus_format;
	else
		hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_RGB888_1X24;

	/* TOFIX: Get input encoding from plat data or fallback to none */
1683
	if (hdmi->plat_data->input_bus_encoding)
1684 1685 1686 1687
		hdmi->hdmi_data.enc_in_encoding =
			hdmi->plat_data->input_bus_encoding;
	else
		hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT;
1688

1689 1690
	/* TOFIX: Default to RGB888 output format */
	hdmi->hdmi_data.enc_out_bus_format = MEDIA_BUS_FMT_RGB888_1X24;
1691 1692 1693 1694 1695 1696 1697 1698 1699

	hdmi->hdmi_data.pix_repet_factor = 0;
	hdmi->hdmi_data.hdcp_enable = 0;
	hdmi->hdmi_data.video_mode.mdataenablepolarity = true;

	/* HDMI Initialization Step B.1 */
	hdmi_av_composer(hdmi, mode);

	/* HDMI Initializateion Step B.2 */
1700
	ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data, &hdmi->previous_mode);
1701 1702
	if (ret)
		return ret;
1703
	hdmi->phy.enabled = true;
1704 1705

	/* HDMI Initialization Step B.3 */
1706
	dw_hdmi_enable_video_path(hdmi);
1707

1708 1709
	if (hdmi->sink_has_audio) {
		dev_dbg(hdmi->dev, "sink has audio support\n");
1710 1711 1712 1713

		/* HDMI Initialization Step E - Configure audio */
		hdmi_clk_regenerator_update_pixel_clock(hdmi);
		hdmi_enable_audio_clk(hdmi);
1714 1715 1716 1717 1718
	}

	/* not for DVI mode */
	if (hdmi->sink_is_hdmi) {
		dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__);
1719 1720

		/* HDMI Initialization Step F - Configure AVI InfoFrame */
1721
		hdmi_config_AVI(hdmi, mode);
1722
		hdmi_config_vendor_specific_infoframe(hdmi, mode);
1723 1724
	} else {
		dev_dbg(hdmi->dev, "%s DVI mode\n", __func__);
1725 1726 1727 1728 1729 1730 1731
	}

	hdmi_video_packetize(hdmi);
	hdmi_video_csc(hdmi);
	hdmi_video_sample(hdmi);
	hdmi_tx_hdcp_config(hdmi);

1732
	dw_hdmi_clear_overflow(hdmi);
1733
	if (hdmi->cable_plugin && hdmi->sink_is_hdmi)
1734 1735 1736 1737 1738
		hdmi_enable_overflow_interrupts(hdmi);

	return 0;
}

1739
static void dw_hdmi_setup_i2c(struct dw_hdmi *hdmi)
1740 1741 1742 1743 1744 1745 1746 1747 1748
{
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL,
		    HDMI_PHY_I2CM_INT_ADDR);

	hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
		    HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL,
		    HDMI_PHY_I2CM_CTLINT_ADDR);
}

1749
static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi)
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
{
	u8 ih_mute;

	/*
	 * Boot up defaults are:
	 * HDMI_IH_MUTE   = 0x03 (disabled)
	 * HDMI_IH_MUTE_* = 0x00 (enabled)
	 *
	 * Disable top level interrupt bits in HDMI block
	 */
	ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) |
		  HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		  HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;

	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);

	/* by default mask all interrupts */
	hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK);
	hdmi_writeb(hdmi, 0xff, HDMI_CEC_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT);

	/* Disable interrupts in the IH_MUTE_* registers */
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0);

	/* Enable top level interrupt bits in HDMI block */
	ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		    HDMI_IH_MUTE_MUTE_ALL_INTERRUPT);
	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
}

1801
static void dw_hdmi_poweron(struct dw_hdmi *hdmi)
1802
{
1803
	hdmi->bridge_is_on = true;
1804
	dw_hdmi_setup(hdmi, &hdmi->previous_mode);
1805 1806
}

