dw-hdmi.c 66.5 KB
Newer Older
1
/*
2 3 4
 * DesignWare High-Definition Multimedia Interface (HDMI) driver
 *
 * Copyright (C) 2013-2015 Mentor Graphics Inc.
5
 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc.
6
 * Copyright (C) 2010, Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7 8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */
14
#include <linux/module.h>
15 16 17 18
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
S
Sachin Kamat 已提交
19
#include <linux/hdmi.h>
20
#include <linux/mutex.h>
21
#include <linux/of_device.h>
22
#include <linux/regmap.h>
23
#include <linux/spinlock.h>
24

25
#include <drm/drm_of.h>
26
#include <drm/drmP.h>
27
#include <drm/drm_atomic_helper.h>
28 29 30
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_encoder_slave.h>
31
#include <drm/bridge/dw_hdmi.h>
32

33 34 35
#include <uapi/linux/media-bus-format.h>
#include <uapi/linux/videodev2.h>

36 37
#include "dw-hdmi.h"
#include "dw-hdmi-audio.h"
38

39
#define DDC_SEGMENT_ADDR	0x30
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#define HDMI_EDID_LEN		512

enum hdmi_datamap {
	RGB444_8B = 0x01,
	RGB444_10B = 0x03,
	RGB444_12B = 0x05,
	RGB444_16B = 0x07,
	YCbCr444_8B = 0x09,
	YCbCr444_10B = 0x0B,
	YCbCr444_12B = 0x0D,
	YCbCr444_16B = 0x0F,
	YCbCr422_8B = 0x16,
	YCbCr422_10B = 0x14,
	YCbCr422_12B = 0x12,
};

static const u16 csc_coeff_default[3][4] = {
	{ 0x2000, 0x0000, 0x0000, 0x0000 },
	{ 0x0000, 0x2000, 0x0000, 0x0000 },
	{ 0x0000, 0x0000, 0x2000, 0x0000 }
};

static const u16 csc_coeff_rgb_out_eitu601[3][4] = {
	{ 0x2000, 0x6926, 0x74fd, 0x010e },
	{ 0x2000, 0x2cdd, 0x0000, 0x7e9a },
	{ 0x2000, 0x0000, 0x38b4, 0x7e3b }
};

static const u16 csc_coeff_rgb_out_eitu709[3][4] = {
	{ 0x2000, 0x7106, 0x7a02, 0x00a7 },
	{ 0x2000, 0x3264, 0x0000, 0x7e6d },
	{ 0x2000, 0x0000, 0x3b61, 0x7e25 }
};

static const u16 csc_coeff_rgb_in_eitu601[3][4] = {
	{ 0x2591, 0x1322, 0x074b, 0x0000 },
	{ 0x6535, 0x2000, 0x7acc, 0x0200 },
	{ 0x6acd, 0x7534, 0x2000, 0x0200 }
};

static const u16 csc_coeff_rgb_in_eitu709[3][4] = {
	{ 0x2dc5, 0x0d9b, 0x049e, 0x0000 },
	{ 0x62f0, 0x2000, 0x7d11, 0x0200 },
	{ 0x6756, 0x78ab, 0x2000, 0x0200 }
};

struct hdmi_vmode {
	bool mdataenablepolarity;

	unsigned int mpixelclock;
	unsigned int mpixelrepetitioninput;
	unsigned int mpixelrepetitionoutput;
};

struct hdmi_data_info {
95 96 97 98
	unsigned int enc_in_bus_format;
	unsigned int enc_out_bus_format;
	unsigned int enc_in_encoding;
	unsigned int enc_out_encoding;
99 100 101 102 103
	unsigned int pix_repet_factor;
	unsigned int hdcp_enable;
	struct hdmi_vmode video_mode;
};

104 105 106 107 108 109 110 111 112
struct dw_hdmi_i2c {
	struct i2c_adapter	adap;

	struct mutex		lock;	/* used to serialize data transfers */
	struct completion	cmp;
	u8			stat;

	u8			slave_reg;
	bool			is_regaddr;
113
	bool			is_segment;
114 115
};

116 117 118
struct dw_hdmi_phy_data {
	enum dw_hdmi_phy_type type;
	const char *name;
119
	unsigned int gen;
120
	bool has_svsret;
121 122 123
	int (*configure)(struct dw_hdmi *hdmi,
			 const struct dw_hdmi_plat_data *pdata,
			 unsigned long mpixelclock);
124 125
};

