dw-hdmi.c 69.5 KB
Newer Older
1
/*
2 3 4
 * DesignWare High-Definition Multimedia Interface (HDMI) driver
 *
 * Copyright (C) 2013-2015 Mentor Graphics Inc.
5
 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc.
6
 * Copyright (C) 2010, Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7 8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */
14
#include <linux/module.h>
15 16 17 18
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
S
Sachin Kamat 已提交
19
#include <linux/hdmi.h>
20
#include <linux/mutex.h>
21
#include <linux/of_device.h>
22
#include <linux/regmap.h>
23
#include <linux/spinlock.h>
24

25
#include <drm/drm_of.h>
26
#include <drm/drmP.h>
27
#include <drm/drm_atomic_helper.h>
28 29 30
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_encoder_slave.h>
31
#include <drm/bridge/dw_hdmi.h>
32

33 34 35
#include <uapi/linux/media-bus-format.h>
#include <uapi/linux/videodev2.h>

36 37
#include "dw-hdmi.h"
#include "dw-hdmi-audio.h"
38
#include "dw-hdmi-cec.h"
39

40 41
#include <media/cec-notifier.h>

42
#define DDC_SEGMENT_ADDR	0x30
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
#define HDMI_EDID_LEN		512

enum hdmi_datamap {
	RGB444_8B = 0x01,
	RGB444_10B = 0x03,
	RGB444_12B = 0x05,
	RGB444_16B = 0x07,
	YCbCr444_8B = 0x09,
	YCbCr444_10B = 0x0B,
	YCbCr444_12B = 0x0D,
	YCbCr444_16B = 0x0F,
	YCbCr422_8B = 0x16,
	YCbCr422_10B = 0x14,
	YCbCr422_12B = 0x12,
};

static const u16 csc_coeff_default[3][4] = {
	{ 0x2000, 0x0000, 0x0000, 0x0000 },
	{ 0x0000, 0x2000, 0x0000, 0x0000 },
	{ 0x0000, 0x0000, 0x2000, 0x0000 }
};

static const u16 csc_coeff_rgb_out_eitu601[3][4] = {
	{ 0x2000, 0x6926, 0x74fd, 0x010e },
	{ 0x2000, 0x2cdd, 0x0000, 0x7e9a },
	{ 0x2000, 0x0000, 0x38b4, 0x7e3b }
};

static const u16 csc_coeff_rgb_out_eitu709[3][4] = {
	{ 0x2000, 0x7106, 0x7a02, 0x00a7 },
	{ 0x2000, 0x3264, 0x0000, 0x7e6d },
	{ 0x2000, 0x0000, 0x3b61, 0x7e25 }
};

static const u16 csc_coeff_rgb_in_eitu601[3][4] = {
	{ 0x2591, 0x1322, 0x074b, 0x0000 },
	{ 0x6535, 0x2000, 0x7acc, 0x0200 },
	{ 0x6acd, 0x7534, 0x2000, 0x0200 }
};

static const u16 csc_coeff_rgb_in_eitu709[3][4] = {
	{ 0x2dc5, 0x0d9b, 0x049e, 0x0000 },
	{ 0x62f0, 0x2000, 0x7d11, 0x0200 },
	{ 0x6756, 0x78ab, 0x2000, 0x0200 }
};

struct hdmi_vmode {
	bool mdataenablepolarity;

	unsigned int mpixelclock;
	unsigned int mpixelrepetitioninput;
	unsigned int mpixelrepetitionoutput;
};

struct hdmi_data_info {
99 100 101 102
	unsigned int enc_in_bus_format;
	unsigned int enc_out_bus_format;
	unsigned int enc_in_encoding;
	unsigned int enc_out_encoding;
103 104 105 106 107
	unsigned int pix_repet_factor;
	unsigned int hdcp_enable;
	struct hdmi_vmode video_mode;
};

108 109 110 111 112 113 114 115 116
struct dw_hdmi_i2c {
	struct i2c_adapter	adap;

	struct mutex		lock;	/* used to serialize data transfers */
	struct completion	cmp;
	u8			stat;

	u8			slave_reg;
	bool			is_regaddr;
117
	bool			is_segment;
118 119
};

120 121 122
struct dw_hdmi_phy_data {
	enum dw_hdmi_phy_type type;
	const char *name;
123
	unsigned int gen;
124
	bool has_svsret;
125 126 127
	int (*configure)(struct dw_hdmi *hdmi,
			 const struct dw_hdmi_plat_data *pdata,
			 unsigned long mpixelclock);
128 129
};

130
struct dw_hdmi {
131
	struct drm_connector connector;
132
	struct drm_bridge bridge;
133

134 135 136
	unsigned int version;

	struct platform_device *audio;
137
	struct platform_device *cec;
138 139 140
	struct device *dev;
	struct clk *isfr_clk;
	struct clk *iahb_clk;
141
	struct dw_hdmi_i2c *i2c;
142 143

	struct hdmi_data_info hdmi_data;
144 145
	const struct dw_hdmi_plat_data *plat_data;

146 147 148 149 150
	int vic;

	u8 edid[HDMI_EDID_LEN];
	bool cable_plugin;

151 152 153 154 155 156
	struct {
		const struct dw_hdmi_phy_ops *ops;
		const char *name;
		void *data;
		bool enabled;
	} phy;
157

158 159 160 161
	struct drm_display_mode previous_mode;

	struct i2c_adapter *ddc;
	void __iomem *regs;
162
	bool sink_is_hdmi;
163
	bool sink_has_audio;
164

165
	struct mutex mutex;		/* for state below and previous_mode */
166
	enum drm_connector_force force;	/* mutex-protected force state */
167
	bool disabled;			/* DRM has disabled our bridge */
168
	bool bridge_is_on;		/* indicates the bridge is on */
169 170
	bool rxsense;			/* rxsense state */
	u8 phy_mask;			/* desired phy int mask settings */
171
	u8 mc_clkdis;			/* clock disable register */
172

173
	spinlock_t audio_lock;
174
	struct mutex audio_mutex;
175
	unsigned int sample_rate;
176 177 178
	unsigned int audio_cts;
	unsigned int audio_n;
	bool audio_enable;
179

180 181
	unsigned int reg_shift;
	struct regmap *regm;
182 183
	void (*enable_audio)(struct dw_hdmi *hdmi);
	void (*disable_audio)(struct dw_hdmi *hdmi);
184 185

	struct cec_notifier *cec_notifier;
186 187
};

188 189 190 191 192 193 194 195
#define HDMI_IH_PHY_STAT0_RX_SENSE \
	(HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \
	 HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3)

#define HDMI_PHY_RX_SENSE \
	(HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \
	 HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3)

196 197
static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
198
	regmap_write(hdmi->regm, offset << hdmi->reg_shift, val);
199 200 201 202
}

static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
203 204 205 206 207
	unsigned int val = 0;

	regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val);

	return val;
208 209
}

210
static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg)
211
{
212
	regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data);
213 214
}

215
static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg,
216
			     u8 shift, u8 mask)
217
{
218
	hdmi_modb(hdmi, data << shift, mask, reg);
219 220
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi)
{
	/* Software reset */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ);

	/* Set Standard Mode speed (determined to be 100KHz on iMX6) */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV);

	/* Set done, not acknowledged and arbitration interrupt polarities */
	hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL,
		    HDMI_I2CM_CTLINT);

	/* Clear DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_I2CM_STAT0);

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);
}

static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi,
			    unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		dev_dbg(hdmi->dev, "set read register address to 0\n");
		i2c->slave_reg = 0x00;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
259 260 261 262 263 264
		if (i2c->is_segment)
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT,
				    HDMI_I2CM_OPERATION);
		else
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ,
				    HDMI_I2CM_OPERATION);
265 266 267 268 269 270 271 272 273 274 275

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;

		*buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI);
	}
276
	i2c->is_segment = false;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

	return 0;
}

static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi,
			     unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		/* Use the first write byte as register address */
		i2c->slave_reg = buf[0];
		length--;
		buf++;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO);
		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
		hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE,
			    HDMI_I2CM_OPERATION);

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;
	}

	return 0;
}

static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap,
			    struct i2c_msg *msgs, int num)
{
	struct dw_hdmi *hdmi = i2c_get_adapdata(adap);
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	u8 addr = msgs[0].addr;
	int i, ret = 0;

	dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr);

	for (i = 0; i < num; i++) {
		if (msgs[i].len == 0) {
			dev_dbg(hdmi->dev,
				"unsupported transfer %d/%d, no data\n",
				i + 1, num);
			return -EOPNOTSUPP;
		}
	}

	mutex_lock(&i2c->lock);

	/* Unmute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0);

	/* Set slave device address taken from the first I2C message */
	hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE);