1807
static void dw_hdmi_poweroff(struct dw_hdmi *hdmi)
1808
{
1809 1810 1811 1812 1813
	if (hdmi->phy.enabled) {
		hdmi->phy.ops->disable(hdmi, hdmi->phy.data);
		hdmi->phy.enabled = false;
	}

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	hdmi->bridge_is_on = false;
}

static void dw_hdmi_update_power(struct dw_hdmi *hdmi)
{
	int force = hdmi->force;

	if (hdmi->disabled) {
		force = DRM_FORCE_OFF;
	} else if (force == DRM_FORCE_UNSPECIFIED) {
1824
		if (hdmi->rxsense)
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
			force = DRM_FORCE_ON;
		else
			force = DRM_FORCE_OFF;
	}

	if (force == DRM_FORCE_OFF) {
		if (hdmi->bridge_is_on)
			dw_hdmi_poweroff(hdmi);
	} else {
		if (!hdmi->bridge_is_on)
			dw_hdmi_poweron(hdmi);
	}
1837 1838
}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
/*
 * Adjust the detection of RXSENSE according to whether we have a forced
 * connection mode enabled, or whether we have been disabled.  There is
 * no point processing RXSENSE interrupts if we have a forced connection
 * state, or DRM has us disabled.
 *
 * We also disable rxsense interrupts when we think we're disconnected
 * to avoid floating TDMS signals giving false rxsense interrupts.
 *
 * Note: we still need to listen for HPD interrupts even when DRM has us
 * disabled so that we can detect a connect event.
 */
static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi)
{
1853 1854 1855 1856
	if (hdmi->phy.ops->update_hpd)
		hdmi->phy.ops->update_hpd(hdmi, hdmi->phy.data,
					  hdmi->force, hdmi->disabled,
					  hdmi->rxsense);
1857 1858
}

1859 1860
static enum drm_connector_status
dw_hdmi_connector_detect(struct drm_connector *connector, bool force)
1861
{
1862
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1863
					     connector);
1864

1865 1866 1867
	mutex_lock(&hdmi->mutex);
	hdmi->force = DRM_FORCE_UNSPECIFIED;
	dw_hdmi_update_power(hdmi);
1868
	dw_hdmi_update_phy_mask(hdmi);
1869 1870
	mutex_unlock(&hdmi->mutex);

1871
	return hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data);
1872 1873
}

1874
static int dw_hdmi_connector_get_modes(struct drm_connector *connector)
1875
{
1876
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1877 1878
					     connector);
	struct edid *edid;
1879
	int ret = 0;
1880 1881 1882 1883 1884 1885 1886 1887 1888

	if (!hdmi->ddc)
		return 0;

	edid = drm_get_edid(connector, hdmi->ddc);
	if (edid) {
		dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n",
			edid->width_cm, edid->height_cm);

1889
		hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid);
1890
		hdmi->sink_has_audio = drm_detect_monitor_audio(edid);
1891 1892
		drm_mode_connector_update_edid_property(connector, edid);
		ret = drm_add_edid_modes(connector, edid);
1893 1894
		/* Store the ELD */
		drm_edid_to_eld(connector, edid);
1895 1896 1897 1898 1899
		kfree(edid);
	} else {
		dev_dbg(hdmi->dev, "failed to get edid\n");
	}

1900
	return ret;
1901 1902
}

1903 1904 1905 1906 1907 1908 1909 1910
static enum drm_mode_status
dw_hdmi_connector_mode_valid(struct drm_connector *connector,
			     struct drm_display_mode *mode)
{
	struct dw_hdmi *hdmi = container_of(connector,
					   struct dw_hdmi, connector);
	enum drm_mode_status mode_status = MODE_OK;

1911 1912 1913 1914
	/* We don't support double-clocked modes */
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_BAD;