126
struct dw_hdmi {
127
	struct drm_connector connector;
128
	struct drm_bridge bridge;
129

130 131 132
	unsigned int version;

	struct platform_device *audio;
133 134 135
	struct device *dev;
	struct clk *isfr_clk;
	struct clk *iahb_clk;
136
	struct dw_hdmi_i2c *i2c;
137 138

	struct hdmi_data_info hdmi_data;
139 140
	const struct dw_hdmi_plat_data *plat_data;

141 142 143 144 145
	int vic;

	u8 edid[HDMI_EDID_LEN];
	bool cable_plugin;

146 147 148 149 150 151
	struct {
		const struct dw_hdmi_phy_ops *ops;
		const char *name;
		void *data;
		bool enabled;
	} phy;
152

153 154 155 156
	struct drm_display_mode previous_mode;

	struct i2c_adapter *ddc;
	void __iomem *regs;
157
	bool sink_is_hdmi;
158
	bool sink_has_audio;
159

160
	struct mutex mutex;		/* for state below and previous_mode */
161
	enum drm_connector_force force;	/* mutex-protected force state */
162
	bool disabled;			/* DRM has disabled our bridge */
163
	bool bridge_is_on;		/* indicates the bridge is on */
164 165
	bool rxsense;			/* rxsense state */
	u8 phy_mask;			/* desired phy int mask settings */
166

167
	spinlock_t audio_lock;
168
	struct mutex audio_mutex;
169
	unsigned int sample_rate;
170 171 172
	unsigned int audio_cts;
	unsigned int audio_n;
	bool audio_enable;
173

174 175
	unsigned int reg_shift;
	struct regmap *regm;
176 177
};

178 179 180 181 182 183 184 185
#define HDMI_IH_PHY_STAT0_RX_SENSE \
	(HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \
	 HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3)

#define HDMI_PHY_RX_SENSE \
	(HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \
	 HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3)

186 187
static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
188
	regmap_write(hdmi->regm, offset << hdmi->reg_shift, val);
189 190 191 192
}

static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
193 194 195 196 197
	unsigned int val = 0;

	regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val);

	return val;
198 199
}

200
static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg)
201
{
202
	regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data);
203 204
}

205
static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg,
206
			     u8 shift, u8 mask)
207
{
208
	hdmi_modb(hdmi, data << shift, mask, reg);
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi)
{
	/* Software reset */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ);

	/* Set Standard Mode speed (determined to be 100KHz on iMX6) */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV);

	/* Set done, not acknowledged and arbitration interrupt polarities */
	hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL,
		    HDMI_I2CM_CTLINT);

	/* Clear DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_I2CM_STAT0);

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);
}

static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi,
			    unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		dev_dbg(hdmi->dev, "set read register address to 0\n");
		i2c->slave_reg = 0x00;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
249 250 251 252 253 254
		if (i2c->is_segment)
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT,
				    HDMI_I2CM_OPERATION);
		else
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ,
				    HDMI_I2CM_OPERATION);
255 256 257 258 259 260 261 262 263 264 265

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;

		*buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI);
	}
266
	i2c->is_segment = false;
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

	return 0;
}

static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi,
			     unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		/* Use the first write byte as register address */
		i2c->slave_reg = buf[0];
		length--;
		buf++;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO);
		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
		hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE,
			    HDMI_I2CM_OPERATION);

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;
	}

	return 0;
}

static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap,
			    struct i2c_msg *msgs, int num)
{
	struct dw_hdmi *hdmi = i2c_get_adapdata(adap);
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	u8 addr = msgs[0].addr;
	int i, ret = 0;

	dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr);

	for (i = 0; i < num; i++) {
		if (msgs[i].len == 0) {
			dev_dbg(hdmi->dev,
				"unsupported transfer %d/%d, no data\n",
				i + 1, num);
			return -EOPNOTSUPP;
		}
	}

	mutex_lock(&i2c->lock);

	/* Unmute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0);

	/* Set slave device address taken from the first I2C message */
	hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE);

	/* Set slave device register address on transfer */
	i2c->is_regaddr = false;