	/* Set slave device register address on transfer */
	i2c->is_regaddr = false;

345 346 347
	/* Set segment pointer for I2C extended read mode operation */
	i2c->is_segment = false;

348 349 350
	for (i = 0; i < num; i++) {
		dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n",
			i + 1, num, msgs[i].len, msgs[i].flags);
351 352 353 354 355 356 357 358 359 360 361 362
		if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) {
			i2c->is_segment = true;
			hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR);
			hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR);
		} else {
			if (msgs[i].flags & I2C_M_RD)
				ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf,
						       msgs[i].len);
			else
				ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf,
							msgs[i].len);
		}
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
		if (ret < 0)
			break;
	}

	if (!ret)
		ret = num;

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);

	mutex_unlock(&i2c->lock);

	return ret;
}

static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm dw_hdmi_algorithm = {
	.master_xfer	= dw_hdmi_i2c_xfer,
	.functionality	= dw_hdmi_i2c_func,
};

static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi)
{
	struct i2c_adapter *adap;
	struct dw_hdmi_i2c *i2c;
	int ret;

	i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
	if (!i2c)
		return ERR_PTR(-ENOMEM);

	mutex_init(&i2c->lock);
	init_completion(&i2c->cmp);

	adap = &i2c->adap;
	adap->class = I2C_CLASS_DDC;
	adap->owner = THIS_MODULE;
	adap->dev.parent = hdmi->dev;
	adap->algo = &dw_hdmi_algorithm;
	strlcpy(adap->name, "DesignWare HDMI", sizeof(adap->name));
	i2c_set_adapdata(adap, hdmi);

	ret = i2c_add_adapter(adap);
	if (ret) {
		dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
		devm_kfree(hdmi->dev, i2c);
		return ERR_PTR(ret);
	}

	hdmi->i2c = i2c;

	dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name);

	return adap;
}

424 425
static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts,
			   unsigned int n)
426
{
427 428
	/* Must be set/cleared first */
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
429 430

	/* nshift factor = 0 */
431
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3);
432 433 434

	hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) |
		    HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
435 436 437 438 439 440
	hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2);
	hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1);

	hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3);
	hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2);
	hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1);
441 442
}

443
static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk)
444 445
{
	unsigned int n = (128 * freq) / 1000;
446 447 448 449 450 451
	unsigned int mult = 1;

	while (freq > 48000) {
		mult *= 2;
		freq /= 2;
	}
452 453 454

	switch (freq) {
	case 32000:
455
		if (pixel_clk == 25175000)
456
			n = 4576;
457
		else if (pixel_clk == 27027000)
458
			n = 4096;
459
		else if (pixel_clk == 74176000 || pixel_clk == 148352000)
460 461 462
			n = 11648;
		else
			n = 4096;
463
		n *= mult;
464 465 466
		break;

	case 44100:
467
		if (pixel_clk == 25175000)
468
			n = 7007;
469
		else if (pixel_clk == 74176000)
470
			n = 17836;
471
		else if (pixel_clk == 148352000)
472
			n = 8918;
473 474
		else
			n = 6272;
475
		n *= mult;
476 477 478
		break;

	case 48000:
479
		if (pixel_clk == 25175000)
480
			n = 6864;
481
		else if (pixel_clk == 27027000)
482
			n = 6144;
483
		else if (pixel_clk == 74176000)
484
			n = 11648;
485
		else if (pixel_clk == 148352000)
486
			n = 5824;
487 488
		else
			n = 6144;
489
		n *= mult;
490 491 492 493 494 495 496 497 498
		break;

	default:
		break;
	}

	return n;
}

499
static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi,
500
	unsigned long pixel_clk, unsigned int sample_rate)
501
{
502
	unsigned long ftdms = pixel_clk;
503
	unsigned int n, cts;
504
	u64 tmp;
505

506
	n = hdmi_compute_n(sample_rate, pixel_clk);
507

508 509 510 511 512 513 514 515 516 517 518 519 520 521
	/*
	 * Compute the CTS value from the N value.  Note that CTS and N
	 * can be up to 20 bits in total, so we need 64-bit math.  Also
	 * note that our TDMS clock is not fully accurate; it is accurate
	 * to kHz.  This can introduce an unnecessary remainder in the
	 * calculation below, so we don't try to warn about that.
	 */
	tmp = (u64)ftdms * n;
	do_div(tmp, 128 * sample_rate);
	cts = tmp;

	dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n",
		__func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000,
		n, cts);
522

523 524 525 526 527
	spin_lock_irq(&hdmi->audio_lock);
	hdmi->audio_n = n;
	hdmi->audio_cts = cts;
	hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0);
	spin_unlock_irq(&hdmi->audio_lock);
528 529
}

530
static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi)
531
{
532
	mutex_lock(&hdmi->audio_mutex);
533
	hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate);
534
	mutex_unlock(&hdmi->audio_mutex);
535 536
}

537
static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi)
538
{
539
	mutex_lock(&hdmi->audio_mutex);
540
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
541
				 hdmi->sample_rate);
542
	mutex_unlock(&hdmi->audio_mutex);
543 544
}

545 546 547 548 549
void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate)
{
	mutex_lock(&hdmi->audio_mutex);
	hdmi->sample_rate = rate;
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
550
				 hdmi->sample_rate);
551 552 553 554
	mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate);

555 556
static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi, bool enable)
{
557 558 559 560 561
	if (enable)
		hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_AUDCLK_DISABLE;
	else
		hdmi->mc_clkdis |= HDMI_MC_CLKDIS_AUDCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
562 563
}

564 565 566 567 568 569 570 571 572 573 574 575 576
static void dw_hdmi_ahb_audio_enable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
}

static void dw_hdmi_ahb_audio_disable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
}

static void dw_hdmi_i2s_audio_enable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
577 578 579 580 581 582
	hdmi_enable_audio_clk(hdmi, true);
}

static void dw_hdmi_i2s_audio_disable(struct dw_hdmi *hdmi)
{
	hdmi_enable_audio_clk(hdmi, false);
583 584
}

585 586 587 588 589 590
void dw_hdmi_audio_enable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = true;
591 592
	if (hdmi->enable_audio)
		hdmi->enable_audio(hdmi);
593 594 595 596 597 598 599 600 601 602
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable);

void dw_hdmi_audio_disable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = false;
603 604
	if (hdmi->disable_audio)
		hdmi->disable_audio(hdmi);
605 606 607 608
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable);

609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_RGB161616_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_YUV16_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYVY12_1X24:
		return true;

	default:
		return false;
	}
}

static int hdmi_bus_fmt_color_depth(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		return 8;

	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		return 10;

	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYVY12_1X24:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		return 12;

	case MEDIA_BUS_FMT_RGB161616_1X48:
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		return 16;

	default:
		return 0;
	}
}

681 682 683 684 685 686 687
/*
 * this submodule is responsible for the video data synchronization.
 * for example, for RGB 4:4:4 input, the data map is defined as
 *			pin{47~40} <==> R[7:0]
 *			pin{31~24} <==> G[7:0]
 *			pin{15~8}  <==> B[7:0]
 */
688
static void hdmi_video_sample(struct dw_hdmi *hdmi)
689 690 691 692
{
	int color_format = 0;
	u8 val;

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
	switch (hdmi->hdmi_data.enc_in_bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
		color_format = 0x01;
		break;
	case MEDIA_BUS_FMT_RGB101010_1X30:
		color_format = 0x03;
		break;
	case MEDIA_BUS_FMT_RGB121212_1X36:
		color_format = 0x05;
		break;
	case MEDIA_BUS_FMT_RGB161616_1X48:
		color_format = 0x07;
		break;

	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		color_format = 0x09;
		break;
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		color_format = 0x0B;
		break;
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		color_format = 0x0D;
		break;
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		color_format = 0x0F;
		break;

	case MEDIA_BUS_FMT_UYVY8_1X16:
		color_format = 0x16;
		break;
	case MEDIA_BUS_FMT_UYVY10_1X20:
		color_format = 0x14;
		break;
	case MEDIA_BUS_FMT_UYVY12_1X24:
		color_format = 0x12;
		break;

	default:
		return;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
	}

	val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
		((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
		HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
	hdmi_writeb(hdmi, val, HDMI_TX_INVID0);

	/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
	val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
	hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1);
}

756
static int is_color_space_conversion(struct dw_hdmi *hdmi)
757
{
758
	return hdmi->hdmi_data.enc_in_bus_format != hdmi->hdmi_data.enc_out_bus_format;
759 760
}

761
static int is_color_space_decimation(struct dw_hdmi *hdmi)
762
{
763
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
764
		return 0;
765 766 767

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format))
768
		return 1;
769