1915 1916 1917 1918 1919 1920
	if (hdmi->plat_data->mode_valid)
		mode_status = hdmi->plat_data->mode_valid(connector, mode);

	return mode_status;
}

1921 1922 1923 1924 1925 1926 1927 1928
static void dw_hdmi_connector_force(struct drm_connector *connector)
{
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
					     connector);

	mutex_lock(&hdmi->mutex);
	hdmi->force = connector->force;
	dw_hdmi_update_power(hdmi);
1929
	dw_hdmi_update_phy_mask(hdmi);
1930 1931 1932
	mutex_unlock(&hdmi->mutex);
}

1933
static const struct drm_connector_funcs dw_hdmi_connector_funcs = {
1934 1935 1936
	.dpms = drm_atomic_helper_connector_dpms,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.detect = dw_hdmi_connector_detect,
1937
	.destroy = drm_connector_cleanup,
1938 1939 1940 1941 1942 1943
	.force = dw_hdmi_connector_force,
	.reset = drm_atomic_helper_connector_reset,
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};

1944
static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = {
1945
	.get_modes = dw_hdmi_connector_get_modes,
1946
	.mode_valid = dw_hdmi_connector_mode_valid,
1947
	.best_encoder = drm_atomic_helper_best_encoder,
1948 1949
};

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static int dw_hdmi_bridge_attach(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;
	struct drm_encoder *encoder = bridge->encoder;
	struct drm_connector *connector = &hdmi->connector;

	connector->interlace_allowed = 1;
	connector->polled = DRM_CONNECTOR_POLL_HPD;

	drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs);

	drm_connector_init(bridge->dev, connector, &dw_hdmi_connector_funcs,
			   DRM_MODE_CONNECTOR_HDMIA);

	drm_mode_connector_attach_encoder(connector, encoder);

	return 0;
}

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge,
				    struct drm_display_mode *orig_mode,
				    struct drm_display_mode *mode)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);

	/* Store the display mode for plugin/DKMS poweron events */
	memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode));

	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_disable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = true;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_enable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = false;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

2005
static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = {
2006
	.attach = dw_hdmi_bridge_attach,
2007 2008 2009
	.enable = dw_hdmi_bridge_enable,
	.disable = dw_hdmi_bridge_disable,
	.mode_set = dw_hdmi_bridge_mode_set,
2010 2011
};

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	unsigned int stat;

	stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
	if (!stat)
		return IRQ_NONE;

	hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0);

	i2c->stat = stat;

	complete(&i2c->cmp);

	return IRQ_HANDLED;
}

2030
static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id)
2031
{
2032
	struct dw_hdmi *hdmi = dev_id;
2033
	u8 intr_stat;
2034 2035 2036 2037
	irqreturn_t ret = IRQ_NONE;

	if (hdmi->i2c)
		ret = dw_hdmi_i2c_irq(hdmi);
2038 2039

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
2040
	if (intr_stat) {
2041
		hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
2042 2043
		return IRQ_WAKE_THREAD;
	}
2044

2045
	return ret;
2046 2047
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
void __dw_hdmi_setup_rx_sense(struct dw_hdmi *hdmi, bool hpd, bool rx_sense)
{
	mutex_lock(&hdmi->mutex);

	if (!hdmi->force) {
		/*
		 * If the RX sense status indicates we're disconnected,
		 * clear the software rxsense status.
		 */
		if (!rx_sense)
			hdmi->rxsense = false;

		/*
		 * Only set the software rxsense status when both
		 * rxsense and hpd indicates we're connected.
		 * This avoids what seems to be bad behaviour in
		 * at least iMX6S versions of the phy.
		 */
		if (hpd)
			hdmi->rxsense = true;

		dw_hdmi_update_power(hdmi);
		dw_hdmi_update_phy_mask(hdmi);
	}
	mutex_unlock(&hdmi->mutex);
}

void dw_hdmi_setup_rx_sense(struct device *dev, bool hpd, bool rx_sense)
{
	struct dw_hdmi *hdmi = dev_get_drvdata(dev);