335 336 337
	/* Set segment pointer for I2C extended read mode operation */
	i2c->is_segment = false;

338 339 340
	for (i = 0; i < num; i++) {
		dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n",
			i + 1, num, msgs[i].len, msgs[i].flags);
341 342 343 344 345 346 347 348 349 350 351 352
		if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) {
			i2c->is_segment = true;
			hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR);
			hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR);
		} else {
			if (msgs[i].flags & I2C_M_RD)
				ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf,
						       msgs[i].len);
			else
				ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf,
							msgs[i].len);
		}
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
		if (ret < 0)
			break;
	}

	if (!ret)
		ret = num;

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);

	mutex_unlock(&i2c->lock);

	return ret;
}

static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm dw_hdmi_algorithm = {
	.master_xfer	= dw_hdmi_i2c_xfer,
	.functionality	= dw_hdmi_i2c_func,
};

static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi)
{
	struct i2c_adapter *adap;
	struct dw_hdmi_i2c *i2c;
	int ret;

	i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
	if (!i2c)
		return ERR_PTR(-ENOMEM);

	mutex_init(&i2c->lock);
	init_completion(&i2c->cmp);

	adap = &i2c->adap;
	adap->class = I2C_CLASS_DDC;
	adap->owner = THIS_MODULE;
	adap->dev.parent = hdmi->dev;
	adap->algo = &dw_hdmi_algorithm;
	strlcpy(adap->name, "DesignWare HDMI", sizeof(adap->name));
	i2c_set_adapdata(adap, hdmi);

	ret = i2c_add_adapter(adap);
	if (ret) {
		dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
		devm_kfree(hdmi->dev, i2c);
		return ERR_PTR(ret);
	}

	hdmi->i2c = i2c;

	dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name);

	return adap;
}

414 415
static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts,
			   unsigned int n)
416
{
417 418
	/* Must be set/cleared first */
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
419 420

	/* nshift factor = 0 */
421
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3);
422 423 424

	hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) |
		    HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
425 426 427 428 429 430
	hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2);
	hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1);

	hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3);
	hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2);
	hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1);
431 432
}

433
static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk)
434 435
{
	unsigned int n = (128 * freq) / 1000;
436 437 438 439 440 441
	unsigned int mult = 1;

	while (freq > 48000) {
		mult *= 2;
		freq /= 2;
	}
442 443 444

	switch (freq) {
	case 32000:
445
		if (pixel_clk == 25175000)
446
			n = 4576;
447
		else if (pixel_clk == 27027000)
448
			n = 4096;
449
		else if (pixel_clk == 74176000 || pixel_clk == 148352000)
450 451 452
			n = 11648;
		else
			n = 4096;
453
		n *= mult;
454 455 456
		break;

	case 44100:
457
		if (pixel_clk == 25175000)
458
			n = 7007;
459
		else if (pixel_clk == 74176000)
460
			n = 17836;
461
		else if (pixel_clk == 148352000)
462
			n = 8918;
463 464
		else
			n = 6272;
465
		n *= mult;
466 467 468
		break;

	case 48000:
469
		if (pixel_clk == 25175000)
470
			n = 6864;
471
		else if (pixel_clk == 27027000)
472
			n = 6144;
473
		else if (pixel_clk == 74176000)
474
			n = 11648;
475
		else if (pixel_clk == 148352000)
476
			n = 5824;
477 478
		else
			n = 6144;
479
		n *= mult;
480 481 482 483 484 485 486 487 488
		break;

	default:
		break;
	}

	return n;
}

489
static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi,
490
	unsigned long pixel_clk, unsigned int sample_rate)
491
{
492
	unsigned long ftdms = pixel_clk;
493
	unsigned int n, cts;
494
	u64 tmp;
495

496
	n = hdmi_compute_n(sample_rate, pixel_clk);
497

498 499 500 501 502 503 504 505 506 507 508 509 510 511
	/*
	 * Compute the CTS value from the N value.  Note that CTS and N
	 * can be up to 20 bits in total, so we need 64-bit math.  Also
	 * note that our TDMS clock is not fully accurate; it is accurate
	 * to kHz.  This can introduce an unnecessary remainder in the
	 * calculation below, so we don't try to warn about that.
	 */
	tmp = (u64)ftdms * n;
	do_div(tmp, 128 * sample_rate);
	cts = tmp;

	dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n",
		__func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000,
		n, cts);
512