770
	return 0;
771 772
}

773
static int is_color_space_interpolation(struct dw_hdmi *hdmi)
774
{
775
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format))
776
		return 0;
777 778 779

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
780
		return 1;
781

782
	return 0;
783 784
}

785
static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi)
786 787
{
	const u16 (*csc_coeff)[3][4] = &csc_coeff_default;
788
	unsigned i;
789 790 791
	u32 csc_scale = 1;

	if (is_color_space_conversion(hdmi)) {
792 793 794
		if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
795 796 797
				csc_coeff = &csc_coeff_rgb_out_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_out_eitu709;
798 799 800 801
		} else if (hdmi_bus_fmt_is_rgb(
					hdmi->hdmi_data.enc_in_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
802 803 804 805 806 807 808
				csc_coeff = &csc_coeff_rgb_in_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_in_eitu709;
			csc_scale = 0;
		}
	}

809 810 811 812 813 814
	/* The CSC registers are sequential, alternating MSB then LSB */
	for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) {
		u16 coeff_a = (*csc_coeff)[0][i];
		u16 coeff_b = (*csc_coeff)[1][i];
		u16 coeff_c = (*csc_coeff)[2][i];

815
		hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2);
816 817 818
		hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2);
		hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2);
		hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2);
819
		hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2);
820 821
		hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2);
	}
822

823 824
	hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
		  HDMI_CSC_SCALE);
825 826
}

827
static void hdmi_video_csc(struct dw_hdmi *hdmi)
828 829 830 831 832 833 834 835 836 837 838
{
	int color_depth = 0;
	int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
	int decimation = 0;

	/* YCC422 interpolation to 444 mode */
	if (is_color_space_interpolation(hdmi))
		interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1;
	else if (is_color_space_decimation(hdmi))
		decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3;

839 840
	switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) {
	case 8:
841
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
842 843
		break;
	case 10:
844
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP;
845 846
		break;
	case 12:
847
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP;
848 849
		break;
	case 16:
850
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP;
851 852 853
		break;

	default:
854
		return;
855
	}
856 857 858

	/* Configure the CSC registers */
	hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG);
859 860
	hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK,
		  HDMI_CSC_SCALE);
861

862
	dw_hdmi_update_csc_coeffs(hdmi);
863 864 865 866 867 868 869
}

/*
 * HDMI video packetizer is used to packetize the data.
 * for example, if input is YCC422 mode or repeater is used,
 * data should be repacked this module can be bypassed.
 */
870
static void hdmi_video_packetize(struct dw_hdmi *hdmi)
871 872 873 874 875
{
	unsigned int color_depth = 0;
	unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit;
	unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
	struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
876
	u8 val, vp_conf;
877

878 879 880 881 882
	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) {
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 8:
883 884
			color_depth = 4;
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
885 886
			break;
		case 10:
887
			color_depth = 5;
888 889
			break;
		case 12:
890
			color_depth = 6;
891 892
			break;
		case 16:
893
			color_depth = 7;
894 895 896
			break;
		default:
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
897
		}
898 899 900 901 902
	} else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 0:
		case 8:
903
			remap_size = HDMI_VP_REMAP_YCC422_16bit;
904 905
			break;
		case 10:
906
			remap_size = HDMI_VP_REMAP_YCC422_20bit;
907 908
			break;
		case 12:
909
			remap_size = HDMI_VP_REMAP_YCC422_24bit;
910 911 912
			break;

		default:
913
			return;
914
		}
915
		output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422;
916
	} else {
917
		return;
918
	}
919 920 921 922 923 924 925 926 927

	/* set the packetizer registers */
	val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
		HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
		((hdmi_data->pix_repet_factor <<
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_VP_PR_CD);

928 929
	hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF);
930 931 932

	/* Data from pixel repeater block */
	if (hdmi_data->pix_repet_factor > 1) {
933 934
		vp_conf = HDMI_VP_CONF_PR_EN_ENABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER;
935
	} else { /* data from packetizer block */
936 937
		vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
938 939
	}

940 941 942 943
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_PR_EN_MASK |
		  HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF);

944 945
	hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET,
		  HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF);
946 947 948 949

	hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP);

	if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
950 951 952
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_ENABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
953
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
954 955 956
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_ENABLE;
957
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
958 959 960
		vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
961 962 963 964
	} else {
		return;
	}

965 966 967 968
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK |
		  HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF);

969 970 971 972
	hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
			HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PP_STUFFING_MASK |
		  HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF);
973

974 975
	hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
		  HDMI_VP_CONF);
976 977
}

978 979 980 981
/* -----------------------------------------------------------------------------
 * Synopsys PHY Handling
 */

982
static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi,
983
				       unsigned char bit)
984
{
985 986
	hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET,
		  HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0);
987 988
}

989
static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec)
990
{
991 992 993
	u32 val;

	while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) {
994 995
		if (msec-- == 0)
			return false;
996
		udelay(1000);
997
	}
998 999
	hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0);

1000 1001 1002
	return true;
}

1003 1004
void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data,
			   unsigned char addr)
1005 1006 1007 1008
{
	hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR);
	hdmi_writeb(hdmi, (unsigned char)(data >> 8),
1009
		    HDMI_PHY_I2CM_DATAO_1_ADDR);
1010
	hdmi_writeb(hdmi, (unsigned char)(data >> 0),
1011
		    HDMI_PHY_I2CM_DATAO_0_ADDR);
1012
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE,
1013
		    HDMI_PHY_I2CM_OPERATION_ADDR);
1014 1015
	hdmi_phy_wait_i2c_done(hdmi, 1000);
}
1016
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write);
1017

1018
static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable)
1019
{
1020
	hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0,
1021 1022 1023 1024
			 HDMI_PHY_CONF0_PDZ_OFFSET,
			 HDMI_PHY_CONF0_PDZ_MASK);
}

1025
static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable)
1026 1027 1028 1029 1030 1031
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_ENTMDS_OFFSET,
			 HDMI_PHY_CONF0_ENTMDS_MASK);
}

1032
static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable)
1033 1034
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
1035 1036
			 HDMI_PHY_CONF0_SVSRET_OFFSET,
			 HDMI_PHY_CONF0_SVSRET_MASK);
1037 1038
}

1039
static void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable)
1040 1041 1042 1043 1044 1045
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET,
			 HDMI_PHY_CONF0_GEN2_PDDQ_MASK);
}

1046
static void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable)
1047 1048 1049 1050 1051 1052
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_MASK);
}

1053
static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable)
1054 1055 1056 1057 1058 1059
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDATAENPOL_OFFSET,
			 HDMI_PHY_CONF0_SELDATAENPOL_MASK);
}

1060
static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable)
1061 1062 1063 1064 1065 1066
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDIPIF_OFFSET,
			 HDMI_PHY_CONF0_SELDIPIF_MASK);
}

1067 1068
static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi)
{
1069
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
	unsigned int i;
	u16 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_powerdown(hdmi, true);
		return;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 0);

	/*
	 * Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went
	 * to low power mode.
	 */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0);
		if (!(val & HDMI_PHY_TX_PHY_LOCK))
			break;

		usleep_range(1000, 2000);
	}

	if (val & HDMI_PHY_TX_PHY_LOCK)
		dev_warn(hdmi->dev, "PHY failed to power down\n");
	else
		dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i);

	dw_hdmi_phy_gen2_pddq(hdmi, 1);
}

1101 1102
static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi)
{
1103
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	unsigned int i;
	u8 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_powerdown(hdmi, false);

		/* Toggle TMDS enable. */
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_tmds(hdmi, 1);
		return 0;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 1);
	dw_hdmi_phy_gen2_pddq(hdmi, 0);

	/* Wait for PHY PLL lock */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
		if (val)
			break;

		usleep_range(1000, 2000);
	}

	if (!val) {
		dev_err(hdmi->dev, "PHY PLL failed to lock\n");
		return -ETIMEDOUT;
	}

	dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i);
	return 0;
}

1137 1138 1139 1140 1141 1142 1143 1144
/*
 * PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available
 * information the DWC MHL PHY has the same register layout and is thus also
 * supported by this function.
 */
static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi,
		const struct dw_hdmi_plat_data *pdata,
		unsigned long mpixelclock)
1145
{
1146 1147 1148
	const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg;
	const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr;
	const struct dw_hdmi_phy_config *phy_config = pdata->phy_config;
1149