	__dw_hdmi_setup_rx_sense(hdmi, hpd, rx_sense);
}
EXPORT_SYMBOL_GPL(dw_hdmi_setup_rx_sense);

2083
static irqreturn_t dw_hdmi_irq(int irq, void *dev_id)
2084
{
2085
	struct dw_hdmi *hdmi = dev_id;
2086
	u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat;
2087 2088 2089

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
	phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0);
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0);

	phy_pol_mask = 0;
	if (intr_stat & HDMI_IH_PHY_STAT0_HPD)
		phy_pol_mask |= HDMI_PHY_HPD;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0)
		phy_pol_mask |= HDMI_PHY_RX_SENSE0;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1)
		phy_pol_mask |= HDMI_PHY_RX_SENSE1;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2)
		phy_pol_mask |= HDMI_PHY_RX_SENSE2;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3)
		phy_pol_mask |= HDMI_PHY_RX_SENSE3;

	if (phy_pol_mask)
		hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0);
2106

2107 2108 2109 2110 2111 2112 2113 2114
	/*
	 * RX sense tells us whether the TDMS transmitters are detecting
	 * load - in other words, there's something listening on the
	 * other end of the link.  Use this to decide whether we should
	 * power on the phy as HPD may be toggled by the sink to merely
	 * ask the source to re-read the EDID.
	 */
	if (intr_stat &
2115 2116 2117 2118
	    (HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD))
		__dw_hdmi_setup_rx_sense(hdmi,
					 phy_stat & HDMI_PHY_HPD,
					 phy_stat & HDMI_PHY_RX_SENSE);
2119 2120 2121 2122

	if (intr_stat & HDMI_IH_PHY_STAT0_HPD) {
		dev_dbg(hdmi->dev, "EVENT=%s\n",
			phy_int_pol & HDMI_PHY_HPD ? "plugin" : "plugout");
2123 2124
		if (hdmi->bridge.dev)
			drm_helper_hpd_irq_event(hdmi->bridge.dev);
2125 2126 2127
	}

	hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0);
2128 2129
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
2130 2131 2132 2133

	return IRQ_HANDLED;
}

2134 2135 2136 2137
static const struct dw_hdmi_phy_data dw_hdmi_phys[] = {
	{
		.type = DW_HDMI_PHY_DWC_HDMI_TX_PHY,
		.name = "DWC HDMI TX PHY",
2138
		.gen = 1,
2139 2140 2141
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC,
		.name = "DWC MHL PHY + HEAC PHY",
2142
		.gen = 2,
2143
		.has_svsret = true,
2144
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2145 2146 2147
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY,
		.name = "DWC MHL PHY",
2148
		.gen = 2,
2149
		.has_svsret = true,
2150
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2151 2152 2153
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC,
		.name = "DWC HDMI 3D TX PHY + HEAC PHY",
2154
		.gen = 2,
2155
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2156 2157 2158
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY,
		.name = "DWC HDMI 3D TX PHY",
2159
		.gen = 2,
2160
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2161 2162 2163
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
		.name = "DWC HDMI 2.0 TX PHY",
2164
		.gen = 2,
2165
		.has_svsret = true,
2166 2167 2168
	}, {
		.type = DW_HDMI_PHY_VENDOR_PHY,
		.name = "Vendor PHY",
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	}
};

static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi)
{
	unsigned int i;
	u8 phy_type;

	phy_type = hdmi_readb(hdmi, HDMI_CONFIG2_ID);

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	if (phy_type == DW_HDMI_PHY_VENDOR_PHY) {
		/* Vendor PHYs require support from the glue layer. */
		if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) {
			dev_err(hdmi->dev,
				"Vendor HDMI PHY not supported by glue layer\n");
			return -ENODEV;
		}

		hdmi->phy.ops = hdmi->plat_data->phy_ops;
		hdmi->phy.data = hdmi->plat_data->phy_data;
		hdmi->phy.name = hdmi->plat_data->phy_name;
		return 0;
	}