513 514 515 516 517
	spin_lock_irq(&hdmi->audio_lock);
	hdmi->audio_n = n;
	hdmi->audio_cts = cts;
	hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0);
	spin_unlock_irq(&hdmi->audio_lock);
518 519
}

520
static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi)
521
{
522
	mutex_lock(&hdmi->audio_mutex);
523
	hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate);
524
	mutex_unlock(&hdmi->audio_mutex);
525 526
}

527
static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi)
528
{
529
	mutex_lock(&hdmi->audio_mutex);
530
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
531
				 hdmi->sample_rate);
532
	mutex_unlock(&hdmi->audio_mutex);
533 534
}

535 536 537 538 539
void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate)
{
	mutex_lock(&hdmi->audio_mutex);
	hdmi->sample_rate = rate;
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
540
				 hdmi->sample_rate);
541 542 543 544
	mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate);

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
void dw_hdmi_audio_enable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = true;
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable);

void dw_hdmi_audio_disable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = false;
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable);

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_RGB161616_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_YUV16_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYVY12_1X24:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv420(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		return true;

	default:
		return false;
	}
}

static int hdmi_bus_fmt_color_depth(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		return 8;

	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		return 10;

	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYVY12_1X24:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		return 12;

	case MEDIA_BUS_FMT_RGB161616_1X48:
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		return 16;

	default:
		return 0;
	}
}

653 654 655 656 657 658 659
/*
 * this submodule is responsible for the video data synchronization.
 * for example, for RGB 4:4:4 input, the data map is defined as
 *			pin{47~40} <==> R[7:0]
 *			pin{31~24} <==> G[7:0]
 *			pin{15~8}  <==> B[7:0]
 */
660
static void hdmi_video_sample(struct dw_hdmi *hdmi)
661 662 663 664
{
	int color_format = 0;
	u8 val;

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	switch (hdmi->hdmi_data.enc_in_bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
		color_format = 0x01;
		break;
	case MEDIA_BUS_FMT_RGB101010_1X30:
		color_format = 0x03;
		break;
	case MEDIA_BUS_FMT_RGB121212_1X36:
		color_format = 0x05;
		break;
	case MEDIA_BUS_FMT_RGB161616_1X48:
		color_format = 0x07;
		break;

	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		color_format = 0x09;
		break;
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		color_format = 0x0B;
		break;
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		color_format = 0x0D;
		break;
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		color_format = 0x0F;
		break;

	case MEDIA_BUS_FMT_UYVY8_1X16:
		color_format = 0x16;
		break;
	case MEDIA_BUS_FMT_UYVY10_1X20:
		color_format = 0x14;
		break;
	case MEDIA_BUS_FMT_UYVY12_1X24:
		color_format = 0x12;
		break;

	default:
		return;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	}

	val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
		((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
		HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
	hdmi_writeb(hdmi, val, HDMI_TX_INVID0);

	/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
	val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
	hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1);
}

728
static int is_color_space_conversion(struct dw_hdmi *hdmi)
729
{
730
	return hdmi->hdmi_data.enc_in_bus_format != hdmi->hdmi_data.enc_out_bus_format;
731 732
}

733
static int is_color_space_decimation(struct dw_hdmi *hdmi)
734
{
735
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
736
		return 0;
737 738 739

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format))
740
		return 1;
741

742
	return 0;
743 744
}

745
static int is_color_space_interpolation(struct dw_hdmi *hdmi)
746
{
747
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format))
748
		return 0;
749 750 751

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
752
		return 1;
753

754
	return 0;
755 756
}

757
static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi)
758 759
{
	const u16 (*csc_coeff)[3][4] = &csc_coeff_default;
760
	unsigned i;
761 762 763
	u32 csc_scale = 1;

	if (is_color_space_conversion(hdmi)) {
764 765 766
		if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
767 768 769
				csc_coeff = &csc_coeff_rgb_out_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_out_eitu709;
770 771 772 773
		} else if (hdmi_bus_fmt_is_rgb(
					hdmi->hdmi_data.enc_in_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
774 775 776 777 778 779 780
				csc_coeff = &csc_coeff_rgb_in_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_in_eitu709;
			csc_scale = 0;
		}
	}