1150 1151
	/* PLL/MPLL Cfg - always match on final entry */
	for (; mpll_config->mpixelclock != ~0UL; mpll_config++)
1152
		if (mpixelclock <= mpll_config->mpixelclock)
1153 1154 1155
			break;

	for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++)
1156
		if (mpixelclock <= curr_ctrl->mpixelclock)
1157 1158 1159
			break;

	for (; phy_config->mpixelclock != ~0UL; phy_config++)
1160
		if (mpixelclock <= phy_config->mpixelclock)
1161 1162 1163 1164
			break;

	if (mpll_config->mpixelclock == ~0UL ||
	    curr_ctrl->mpixelclock == ~0UL ||
1165
	    phy_config->mpixelclock == ~0UL)
1166
		return -EINVAL;
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce,
			      HDMI_3D_TX_PHY_CPCE_CTRL);
	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp,
			      HDMI_3D_TX_PHY_GMPCTRL);
	dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0],
			      HDMI_3D_TX_PHY_CURRCTRL);

	dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL);
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK,
			      HDMI_3D_TX_PHY_MSM_CTRL);

	dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr,
			      HDMI_3D_TX_PHY_CKSYMTXCTRL);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr,
			      HDMI_3D_TX_PHY_VLEVCTRL);

	/* Override and disable clock termination. */
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE,
			      HDMI_3D_TX_PHY_CKCALCTRL);

	return 0;
}

static int hdmi_phy_configure(struct dw_hdmi *hdmi)
{
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
	const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
	unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock;
	int ret;
1198

1199
	dw_hdmi_phy_power_off(hdmi);
1200

1201
	/* Leave low power consumption mode by asserting SVSRET. */
1202
	if (phy->has_svsret)
1203 1204
		dw_hdmi_phy_enable_svsret(hdmi, 1);

1205 1206 1207
	/* PHY reset. The reset signal is active high on Gen2 PHYs. */
	hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
	hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
1208 1209 1210 1211 1212

	hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST);

	hdmi_phy_test_clear(hdmi, 1);
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2,
1213
		    HDMI_PHY_I2CM_SLAVE_ADDR);
1214 1215
	hdmi_phy_test_clear(hdmi, 0);

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	/* Write to the PHY as configured by the platform */
	if (pdata->configure_phy)
		ret = pdata->configure_phy(hdmi, pdata, mpixelclock);
	else
		ret = phy->configure(hdmi, pdata, mpixelclock);
	if (ret) {
		dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n",
			mpixelclock);
		return ret;
	}
1226

1227
	return dw_hdmi_phy_power_on(hdmi);
1228 1229
}

1230 1231
static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data,
			    struct drm_display_mode *mode)
1232 1233 1234 1235 1236
{
	int i, ret;

	/* HDMI Phy spec says to do the phy initialization sequence twice */
	for (i = 0; i < 2; i++) {
1237 1238
		dw_hdmi_phy_sel_data_en_pol(hdmi, 1);
		dw_hdmi_phy_sel_interface_control(hdmi, 0);
1239

1240
		ret = hdmi_phy_configure(hdmi);
1241 1242 1243 1244 1245 1246 1247
		if (ret)
			return ret;
	}

	return 0;
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data)
{
	dw_hdmi_phy_power_off(hdmi);
}

static enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi,
						      void *data)
{
	return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ?
		connector_status_connected : connector_status_disconnected;
}

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
static void dw_hdmi_phy_update_hpd(struct dw_hdmi *hdmi, void *data,
				   bool force, bool disabled, bool rxsense)
{
	u8 old_mask = hdmi->phy_mask;

	if (force || disabled || !rxsense)
		hdmi->phy_mask |= HDMI_PHY_RX_SENSE;
	else
		hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE;

	if (old_mask != hdmi->phy_mask)
		hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
}

static void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi, void *data)
{
	/*
	 * Configure the PHY RX SENSE and HPD interrupts polarities and clear
	 * any pending interrupt.
	 */
	hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0);
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);

	/* Enable cable hot plug irq. */
	hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);

	/* Clear and unmute interrupts. */
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
}

1294 1295 1296 1297
static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = {
	.init = dw_hdmi_phy_init,
	.disable = dw_hdmi_phy_disable,
	.read_hpd = dw_hdmi_phy_read_hpd,
1298 1299
	.update_hpd = dw_hdmi_phy_update_hpd,
	.setup_hpd = dw_hdmi_phy_setup_hpd,
1300 1301 1302 1303 1304 1305
};

/* -----------------------------------------------------------------------------
 * HDMI TX Setup
 */

1306
static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi)
1307
{
1308
	u8 de;
1309 1310 1311 1312 1313 1314 1315

	if (hdmi->hdmi_data.video_mode.mdataenablepolarity)
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH;
	else
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW;

	/* disable rx detect */
1316 1317
	hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE,
		  HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0);
1318

1319
	hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG);
1320

1321 1322
	hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE,
		  HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1);
1323 1324
}

1325
static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1326
{
1327 1328
	struct hdmi_avi_infoframe frame;
	u8 val;
1329

1330
	/* Initialise info frame from DRM mode */
1331
	drm_hdmi_avi_infoframe_from_display_mode(&frame, mode, false);
1332

1333
	if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
1334
		frame.colorspace = HDMI_COLORSPACE_YUV444;
1335
	else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
1336
		frame.colorspace = HDMI_COLORSPACE_YUV422;
1337
	else
1338
		frame.colorspace = HDMI_COLORSPACE_RGB;
1339 1340

	/* Set up colorimetry */
1341 1342 1343 1344 1345 1346 1347
	switch (hdmi->hdmi_data.enc_out_encoding) {
	case V4L2_YCBCR_ENC_601:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
1348
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
1349
		break;
1350 1351 1352 1353 1354 1355
	case V4L2_YCBCR_ENC_709:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_709;
		frame.extended_colorimetry =
1356
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_709;
1357 1358 1359 1360 1361 1362
		break;
	default: /* Carries no data */
		frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
		break;
1363 1364
	}

1365 1366 1367 1368 1369 1370 1371 1372 1373
	frame.scan_mode = HDMI_SCAN_MODE_NONE;

	/*
	 * The Designware IP uses a different byte format from standard
	 * AVI info frames, though generally the bits are in the correct
	 * bytes.
	 */

	/*
1374 1375 1376
	 * AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6,
	 * scan info in bits 4,5 rather than 0,1 and active aspect present in
	 * bit 6 rather than 4.
1377
	 */
1378
	val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	if (frame.active_aspect & 15)
		val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT;
	if (frame.top_bar || frame.bottom_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR;
	if (frame.left_bar || frame.right_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR;
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0);

	/* AVI data byte 2 differences: none */
	val = ((frame.colorimetry & 0x3) << 6) |
	      ((frame.picture_aspect & 0x3) << 4) |
	      (frame.active_aspect & 0xf);
1391 1392
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1);

1393 1394 1395 1396 1397 1398
	/* AVI data byte 3 differences: none */
	val = ((frame.extended_colorimetry & 0x7) << 4) |
	      ((frame.quantization_range & 0x3) << 2) |
	      (frame.nups & 0x3);
	if (frame.itc)
		val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID;
1399 1400
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2);

1401 1402 1403
	/* AVI data byte 4 differences: none */
	val = frame.video_code & 0x7f;
	hdmi_writeb(hdmi, val, HDMI_FC_AVIVID);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

	/* AVI Data Byte 5- set up input and output pixel repetition */
	val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) <<
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) |
		((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput <<
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_FC_PRCONF);

1414 1415 1416 1417 1418 1419
	/*
	 * AVI data byte 5 differences: content type in 0,1 rather than 4,5,
	 * ycc range in bits 2,3 rather than 6,7
	 */
	val = ((frame.ycc_quantization_range & 0x3) << 2) |
	      (frame.content_type & 0x3);
1420 1421 1422
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3);

	/* AVI Data Bytes 6-13 */
1423 1424 1425 1426 1427 1428 1429 1430
	hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0);
	hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1);
	hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0);
	hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1);
	hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0);
	hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1);
	hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0);
	hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1);
1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi,
						 struct drm_display_mode *mode)
{
	struct hdmi_vendor_infoframe frame;
	u8 buffer[10];
	ssize_t err;

	err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, mode);
	if (err < 0)
		/*
		 * Going into that statement does not means vendor infoframe
		 * fails. It just informed us that vendor infoframe is not
		 * needed for the selected mode. Only 4k or stereoscopic 3D
		 * mode requires vendor infoframe. So just simply return.
		 */
		return;

	err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer));
	if (err < 0) {
		dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n",
			err);
		return;
	}
	hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);

	/* Set the length of HDMI vendor specific InfoFrame payload */
	hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE);

	/* Set 24bit IEEE Registration Identifier */
	hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0);
	hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1);
	hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2);

	/* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */
	hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0);
	hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1);

	if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
		hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2);

	/* Packet frame interpolation */
	hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1);

	/* Auto packets per frame and line spacing */
	hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2);

	/* Configures the Frame Composer On RDRB mode */
	hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);
}