	/* Synopsys PHYs are handled internally. */
2194 2195
	for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) {
		if (dw_hdmi_phys[i].type == phy_type) {
2196 2197 2198
			hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops;
			hdmi->phy.name = dw_hdmi_phys[i].name;
			hdmi->phy.data = (void *)&dw_hdmi_phys[i];
2199 2200 2201 2202 2203 2204 2205 2206

			if (!dw_hdmi_phys[i].configure &&
			    !hdmi->plat_data->configure_phy) {
				dev_err(hdmi->dev, "%s requires platform support\n",
					hdmi->phy.name);
				return -ENODEV;
			}

2207 2208 2209 2210
			return 0;
		}
	}

2211
	dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type);
2212 2213 2214
	return -ENODEV;
}

2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
static const struct regmap_config hdmi_regmap_8bit_config = {
	.reg_bits	= 32,
	.val_bits	= 8,
	.reg_stride	= 1,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR,
};

static const struct regmap_config hdmi_regmap_32bit_config = {
	.reg_bits	= 32,
	.val_bits	= 32,
	.reg_stride	= 4,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2,
};

2229 2230 2231
static struct dw_hdmi *
__dw_hdmi_probe(struct platform_device *pdev,
		const struct dw_hdmi_plat_data *plat_data)
2232
{
2233
	struct device *dev = &pdev->dev;
2234
	struct device_node *np = dev->of_node;
2235
	struct platform_device_info pdevinfo;
2236
	struct device_node *ddc_node;
2237
	struct dw_hdmi *hdmi;
2238
	struct resource *iores = NULL;
2239
	int irq;
2240
	int ret;
2241
	u32 val = 1;
2242 2243
	u8 prod_id0;
	u8 prod_id1;
2244
	u8 config0;
2245
	u8 config3;
2246

2247
	hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
2248
	if (!hdmi)
2249
		return ERR_PTR(-ENOMEM);
2250

2251
	hdmi->plat_data = plat_data;
2252
	hdmi->dev = dev;
2253
	hdmi->sample_rate = 48000;
2254
	hdmi->disabled = true;
2255 2256
	hdmi->rxsense = true;
	hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE);
2257

2258
	mutex_init(&hdmi->mutex);
2259
	mutex_init(&hdmi->audio_mutex);
2260
	spin_lock_init(&hdmi->audio_lock);
2261

2262
	ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0);
2263
	if (ddc_node) {
2264
		hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node);
2265 2266
		of_node_put(ddc_node);
		if (!hdmi->ddc) {
2267
			dev_dbg(hdmi->dev, "failed to read ddc node\n");
2268
			return ERR_PTR(-EPROBE_DEFER);
2269
		}
2270 2271 2272 2273 2274

	} else {
		dev_dbg(hdmi->dev, "no ddc property found\n");
	}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	if (!plat_data->regm) {
		const struct regmap_config *reg_config;

		of_property_read_u32(np, "reg-io-width", &val);
		switch (val) {
		case 4:
			reg_config = &hdmi_regmap_32bit_config;
			hdmi->reg_shift = 2;
			break;
		case 1:
			reg_config = &hdmi_regmap_8bit_config;
			break;
		default:
			dev_err(dev, "reg-io-width must be 1 or 4\n");
			return ERR_PTR(-EINVAL);
		}

		iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		hdmi->regs = devm_ioremap_resource(dev, iores);
		if (IS_ERR(hdmi->regs)) {
			ret = PTR_ERR(hdmi->regs);
			goto err_res;
		}

		hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config);
		if (IS_ERR(hdmi->regm)) {
			dev_err(dev, "Failed to configure regmap\n");
			ret = PTR_ERR(hdmi->regm);
			goto err_res;
		}
	} else {
		hdmi->regm = plat_data->regm;
2307
	}
2308 2309 2310 2311

	hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr");
	if (IS_ERR(hdmi->isfr_clk)) {
		ret = PTR_ERR(hdmi->isfr_clk);
2312
		dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret);
2313
		goto err_res;
2314 2315 2316 2317
	}

	ret = clk_prepare_enable(hdmi->isfr_clk);
	if (ret) {
2318
		dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret);
2319
		goto err_res;
2320 2321 2322 2323 2324
	}

	hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb");
	if (IS_ERR(hdmi->iahb_clk)) {
		ret = PTR_ERR(hdmi->iahb_clk);
2325
		dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret);
2326 2327 2328 2329 2330
		goto err_isfr;
	}

	ret = clk_prepare_enable(hdmi->iahb_clk);
	if (ret) {
2331
		dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret);
2332 2333 2334 2335
		goto err_isfr;
	}

	/* Product and revision IDs */
2336 2337
	hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8)
		      | (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0);
2338 2339 2340 2341 2342 2343
	prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0);
	prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1);

	if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX ||
	    (prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) {
		dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n",
2344
			hdmi->version, prod_id0, prod_id1);
2345 2346 2347 2348
		ret = -ENODEV;
		goto err_iahb;
	}

2349 2350 2351 2352 2353
	ret = dw_hdmi_detect_phy(hdmi);
	if (ret < 0)
		goto err_iahb;

	dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n",
2354
		 hdmi->version >> 12, hdmi->version & 0xfff,
2355
		 prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without",
2356
		 hdmi->phy.name);
2357 2358 2359

	initialize_hdmi_ih_mutes(hdmi);

2360
	irq = platform_get_irq(pdev, 0);
2361 2362
	if (irq < 0) {
		ret = irq;
2363
		goto err_iahb;
2364
	}
2365

2366 2367 2368 2369
	ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq,
					dw_hdmi_irq, IRQF_SHARED,
					dev_name(dev), hdmi);
	if (ret)
2370
		goto err_iahb;
2371

2372 2373 2374 2375 2376 2377
	/*
	 * To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator
	 * N and cts values before enabling phy
	 */
	hdmi_init_clk_regenerator(hdmi);

2378 2379 2380 2381 2382 2383 2384
	/* If DDC bus is not specified, try to register HDMI I2C bus */
	if (!hdmi->ddc) {
		hdmi->ddc = dw_hdmi_i2c_adapter(hdmi);
		if (IS_ERR(hdmi->ddc))
			hdmi->ddc = NULL;
	}

2385 2386
	hdmi->bridge.driver_private = hdmi;
	hdmi->bridge.funcs = &dw_hdmi_bridge_funcs;
2387
#ifdef CONFIG_OF
2388
	hdmi->bridge.of_node = pdev->dev.of_node;
2389
#endif
2390

2391
	dw_hdmi_setup_i2c(hdmi);
2392 2393
	if (hdmi->phy.ops->setup_hpd)
		hdmi->phy.ops->setup_hpd(hdmi, hdmi->phy.data);
2394

2395 2396 2397 2398
	memset(&pdevinfo, 0, sizeof(pdevinfo));
	pdevinfo.parent = dev;
	pdevinfo.id = PLATFORM_DEVID_AUTO;

2399
	config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID);
2400
	config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID);
2401

2402
	if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) {
2403 2404
		struct dw_hdmi_audio_data audio;