781 782 783 784 785 786
	/* The CSC registers are sequential, alternating MSB then LSB */
	for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) {
		u16 coeff_a = (*csc_coeff)[0][i];
		u16 coeff_b = (*csc_coeff)[1][i];
		u16 coeff_c = (*csc_coeff)[2][i];

787
		hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2);
788 789 790
		hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2);
		hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2);
		hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2);
791
		hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2);
792 793
		hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2);
	}
794

795 796
	hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
		  HDMI_CSC_SCALE);
797 798
}

799
static void hdmi_video_csc(struct dw_hdmi *hdmi)
800 801 802 803 804 805 806 807 808 809 810
{
	int color_depth = 0;
	int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
	int decimation = 0;

	/* YCC422 interpolation to 444 mode */
	if (is_color_space_interpolation(hdmi))
		interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1;
	else if (is_color_space_decimation(hdmi))
		decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3;

811 812
	switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) {
	case 8:
813
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
814 815
		break;
	case 10:
816
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP;
817 818
		break;
	case 12:
819
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP;
820 821
		break;
	case 16:
822
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP;
823 824 825
		break;

	default:
826
		return;
827
	}
828 829 830

	/* Configure the CSC registers */
	hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG);
831 832
	hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK,
		  HDMI_CSC_SCALE);
833

834
	dw_hdmi_update_csc_coeffs(hdmi);
835 836 837 838 839 840 841
}

/*
 * HDMI video packetizer is used to packetize the data.
 * for example, if input is YCC422 mode or repeater is used,
 * data should be repacked this module can be bypassed.
 */
842
static void hdmi_video_packetize(struct dw_hdmi *hdmi)
843 844 845 846 847
{
	unsigned int color_depth = 0;
	unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit;
	unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
	struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
848
	u8 val, vp_conf;
849

850 851 852 853 854
	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) {
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 8:
855 856
			color_depth = 4;
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
857 858
			break;
		case 10:
859
			color_depth = 5;
860 861
			break;
		case 12:
862
			color_depth = 6;
863 864
			break;
		case 16:
865
			color_depth = 7;
866 867 868
			break;
		default:
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
869
		}
870 871 872 873 874
	} else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 0:
		case 8:
875
			remap_size = HDMI_VP_REMAP_YCC422_16bit;
876 877
			break;
		case 10:
878
			remap_size = HDMI_VP_REMAP_YCC422_20bit;
879 880
			break;
		case 12:
881
			remap_size = HDMI_VP_REMAP_YCC422_24bit;
882 883 884
			break;

		default:
885
			return;
886
		}
887
		output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422;
888
	} else {
889
		return;
890
	}
891 892 893 894 895 896 897 898 899

	/* set the packetizer registers */
	val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
		HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
		((hdmi_data->pix_repet_factor <<
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_VP_PR_CD);

900 901
	hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF);
902 903 904

	/* Data from pixel repeater block */
	if (hdmi_data->pix_repet_factor > 1) {
905 906
		vp_conf = HDMI_VP_CONF_PR_EN_ENABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER;
907
	} else { /* data from packetizer block */
908 909
		vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
910 911
	}

912 913 914 915
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_PR_EN_MASK |
		  HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF);

916 917
	hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET,
		  HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF);
918 919 920 921

	hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP);

	if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
922 923 924
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_ENABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
925
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
926 927 928
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_ENABLE;
929
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
930 931 932
		vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
933 934 935 936
	} else {
		return;
	}

937 938 939 940
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK |
		  HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF);

941 942 943 944
	hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
			HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PP_STUFFING_MASK |
		  HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF);
945

946 947
	hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
		  HDMI_VP_CONF);
948 949
}

950 951 952 953
/* -----------------------------------------------------------------------------
 * Synopsys PHY Handling
 */

954
static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi,
955
				       unsigned char bit)
956
{
957 958
	hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET,
		  HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0);
959 960
}

961
static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec)
962
{
963 964 965
	u32 val;

	while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) {
966 967
		if (msec-- == 0)
			return false;
968
		udelay(1000);
969
	}
970 971
	hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0);