1485
static void hdmi_av_composer(struct dw_hdmi *hdmi,
1486 1487 1488 1489 1490
			     const struct drm_display_mode *mode)
{
	u8 inv_val;
	struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode;
	int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len;
1491
	unsigned int vdisplay;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501

	vmode->mpixelclock = mode->clock * 1000;

	dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock);

	/* Set up HDMI_FC_INVIDCONF */
	inv_val = (hdmi->hdmi_data.hdcp_enable ?
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE :
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE);

1502
	inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
1503
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
1504
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW;
1505

1506
	inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
1507
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
1508
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW;
1509 1510 1511 1512 1513 1514 1515 1516

	inv_val |= (vmode->mdataenablepolarity ?
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);

	if (hdmi->vic == 39)
		inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH;
	else
1517
		inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1518
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
1519
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
1520

1521
	inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1522
		HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
1523
		HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
1524

1525 1526 1527
	inv_val |= hdmi->sink_is_hdmi ?
		HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
		HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE;
1528 1529 1530

	hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF);

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
	vdisplay = mode->vdisplay;
	vblank = mode->vtotal - mode->vdisplay;
	v_de_vs = mode->vsync_start - mode->vdisplay;
	vsync_len = mode->vsync_end - mode->vsync_start;

	/*
	 * When we're setting an interlaced mode, we need
	 * to adjust the vertical timing to suit.
	 */
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vdisplay /= 2;
		vblank /= 2;
		v_de_vs /= 2;
		vsync_len /= 2;
	}

1547 1548 1549 1550 1551
	/* Set up horizontal active pixel width */
	hdmi_writeb(hdmi, mode->hdisplay >> 8, HDMI_FC_INHACTV1);
	hdmi_writeb(hdmi, mode->hdisplay, HDMI_FC_INHACTV0);

	/* Set up vertical active lines */
1552 1553
	hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1);
	hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0);
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

	/* Set up horizontal blanking pixel region width */
	hblank = mode->htotal - mode->hdisplay;
	hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1);
	hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0);

	/* Set up vertical blanking pixel region width */
	hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK);

	/* Set up HSYNC active edge delay width (in pixel clks) */
	h_de_hs = mode->hsync_start - mode->hdisplay;
	hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1);
	hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY);

	/* Set up HSYNC active pulse width (in pixel clks) */
	hsync_len = mode->hsync_end - mode->hsync_start;
	hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1);
	hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH);
}

/* HDMI Initialization Step B.4 */
1581
static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi)
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
{
	/* control period minimum duration */
	hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR);
	hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR);
	hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC);

	/* Set to fill TMDS data channels */
	hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM);
	hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM);
	hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM);

	/* Enable pixel clock and tmds data path */
1594 1595 1596 1597 1598 1599 1600
	hdmi->mc_clkdis |= HDMI_MC_CLKDIS_HDCPCLK_DISABLE |
			   HDMI_MC_CLKDIS_CSCCLK_DISABLE |
			   HDMI_MC_CLKDIS_AUDCLK_DISABLE |
			   HDMI_MC_CLKDIS_PREPCLK_DISABLE |
			   HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
	hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
1601

1602 1603
	hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
1604 1605 1606

	/* Enable csc path */
	if (is_color_space_conversion(hdmi)) {
1607 1608
		hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE;
		hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
1609
	}
1610

1611 1612
	/* Enable color space conversion if needed */
	if (is_color_space_conversion(hdmi))
1613 1614 1615 1616 1617
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH,
			    HDMI_MC_FLOWCTRL);
	else
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS,
			    HDMI_MC_FLOWCTRL);
1618 1619 1620
}

/* Workaround to clear the overflow condition */
1621
static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi)
1622
{
1623 1624
	unsigned int count;
	unsigned int i;
1625 1626
	u8 val;

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	/*
	 * Under some circumstances the Frame Composer arithmetic unit can miss
	 * an FC register write due to being busy processing the previous one.
	 * The issue can be worked around by issuing a TMDS software reset and
	 * then write one of the FC registers several times.
	 *
	 * The number of iterations matters and depends on the HDMI TX revision
	 * (and possibly on the platform). So far only i.MX6Q (v1.30a) and
	 * i.MX6DL (v1.31a) have been identified as needing the workaround, with
	 * 4 and 1 iterations respectively.
	 */
1638

1639 1640 1641 1642 1643 1644 1645 1646
	switch (hdmi->version) {
	case 0x130a:
		count = 4;
		break;
	case 0x131a:
		count = 1;
		break;
	default:
1647 1648 1649
		return;
	}

1650 1651 1652 1653 1654
	/* TMDS software reset */
	hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ);

	val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF);
	for (i = 0; i < count; i++)
1655 1656 1657
		hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF);
}

1658
static void hdmi_enable_overflow_interrupts(struct dw_hdmi *hdmi)
1659 1660 1661 1662 1663
{
	hdmi_writeb(hdmi, 0, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0, HDMI_IH_MUTE_FC_STAT2);
}

1664
static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi)
1665 1666 1667 1668 1669
{
	hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK,
		    HDMI_IH_MUTE_FC_STAT2);
}

1670
static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
{
	int ret;

	hdmi_disable_overflow_interrupts(hdmi);

	hdmi->vic = drm_match_cea_mode(mode);

	if (!hdmi->vic) {
		dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n");
	} else {
		dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic);
	}

	if ((hdmi->vic == 6) || (hdmi->vic == 7) ||
1685 1686 1687
	    (hdmi->vic == 21) || (hdmi->vic == 22) ||
	    (hdmi->vic == 2) || (hdmi->vic == 3) ||
	    (hdmi->vic == 17) || (hdmi->vic == 18))
1688
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601;
1689
	else
1690
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709;
1691

1692
	hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0;
1693 1694
	hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0;

1695
	/* TOFIX: Get input format from plat data or fallback to RGB888 */
1696
	if (hdmi->plat_data->input_bus_format)
1697 1698 1699 1700 1701 1702
		hdmi->hdmi_data.enc_in_bus_format =
			hdmi->plat_data->input_bus_format;
	else
		hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_RGB888_1X24;

	/* TOFIX: Get input encoding from plat data or fallback to none */
1703
	if (hdmi->plat_data->input_bus_encoding)
1704 1705 1706 1707
		hdmi->hdmi_data.enc_in_encoding =
			hdmi->plat_data->input_bus_encoding;
	else
		hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT;
1708

1709 1710
	/* TOFIX: Default to RGB888 output format */
	hdmi->hdmi_data.enc_out_bus_format = MEDIA_BUS_FMT_RGB888_1X24;
1711 1712 1713 1714 1715 1716 1717 1718 1719

	hdmi->hdmi_data.pix_repet_factor = 0;
	hdmi->hdmi_data.hdcp_enable = 0;
	hdmi->hdmi_data.video_mode.mdataenablepolarity = true;

	/* HDMI Initialization Step B.1 */
	hdmi_av_composer(hdmi, mode);

	/* HDMI Initializateion Step B.2 */
1720
	ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data, &hdmi->previous_mode);
1721 1722
	if (ret)
		return ret;
1723
	hdmi->phy.enabled = true;
1724 1725

	/* HDMI Initialization Step B.3 */
1726
	dw_hdmi_enable_video_path(hdmi);
1727

1728 1729
	if (hdmi->sink_has_audio) {
		dev_dbg(hdmi->dev, "sink has audio support\n");
1730 1731 1732

		/* HDMI Initialization Step E - Configure audio */
		hdmi_clk_regenerator_update_pixel_clock(hdmi);
1733
		hdmi_enable_audio_clk(hdmi, true);
1734 1735 1736 1737 1738
	}

	/* not for DVI mode */
	if (hdmi->sink_is_hdmi) {
		dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__);
1739 1740

		/* HDMI Initialization Step F - Configure AVI InfoFrame */
1741
		hdmi_config_AVI(hdmi, mode);
1742
		hdmi_config_vendor_specific_infoframe(hdmi, mode);
1743 1744
	} else {
		dev_dbg(hdmi->dev, "%s DVI mode\n", __func__);
1745 1746 1747 1748 1749 1750 1751
	}

	hdmi_video_packetize(hdmi);
	hdmi_video_csc(hdmi);
	hdmi_video_sample(hdmi);
	hdmi_tx_hdcp_config(hdmi);

1752
	dw_hdmi_clear_overflow(hdmi);
1753
	if (hdmi->cable_plugin && hdmi->sink_is_hdmi)
1754 1755 1756 1757 1758
		hdmi_enable_overflow_interrupts(hdmi);

	return 0;
}

1759
static void dw_hdmi_setup_i2c(struct dw_hdmi *hdmi)
1760 1761 1762 1763 1764 1765 1766 1767 1768
{
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL,
		    HDMI_PHY_I2CM_INT_ADDR);

	hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
		    HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL,
		    HDMI_PHY_I2CM_CTLINT_ADDR);
}