2405 2406 2407 2408
		audio.phys = iores->start;
		audio.base = hdmi->regs;
		audio.irq = irq;
		audio.hdmi = hdmi;
2409
		audio.eld = hdmi->connector.eld;
2410 2411
		hdmi->enable_audio = dw_hdmi_ahb_audio_enable;
		hdmi->disable_audio = dw_hdmi_ahb_audio_disable;
2412 2413 2414 2415 2416 2417

		pdevinfo.name = "dw-hdmi-ahb-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2418 2419 2420 2421 2422 2423
	} else if (config0 & HDMI_CONFIG0_I2S) {
		struct dw_hdmi_i2s_audio_data audio;

		audio.hdmi	= hdmi;
		audio.write	= hdmi_writeb;
		audio.read	= hdmi_readb;
2424
		hdmi->enable_audio = dw_hdmi_i2s_audio_enable;
2425 2426 2427 2428 2429 2430

		pdevinfo.name = "dw-hdmi-i2s-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2431 2432
	}

2433 2434 2435 2436
	/* Reset HDMI DDC I2C master controller and mute I2CM interrupts */
	if (hdmi->i2c)
		dw_hdmi_i2c_init(hdmi);

2437
	platform_set_drvdata(pdev, hdmi);
2438

2439
	return hdmi;
2440 2441

err_iahb:
2442 2443 2444 2445 2446
	if (hdmi->i2c) {
		i2c_del_adapter(&hdmi->i2c->adap);
		hdmi->ddc = NULL;
	}

2447 2448 2449
	clk_disable_unprepare(hdmi->iahb_clk);
err_isfr:
	clk_disable_unprepare(hdmi->isfr_clk);
2450 2451
err_res:
	i2c_put_adapter(hdmi->ddc);
2452

2453
	return ERR_PTR(ret);
2454 2455
}

2456
static void __dw_hdmi_remove(struct dw_hdmi *hdmi)
2457
{
2458 2459 2460
	if (hdmi->audio && !IS_ERR(hdmi->audio))
		platform_device_unregister(hdmi->audio);

2461 2462 2463
	/* Disable all interrupts */
	hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);

2464 2465
	clk_disable_unprepare(hdmi->iahb_clk);
	clk_disable_unprepare(hdmi->isfr_clk);
2466 2467 2468 2469 2470

	if (hdmi->i2c)
		i2c_del_adapter(&hdmi->i2c->adap);
	else
		i2c_put_adapter(hdmi->ddc);
2471
}
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535

/* -----------------------------------------------------------------------------
 * Probe/remove API, used from platforms based on the DRM bridge API.
 */
int dw_hdmi_probe(struct platform_device *pdev,
		  const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;
	int ret;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

	ret = drm_bridge_add(&hdmi->bridge);
	if (ret < 0) {
		__dw_hdmi_remove(hdmi);
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_probe);

void dw_hdmi_remove(struct platform_device *pdev)
{
	struct dw_hdmi *hdmi = platform_get_drvdata(pdev);

	drm_bridge_remove(&hdmi->bridge);

	__dw_hdmi_remove(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_remove);

/* -----------------------------------------------------------------------------
 * Bind/unbind API, used from platforms based on the component framework.
 */
int dw_hdmi_bind(struct platform_device *pdev, struct drm_encoder *encoder,
		 const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;
	int ret;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

	ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL);
	if (ret) {
		dw_hdmi_remove(pdev);
		DRM_ERROR("Failed to initialize bridge with drm\n");
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_bind);

void dw_hdmi_unbind(struct device *dev)
{
	struct dw_hdmi *hdmi = dev_get_drvdata(dev);

	__dw_hdmi_remove(hdmi);
}
2536
EXPORT_SYMBOL_GPL(dw_hdmi_unbind);
2537 2538

MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
2539 2540
MODULE_AUTHOR("Andy Yan <andy.yan@rock-chips.com>");
MODULE_AUTHOR("Yakir Yang <ykk@rock-chips.com>");
2541
MODULE_AUTHOR("Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com>");
2542
MODULE_DESCRIPTION("DW HDMI transmitter driver");
2543
MODULE_LICENSE("GPL");
2544
MODULE_ALIAS("platform:dw-hdmi");