972 973 974
	return true;
}

975 976
void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data,
			   unsigned char addr)
977 978 979 980
{
	hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR);
	hdmi_writeb(hdmi, (unsigned char)(data >> 8),
981
		    HDMI_PHY_I2CM_DATAO_1_ADDR);
982
	hdmi_writeb(hdmi, (unsigned char)(data >> 0),
983
		    HDMI_PHY_I2CM_DATAO_0_ADDR);
984
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE,
985
		    HDMI_PHY_I2CM_OPERATION_ADDR);
986 987
	hdmi_phy_wait_i2c_done(hdmi, 1000);
}
988
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write);
989

990
static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable)
991
{
992
	hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0,
993 994 995 996
			 HDMI_PHY_CONF0_PDZ_OFFSET,
			 HDMI_PHY_CONF0_PDZ_MASK);
}

997
static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable)
998 999 1000 1001 1002 1003
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_ENTMDS_OFFSET,
			 HDMI_PHY_CONF0_ENTMDS_MASK);
}

1004
static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable)
1005 1006
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
1007 1008
			 HDMI_PHY_CONF0_SVSRET_OFFSET,
			 HDMI_PHY_CONF0_SVSRET_MASK);
1009 1010
}

1011
static void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable)
1012 1013 1014 1015 1016 1017
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET,
			 HDMI_PHY_CONF0_GEN2_PDDQ_MASK);
}

1018
static void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable)
1019 1020 1021 1022 1023 1024
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_MASK);
}

1025
static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable)
1026 1027 1028 1029 1030 1031
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDATAENPOL_OFFSET,
			 HDMI_PHY_CONF0_SELDATAENPOL_MASK);
}

1032
static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable)
1033 1034 1035 1036 1037 1038
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDIPIF_OFFSET,
			 HDMI_PHY_CONF0_SELDIPIF_MASK);
}

1039 1040
static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi)
{
1041
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	unsigned int i;
	u16 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_powerdown(hdmi, true);
		return;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 0);

	/*
	 * Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went
	 * to low power mode.
	 */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0);
		if (!(val & HDMI_PHY_TX_PHY_LOCK))
			break;

		usleep_range(1000, 2000);
	}

	if (val & HDMI_PHY_TX_PHY_LOCK)
		dev_warn(hdmi->dev, "PHY failed to power down\n");
	else
		dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i);

	dw_hdmi_phy_gen2_pddq(hdmi, 1);
}

1073 1074
static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi)
{
1075
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	unsigned int i;
	u8 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_powerdown(hdmi, false);

		/* Toggle TMDS enable. */
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_tmds(hdmi, 1);
		return 0;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 1);
	dw_hdmi_phy_gen2_pddq(hdmi, 0);

	/* Wait for PHY PLL lock */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
		if (val)
			break;

		usleep_range(1000, 2000);
	}

	if (!val) {
		dev_err(hdmi->dev, "PHY PLL failed to lock\n");
		return -ETIMEDOUT;
	}

	dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i);
	return 0;
}

1109 1110 1111 1112 1113 1114 1115 1116
/*
 * PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available
 * information the DWC MHL PHY has the same register layout and is thus also
 * supported by this function.
 */
static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi,
		const struct dw_hdmi_plat_data *pdata,
		unsigned long mpixelclock)
1117
{
1118 1119 1120
	const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg;
	const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr;
	const struct dw_hdmi_phy_config *phy_config = pdata->phy_config;
1121

1122 1123
	/* PLL/MPLL Cfg - always match on final entry */
	for (; mpll_config->mpixelclock != ~0UL; mpll_config++)
1124
		if (mpixelclock <= mpll_config->mpixelclock)
1125 1126 1127
			break;

	for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++)
1128
		if (mpixelclock <= curr_ctrl->mpixelclock)
1129 1130 1131
			break;

	for (; phy_config->mpixelclock != ~0UL; phy_config++)
1132
		if (mpixelclock <= phy_config->mpixelclock)
1133 1134 1135 1136
			break;

	if (mpll_config->mpixelclock == ~0UL ||
	    curr_ctrl->mpixelclock == ~0UL ||
1137
	    phy_config->mpixelclock == ~0UL)
1138
		return -EINVAL;
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce,
			      HDMI_3D_TX_PHY_CPCE_CTRL);
	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp,
			      HDMI_3D_TX_PHY_GMPCTRL);
	dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0],
			      HDMI_3D_TX_PHY_CURRCTRL);

	dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL);
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK,
			      HDMI_3D_TX_PHY_MSM_CTRL);

	dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr,
			      HDMI_3D_TX_PHY_CKSYMTXCTRL);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr,
			      HDMI_3D_TX_PHY_VLEVCTRL);