1769
static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi)
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
{
	u8 ih_mute;

	/*
	 * Boot up defaults are:
	 * HDMI_IH_MUTE   = 0x03 (disabled)
	 * HDMI_IH_MUTE_* = 0x00 (enabled)
	 *
	 * Disable top level interrupt bits in HDMI block
	 */
	ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) |
		  HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		  HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;

	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);

	/* by default mask all interrupts */
	hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT);

	/* Disable interrupts in the IH_MUTE_* registers */
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0);

	/* Enable top level interrupt bits in HDMI block */
	ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		    HDMI_IH_MUTE_MUTE_ALL_INTERRUPT);
	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
}

1820
static void dw_hdmi_poweron(struct dw_hdmi *hdmi)
1821
{
1822
	hdmi->bridge_is_on = true;
1823
	dw_hdmi_setup(hdmi, &hdmi->previous_mode);
1824 1825
}

1826
static void dw_hdmi_poweroff(struct dw_hdmi *hdmi)
1827
{
1828 1829 1830 1831 1832
	if (hdmi->phy.enabled) {
		hdmi->phy.ops->disable(hdmi, hdmi->phy.data);
		hdmi->phy.enabled = false;
	}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	hdmi->bridge_is_on = false;
}

static void dw_hdmi_update_power(struct dw_hdmi *hdmi)
{
	int force = hdmi->force;

	if (hdmi->disabled) {
		force = DRM_FORCE_OFF;
	} else if (force == DRM_FORCE_UNSPECIFIED) {
1843
		if (hdmi->rxsense)
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
			force = DRM_FORCE_ON;
		else
			force = DRM_FORCE_OFF;
	}

	if (force == DRM_FORCE_OFF) {
		if (hdmi->bridge_is_on)
			dw_hdmi_poweroff(hdmi);
	} else {
		if (!hdmi->bridge_is_on)
			dw_hdmi_poweron(hdmi);
	}
1856 1857
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
/*
 * Adjust the detection of RXSENSE according to whether we have a forced
 * connection mode enabled, or whether we have been disabled.  There is
 * no point processing RXSENSE interrupts if we have a forced connection
 * state, or DRM has us disabled.
 *
 * We also disable rxsense interrupts when we think we're disconnected
 * to avoid floating TDMS signals giving false rxsense interrupts.
 *
 * Note: we still need to listen for HPD interrupts even when DRM has us
 * disabled so that we can detect a connect event.
 */
static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi)
{
1872 1873 1874 1875
	if (hdmi->phy.ops->update_hpd)
		hdmi->phy.ops->update_hpd(hdmi, hdmi->phy.data,
					  hdmi->force, hdmi->disabled,
					  hdmi->rxsense);
1876 1877
}

1878 1879
static enum drm_connector_status
dw_hdmi_connector_detect(struct drm_connector *connector, bool force)
1880
{
1881
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1882
					     connector);
1883

1884 1885 1886
	mutex_lock(&hdmi->mutex);
	hdmi->force = DRM_FORCE_UNSPECIFIED;
	dw_hdmi_update_power(hdmi);
1887
	dw_hdmi_update_phy_mask(hdmi);
1888 1889
	mutex_unlock(&hdmi->mutex);

1890
	return hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data);
1891 1892
}

1893
static int dw_hdmi_connector_get_modes(struct drm_connector *connector)
1894
{
1895
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1896 1897
					     connector);
	struct edid *edid;
1898
	int ret = 0;
1899 1900 1901 1902 1903 1904 1905 1906 1907

	if (!hdmi->ddc)
		return 0;

	edid = drm_get_edid(connector, hdmi->ddc);
	if (edid) {
		dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n",
			edid->width_cm, edid->height_cm);

1908
		hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid);
1909
		hdmi->sink_has_audio = drm_detect_monitor_audio(edid);
1910
		drm_mode_connector_update_edid_property(connector, edid);
1911
		cec_notifier_set_phys_addr_from_edid(hdmi->cec_notifier, edid);
1912
		ret = drm_add_edid_modes(connector, edid);
1913 1914
		/* Store the ELD */
		drm_edid_to_eld(connector, edid);
1915 1916 1917 1918 1919
		kfree(edid);
	} else {
		dev_dbg(hdmi->dev, "failed to get edid\n");
	}

1920
	return ret;
1921 1922
}

1923 1924 1925 1926 1927 1928 1929 1930
static void dw_hdmi_connector_force(struct drm_connector *connector)
{
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
					     connector);

	mutex_lock(&hdmi->mutex);
	hdmi->force = connector->force;
	dw_hdmi_update_power(hdmi);
1931
	dw_hdmi_update_phy_mask(hdmi);
1932 1933 1934
	mutex_unlock(&hdmi->mutex);
}

1935
static const struct drm_connector_funcs dw_hdmi_connector_funcs = {
1936 1937 1938
	.dpms = drm_atomic_helper_connector_dpms,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.detect = dw_hdmi_connector_detect,
1939
	.destroy = drm_connector_cleanup,
1940 1941 1942 1943 1944 1945
	.force = dw_hdmi_connector_force,
	.reset = drm_atomic_helper_connector_reset,
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};

1946
static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = {
1947
	.get_modes = dw_hdmi_connector_get_modes,
1948
	.best_encoder = drm_atomic_helper_best_encoder,
1949 1950
};

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
static int dw_hdmi_bridge_attach(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;
	struct drm_encoder *encoder = bridge->encoder;
	struct drm_connector *connector = &hdmi->connector;

	connector->interlace_allowed = 1;
	connector->polled = DRM_CONNECTOR_POLL_HPD;

	drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs);

	drm_connector_init(bridge->dev, connector, &dw_hdmi_connector_funcs,
			   DRM_MODE_CONNECTOR_HDMIA);

	drm_mode_connector_attach_encoder(connector, encoder);

	return 0;
}

1970 1971 1972
static enum drm_mode_status
dw_hdmi_bridge_mode_valid(struct drm_bridge *bridge,
			  const struct drm_display_mode *mode)
1973 1974 1975
{
	struct dw_hdmi *hdmi = bridge->driver_private;
	struct drm_connector *connector = &hdmi->connector;
1976
	enum drm_mode_status mode_status = MODE_OK;
1977

1978 1979 1980 1981 1982 1983 1984 1985
	/* We don't support double-clocked modes */
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_BAD;

	if (hdmi->plat_data->mode_valid)
		mode_status = hdmi->plat_data->mode_valid(connector, mode);

	return mode_status;
1986 1987
}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge,
				    struct drm_display_mode *orig_mode,
				    struct drm_display_mode *mode)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);

	/* Store the display mode for plugin/DKMS poweron events */
	memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode));

	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_disable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = true;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_enable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = false;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

2024
static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = {
2025
	.attach = dw_hdmi_bridge_attach,
2026 2027 2028
	.enable = dw_hdmi_bridge_enable,
	.disable = dw_hdmi_bridge_disable,
	.mode_set = dw_hdmi_bridge_mode_set,
2029
	.mode_valid = dw_hdmi_bridge_mode_valid,
2030 2031
};

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	unsigned int stat;

	stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
	if (!stat)
		return IRQ_NONE;

	hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0);

	i2c->stat = stat;

	complete(&i2c->cmp);

	return IRQ_HANDLED;
}

2050
static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id)
2051
{
2052
	struct dw_hdmi *hdmi = dev_id;
2053
	u8 intr_stat;
2054 2055 2056 2057
	irqreturn_t ret = IRQ_NONE;

	if (hdmi->i2c)
		ret = dw_hdmi_i2c_irq(hdmi);
2058 2059

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
2060
	if (intr_stat) {
2061
		hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
2062 2063
		return IRQ_WAKE_THREAD;
	}
2064

2065
	return ret;
2066 2067
}

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
void __dw_hdmi_setup_rx_sense(struct dw_hdmi *hdmi, bool hpd, bool rx_sense)
{
	mutex_lock(&hdmi->mutex);

	if (!hdmi->force) {
		/*
		 * If the RX sense status indicates we're disconnected,
		 * clear the software rxsense status.
		 */
		if (!rx_sense)
			hdmi->rxsense = false;

		/*
		 * Only set the software rxsense status when both
		 * rxsense and hpd indicates we're connected.
		 * This avoids what seems to be bad behaviour in
		 * at least iMX6S versions of the phy.
		 */
		if (hpd)
			hdmi->rxsense = true;

		dw_hdmi_update_power(hdmi);
		dw_hdmi_update_phy_mask(hdmi);
	}
	mutex_unlock(&hdmi->mutex);
}

void dw_hdmi_setup_rx_sense(struct device *dev, bool hpd, bool rx_sense)
{
	struct dw_hdmi *hdmi = dev_get_drvdata(dev);