	/* Override and disable clock termination. */
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE,
			      HDMI_3D_TX_PHY_CKCALCTRL);

	return 0;
}

static int hdmi_phy_configure(struct dw_hdmi *hdmi)
{
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
	const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
	unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock;
	int ret;
1170

1171
	dw_hdmi_phy_power_off(hdmi);
1172

1173
	/* Leave low power consumption mode by asserting SVSRET. */
1174
	if (phy->has_svsret)
1175 1176
		dw_hdmi_phy_enable_svsret(hdmi, 1);

1177 1178 1179
	/* PHY reset. The reset signal is active high on Gen2 PHYs. */
	hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
	hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
1180 1181 1182 1183 1184

	hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST);

	hdmi_phy_test_clear(hdmi, 1);
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2,
1185
		    HDMI_PHY_I2CM_SLAVE_ADDR);
1186 1187
	hdmi_phy_test_clear(hdmi, 0);

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	/* Write to the PHY as configured by the platform */
	if (pdata->configure_phy)
		ret = pdata->configure_phy(hdmi, pdata, mpixelclock);
	else
		ret = phy->configure(hdmi, pdata, mpixelclock);
	if (ret) {
		dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n",
			mpixelclock);
		return ret;
	}
1198

1199
	return dw_hdmi_phy_power_on(hdmi);
1200 1201
}

1202 1203
static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data,
			    struct drm_display_mode *mode)
1204 1205 1206 1207 1208
{
	int i, ret;

	/* HDMI Phy spec says to do the phy initialization sequence twice */
	for (i = 0; i < 2; i++) {
1209 1210
		dw_hdmi_phy_sel_data_en_pol(hdmi, 1);
		dw_hdmi_phy_sel_interface_control(hdmi, 0);
1211

1212
		ret = hdmi_phy_configure(hdmi);
1213 1214 1215 1216 1217 1218 1219
		if (ret)
			return ret;
	}

	return 0;
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data)
{
	dw_hdmi_phy_power_off(hdmi);
}

static enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi,
						      void *data)
{
	return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ?
		connector_status_connected : connector_status_disconnected;
}

static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = {
	.init = dw_hdmi_phy_init,
	.disable = dw_hdmi_phy_disable,
	.read_hpd = dw_hdmi_phy_read_hpd,
};

/* -----------------------------------------------------------------------------
 * HDMI TX Setup
 */

1242
static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi)
1243
{
1244
	u8 de;
1245 1246 1247 1248 1249 1250 1251

	if (hdmi->hdmi_data.video_mode.mdataenablepolarity)
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH;
	else
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW;

	/* disable rx detect */
1252 1253
	hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE,
		  HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0);
1254

1255
	hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG);
1256

1257 1258
	hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE,
		  HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1);
1259 1260
}

1261
static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1262
{
1263 1264
	struct hdmi_avi_infoframe frame;
	u8 val;
1265

1266 1267
	/* Initialise info frame from DRM mode */
	drm_hdmi_avi_infoframe_from_display_mode(&frame, mode);
1268

1269
	if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
1270
		frame.colorspace = HDMI_COLORSPACE_YUV444;
1271
	else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
1272
		frame.colorspace = HDMI_COLORSPACE_YUV422;
1273
	else
1274
		frame.colorspace = HDMI_COLORSPACE_RGB;
1275 1276

	/* Set up colorimetry */
1277 1278 1279 1280 1281 1282 1283
	switch (hdmi->hdmi_data.enc_out_encoding) {
	case V4L2_YCBCR_ENC_601:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
1284
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
1285 1286 1287 1288 1289 1290
	case V4L2_YCBCR_ENC_709:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_709;
		frame.extended_colorimetry =
1291
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_709;
1292 1293 1294 1295 1296 1297
		break;
	default: /* Carries no data */
		frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
		break;
1298 1299
	}

1300 1301 1302 1303 1304 1305 1306 1307 1308
	frame.scan_mode = HDMI_SCAN_MODE_NONE;