	__dw_hdmi_setup_rx_sense(hdmi, hpd, rx_sense);
}
EXPORT_SYMBOL_GPL(dw_hdmi_setup_rx_sense);

2103
static irqreturn_t dw_hdmi_irq(int irq, void *dev_id)
2104
{
2105
	struct dw_hdmi *hdmi = dev_id;
2106
	u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat;
2107 2108 2109

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
	phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0);

	phy_pol_mask = 0;
	if (intr_stat & HDMI_IH_PHY_STAT0_HPD)
		phy_pol_mask |= HDMI_PHY_HPD;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0)
		phy_pol_mask |= HDMI_PHY_RX_SENSE0;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1)
		phy_pol_mask |= HDMI_PHY_RX_SENSE1;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2)
		phy_pol_mask |= HDMI_PHY_RX_SENSE2;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3)
		phy_pol_mask |= HDMI_PHY_RX_SENSE3;

	if (phy_pol_mask)
		hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0);
2126

2127 2128 2129 2130 2131 2132 2133 2134
	/*
	 * RX sense tells us whether the TDMS transmitters are detecting
	 * load - in other words, there's something listening on the
	 * other end of the link.  Use this to decide whether we should
	 * power on the phy as HPD may be toggled by the sink to merely
	 * ask the source to re-read the EDID.
	 */
	if (intr_stat &
2135
	    (HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD)) {
2136 2137 2138
		__dw_hdmi_setup_rx_sense(hdmi,
					 phy_stat & HDMI_PHY_HPD,
					 phy_stat & HDMI_PHY_RX_SENSE);
2139

2140 2141 2142 2143 2144
		if ((phy_stat & (HDMI_PHY_RX_SENSE | HDMI_PHY_HPD)) == 0)
			cec_notifier_set_phys_addr(hdmi->cec_notifier,
						   CEC_PHYS_ADDR_INVALID);
	}

2145 2146 2147
	if (intr_stat & HDMI_IH_PHY_STAT0_HPD) {
		dev_dbg(hdmi->dev, "EVENT=%s\n",
			phy_int_pol & HDMI_PHY_HPD ? "plugin" : "plugout");
2148 2149
		if (hdmi->bridge.dev)
			drm_helper_hpd_irq_event(hdmi->bridge.dev);
2150 2151 2152
	}

	hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0);
2153 2154
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
2155 2156 2157 2158

	return IRQ_HANDLED;
}

2159 2160 2161 2162
static const struct dw_hdmi_phy_data dw_hdmi_phys[] = {
	{
		.type = DW_HDMI_PHY_DWC_HDMI_TX_PHY,
		.name = "DWC HDMI TX PHY",
2163
		.gen = 1,
2164 2165 2166
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC,
		.name = "DWC MHL PHY + HEAC PHY",
2167
		.gen = 2,
2168
		.has_svsret = true,
2169
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2170 2171 2172
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY,
		.name = "DWC MHL PHY",
2173
		.gen = 2,
2174
		.has_svsret = true,
2175
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2176 2177 2178
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC,
		.name = "DWC HDMI 3D TX PHY + HEAC PHY",
2179
		.gen = 2,
2180
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2181 2182 2183
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY,
		.name = "DWC HDMI 3D TX PHY",
2184
		.gen = 2,
2185
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2186 2187 2188
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
		.name = "DWC HDMI 2.0 TX PHY",
2189
		.gen = 2,
2190
		.has_svsret = true,
2191 2192 2193
	}, {
		.type = DW_HDMI_PHY_VENDOR_PHY,
		.name = "Vendor PHY",
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
	}
};

static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi)
{
	unsigned int i;
	u8 phy_type;

	phy_type = hdmi_readb(hdmi, HDMI_CONFIG2_ID);

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	if (phy_type == DW_HDMI_PHY_VENDOR_PHY) {
		/* Vendor PHYs require support from the glue layer. */
		if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) {
			dev_err(hdmi->dev,
				"Vendor HDMI PHY not supported by glue layer\n");
			return -ENODEV;
		}

		hdmi->phy.ops = hdmi->plat_data->phy_ops;
		hdmi->phy.data = hdmi->plat_data->phy_data;
		hdmi->phy.name = hdmi->plat_data->phy_name;
		return 0;
	}

	/* Synopsys PHYs are handled internally. */
2219 2220
	for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) {
		if (dw_hdmi_phys[i].type == phy_type) {
2221 2222 2223
			hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops;
			hdmi->phy.name = dw_hdmi_phys[i].name;
			hdmi->phy.data = (void *)&dw_hdmi_phys[i];
2224 2225 2226 2227 2228 2229 2230 2231

			if (!dw_hdmi_phys[i].configure &&
			    !hdmi->plat_data->configure_phy) {
				dev_err(hdmi->dev, "%s requires platform support\n",
					hdmi->phy.name);
				return -ENODEV;
			}

2232 2233 2234 2235
			return 0;
		}
	}

2236
	dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type);
2237 2238 2239
	return -ENODEV;
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
static void dw_hdmi_cec_enable(struct dw_hdmi *hdmi)
{
	mutex_lock(&hdmi->mutex);
	hdmi->mc_clkdis &= ~HDMI_MC_CLKDIS_CECCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_cec_disable(struct dw_hdmi *hdmi)
{
	mutex_lock(&hdmi->mutex);
	hdmi->mc_clkdis |= HDMI_MC_CLKDIS_CECCLK_DISABLE;
	hdmi_writeb(hdmi, hdmi->mc_clkdis, HDMI_MC_CLKDIS);
	mutex_unlock(&hdmi->mutex);
}

static const struct dw_hdmi_cec_ops dw_hdmi_cec_ops = {
	.write = hdmi_writeb,
	.read = hdmi_readb,
	.enable = dw_hdmi_cec_enable,
	.disable = dw_hdmi_cec_disable,
};

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
static const struct regmap_config hdmi_regmap_8bit_config = {
	.reg_bits	= 32,
	.val_bits	= 8,
	.reg_stride	= 1,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR,
};

static const struct regmap_config hdmi_regmap_32bit_config = {
	.reg_bits	= 32,
	.val_bits	= 32,
	.reg_stride	= 4,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2,
};

2277 2278 2279
static struct dw_hdmi *
__dw_hdmi_probe(struct platform_device *pdev,
		const struct dw_hdmi_plat_data *plat_data)
2280
{
2281
	struct device *dev = &pdev->dev;
2282
	struct device_node *np = dev->of_node;
2283
	struct platform_device_info pdevinfo;
2284
	struct device_node *ddc_node;
2285
	struct dw_hdmi_cec_data cec;
2286
	struct dw_hdmi *hdmi;
2287
	struct resource *iores = NULL;
2288
	int irq;
2289
	int ret;
2290
	u32 val = 1;
2291 2292
	u8 prod_id0;
	u8 prod_id1;
2293
	u8 config0;
2294
	u8 config3;
2295

2296
	hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
2297
	if (!hdmi)
2298
		return ERR_PTR(-ENOMEM);
2299

2300
	hdmi->plat_data = plat_data;
2301
	hdmi->dev = dev;
2302
	hdmi->sample_rate = 48000;
2303
	hdmi->disabled = true;
2304 2305
	hdmi->rxsense = true;
	hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE);
2306
	hdmi->mc_clkdis = 0x7f;
2307

2308
	mutex_init(&hdmi->mutex);
2309
	mutex_init(&hdmi->audio_mutex);
2310
	spin_lock_init(&hdmi->audio_lock);
2311

2312
	ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0);
2313
	if (ddc_node) {
2314
		hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node);
2315 2316
		of_node_put(ddc_node);
		if (!hdmi->ddc) {
2317
			dev_dbg(hdmi->dev, "failed to read ddc node\n");
2318
			return ERR_PTR(-EPROBE_DEFER);
2319
		}
2320 2321 2322 2323 2324

	} else {
		dev_dbg(hdmi->dev, "no ddc property found\n");
	}

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	if (!plat_data->regm) {
		const struct regmap_config *reg_config;

		of_property_read_u32(np, "reg-io-width", &val);
		switch (val) {
		case 4:
			reg_config = &hdmi_regmap_32bit_config;
			hdmi->reg_shift = 2;
			break;
		case 1:
			reg_config = &hdmi_regmap_8bit_config;
			break;
		default:
			dev_err(dev, "reg-io-width must be 1 or 4\n");
			return ERR_PTR(-EINVAL);
		}

		iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		hdmi->regs = devm_ioremap_resource(dev, iores);
		if (IS_ERR(hdmi->regs)) {
			ret = PTR_ERR(hdmi->regs);
			goto err_res;
		}

		hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config);
		if (IS_ERR(hdmi->regm)) {
			dev_err(dev, "Failed to configure regmap\n");
			ret = PTR_ERR(hdmi->regm);
			goto err_res;
		}
	} else {
		hdmi->regm = plat_data->regm;
2357
	}
2358 2359 2360 2361

	hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr");
	if (IS_ERR(hdmi->isfr_clk)) {
		ret = PTR_ERR(hdmi->isfr_clk);
2362
		dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret);
2363
		goto err_res;
2364 2365 2366 2367
	}

	ret = clk_prepare_enable(hdmi->isfr_clk);
	if (ret) {
2368
		dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret);
2369
		goto err_res;
2370 2371 2372 2373 2374
	}

	hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb");
	if (IS_ERR(hdmi->iahb_clk)) {
		ret = PTR_ERR(hdmi->iahb_clk);
2375
		dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret);
2376 2377 2378 2379 2380
		goto err_isfr;
	}

	ret = clk_prepare_enable(hdmi->iahb_clk);
	if (ret) {
2381
		dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret);
2382 2383 2384 2385
		goto err_isfr;
	}

	/* Product and revision IDs */
2386 2387
	hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8)
		      | (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0);
2388 2389 2390 2391 2392 2393
	prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0);
	prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1);

	if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX ||
	    (prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) {
		dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n",
2394
			hdmi->version, prod_id0, prod_id1);
2395 2396 2397 2398
		ret = -ENODEV;
		goto err_iahb;
	}

2399 2400 2401 2402 2403
	ret = dw_hdmi_detect_phy(hdmi);
	if (ret < 0)
		goto err_iahb;

	dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n",
2404
		 hdmi->version >> 12, hdmi->version & 0xfff,
2405
		 prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without",
2406
		 hdmi->phy.name);
2407 2408 2409

	initialize_hdmi_ih_mutes(hdmi);

2410
	irq = platform_get_irq(pdev, 0);
2411 2412
	if (irq < 0) {
		ret = irq;
2413
		goto err_iahb;
2414
	}
2415

2416 2417 2418 2419
	ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq,
					dw_hdmi_irq, IRQF_SHARED,
					dev_name(dev), hdmi);
	if (ret)
2420
		goto err_iahb;
2421

2422 2423 2424 2425 2426 2427
	hdmi->cec_notifier = cec_notifier_get(dev);
	if (!hdmi->cec_notifier) {
		ret = -ENOMEM;
		goto err_iahb;
	}

2428 2429 2430 2431 2432 2433
	/*
	 * To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator
	 * N and cts values before enabling phy
	 */
	hdmi_init_clk_regenerator(hdmi);

2434 2435 2436 2437 2438 2439 2440
	/* If DDC bus is not specified, try to register HDMI I2C bus */
	if (!hdmi->ddc) {
		hdmi->ddc = dw_hdmi_i2c_adapter(hdmi);
		if (IS_ERR(hdmi->ddc))
			hdmi->ddc = NULL;
	}

2441 2442
	hdmi->bridge.driver_private = hdmi;
	hdmi->bridge.funcs = &dw_hdmi_bridge_funcs;
2443
#ifdef CONFIG_OF
2444
	hdmi->bridge.of_node = pdev->dev.of_node;
2445
#endif
2446

2447
	dw_hdmi_setup_i2c(hdmi);
2448 2449
	if (hdmi->phy.ops->setup_hpd)
		hdmi->phy.ops->setup_hpd(hdmi, hdmi->phy.data);
2450

2451 2452 2453 2454
	memset(&pdevinfo, 0, sizeof(pdevinfo));
	pdevinfo.parent = dev;
	pdevinfo.id = PLATFORM_DEVID_AUTO;

2455
	config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID);
2456
	config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID);
2457

2458
	if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) {
2459 2460
		struct dw_hdmi_audio_data audio;

2461 2462 2463 2464
		audio.phys = iores->start;
		audio.base = hdmi->regs;
		audio.irq = irq;
		audio.hdmi = hdmi;
2465
		audio.eld = hdmi->connector.eld;
2466 2467
		hdmi->enable_audio = dw_hdmi_ahb_audio_enable;
		hdmi->disable_audio = dw_hdmi_ahb_audio_disable;
2468 2469 2470 2471 2472 2473

		pdevinfo.name = "dw-hdmi-ahb-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2474 2475 2476 2477 2478 2479
	} else if (config0 & HDMI_CONFIG0_I2S) {
		struct dw_hdmi_i2s_audio_data audio;

		audio.hdmi	= hdmi;
		audio.write	= hdmi_writeb;
		audio.read	= hdmi_readb;
2480
		hdmi->enable_audio = dw_hdmi_i2s_audio_enable;
2481
		hdmi->disable_audio = dw_hdmi_i2s_audio_disable;
2482 2483 2484 2485 2486 2487

		pdevinfo.name = "dw-hdmi-i2s-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2488 2489
	}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
	if (config0 & HDMI_CONFIG0_CEC) {
		cec.hdmi = hdmi;
		cec.ops = &dw_hdmi_cec_ops;
		cec.irq = irq;

		pdevinfo.name = "dw-hdmi-cec";
		pdevinfo.data = &cec;
		pdevinfo.size_data = sizeof(cec);
		pdevinfo.dma_mask = 0;

		hdmi->cec = platform_device_register_full(&pdevinfo);
	}

2503 2504 2505 2506
	/* Reset HDMI DDC I2C master controller and mute I2CM interrupts */
	if (hdmi->i2c)
		dw_hdmi_i2c_init(hdmi);

2507
	platform_set_drvdata(pdev, hdmi);
2508

2509
	return hdmi;
2510 2511

err_iahb:
2512 2513 2514 2515 2516
	if (hdmi->i2c) {
		i2c_del_adapter(&hdmi->i2c->adap);
		hdmi->ddc = NULL;
	}

2517 2518 2519
	if (hdmi->cec_notifier)
		cec_notifier_put(hdmi->cec_notifier);

2520 2521 2522
	clk_disable_unprepare(hdmi->iahb_clk);
err_isfr:
	clk_disable_unprepare(hdmi->isfr_clk);
2523 2524
err_res:
	i2c_put_adapter(hdmi->ddc);
2525

2526
	return ERR_PTR(ret);
2527 2528
}

2529
static void __dw_hdmi_remove(struct dw_hdmi *hdmi)
2530
{
2531 2532
	if (hdmi->audio && !IS_ERR(hdmi->audio))
		platform_device_unregister(hdmi->audio);
2533 2534
	if (!IS_ERR(hdmi->cec))
		platform_device_unregister(hdmi->cec);
2535

2536 2537 2538
	/* Disable all interrupts */
	hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);

2539 2540 2541
	if (hdmi->cec_notifier)
		cec_notifier_put(hdmi->cec_notifier);

2542 2543
	clk_disable_unprepare(hdmi->iahb_clk);
	clk_disable_unprepare(hdmi->isfr_clk);
2544 2545 2546 2547 2548

	if (hdmi->i2c)
		i2c_del_adapter(&hdmi->i2c->adap);
	else
		i2c_put_adapter(hdmi->ddc);
2549
}
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562

/* -----------------------------------------------------------------------------
 * Probe/remove API, used from platforms based on the DRM bridge API.
 */
int dw_hdmi_probe(struct platform_device *pdev,
		  const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

2563
	drm_bridge_add(&hdmi->bridge);
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_probe);

void dw_hdmi_remove(struct platform_device *pdev)
{
	struct dw_hdmi *hdmi = platform_get_drvdata(pdev);

	drm_bridge_remove(&hdmi->bridge);

	__dw_hdmi_remove(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_remove);

/* -----------------------------------------------------------------------------
 * Bind/unbind API, used from platforms based on the component framework.
 */
int dw_hdmi_bind(struct platform_device *pdev, struct drm_encoder *encoder,
		 const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;
	int ret;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

	ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL);
	if (ret) {
		dw_hdmi_remove(pdev);
		DRM_ERROR("Failed to initialize bridge with drm\n");
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_bind);

void dw_hdmi_unbind(struct device *dev)
{
	struct dw_hdmi *hdmi = dev_get_drvdata(dev);

	__dw_hdmi_remove(hdmi);
}
2609
EXPORT_SYMBOL_GPL(dw_hdmi_unbind);
2610 2611

MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
2612 2613
MODULE_AUTHOR("Andy Yan <andy.yan@rock-chips.com>");
MODULE_AUTHOR("Yakir Yang <ykk@rock-chips.com>");
2614
MODULE_AUTHOR("Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com>");
2615
MODULE_DESCRIPTION("DW HDMI transmitter driver");
2616
MODULE_LICENSE("GPL");
2617
MODULE_ALIAS("platform:dw-hdmi");