	/*
	 * The Designware IP uses a different byte format from standard
	 * AVI info frames, though generally the bits are in the correct
	 * bytes.
	 */

	/*
1309 1310 1311
	 * AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6,
	 * scan info in bits 4,5 rather than 0,1 and active aspect present in
	 * bit 6 rather than 4.
1312
	 */
1313
	val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	if (frame.active_aspect & 15)
		val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT;
	if (frame.top_bar || frame.bottom_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR;
	if (frame.left_bar || frame.right_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR;
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0);

	/* AVI data byte 2 differences: none */
	val = ((frame.colorimetry & 0x3) << 6) |
	      ((frame.picture_aspect & 0x3) << 4) |
	      (frame.active_aspect & 0xf);
1326 1327
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1);

1328 1329 1330 1331 1332 1333
	/* AVI data byte 3 differences: none */
	val = ((frame.extended_colorimetry & 0x7) << 4) |
	      ((frame.quantization_range & 0x3) << 2) |
	      (frame.nups & 0x3);
	if (frame.itc)
		val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID;
1334 1335
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2);

1336 1337 1338
	/* AVI data byte 4 differences: none */
	val = frame.video_code & 0x7f;
	hdmi_writeb(hdmi, val, HDMI_FC_AVIVID);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348

	/* AVI Data Byte 5- set up input and output pixel repetition */
	val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) <<
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) |
		((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput <<
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_FC_PRCONF);

1349 1350 1351 1352 1353 1354
	/*
	 * AVI data byte 5 differences: content type in 0,1 rather than 4,5,
	 * ycc range in bits 2,3 rather than 6,7
	 */
	val = ((frame.ycc_quantization_range & 0x3) << 2) |
	      (frame.content_type & 0x3);
1355 1356 1357
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3);

	/* AVI Data Bytes 6-13 */
1358 1359 1360 1361 1362 1363 1364 1365
	hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0);
	hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1);
	hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0);
	hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1);
	hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0);
	hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1);
	hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0);
	hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1);
1366 1367
}

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi,
						 struct drm_display_mode *mode)
{
	struct hdmi_vendor_infoframe frame;
	u8 buffer[10];
	ssize_t err;

	err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, mode);
	if (err < 0)
		/*
		 * Going into that statement does not means vendor infoframe
		 * fails. It just informed us that vendor infoframe is not
		 * needed for the selected mode. Only 4k or stereoscopic 3D
		 * mode requires vendor infoframe. So just simply return.
		 */
		return;

	err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer));
	if (err < 0) {
		dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n",
			err);
		return;
	}
	hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);

	/* Set the length of HDMI vendor specific InfoFrame payload */
	hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE);

	/* Set 24bit IEEE Registration Identifier */
	hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0);
	hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1);
	hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2);

	/* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */
	hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0);
	hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1);

	if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
		hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2);

	/* Packet frame interpolation */
	hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1);

	/* Auto packets per frame and line spacing */
	hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2);

	/* Configures the Frame Composer On RDRB mode */
	hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);
}

1420
static void hdmi_av_composer(struct dw_hdmi *hdmi,
1421 1422 1423 1424 1425
			     const struct drm_display_mode *mode)
{
	u8 inv_val;
	struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode;
	int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len;
1426
	unsigned int vdisplay;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	vmode->mpixelclock = mode->clock * 1000;

	dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock);

	/* Set up HDMI_FC_INVIDCONF */
	inv_val = (hdmi->hdmi_data.hdcp_enable ?
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE :
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE);

1437
	inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
1438
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
1439
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW;
1440

1441
	inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
1442
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
1443
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW;
1444 1445 1446 1447 1448 1449 1450 1451

	inv_val |= (vmode->mdataenablepolarity ?
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);

	if (hdmi->vic == 39)
		inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH;
	else
1452
		inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1453
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
1454
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
1455

1456
	inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1457
		HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
1458
		HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
1459

1460 1461 1462
	inv_val |= hdmi->sink_is_hdmi ?
		HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
		HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE;
1463 1464 1465

	hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF);

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	vdisplay = mode->vdisplay;
	vblank = mode->vtotal - mode->vdisplay;
	v_de_vs = mode->vsync_start - mode->vdisplay;
	vsync_len = mode->vsync_end - mode->vsync_start;

	/*
	 * When we're setting an interlaced mode, we need
	 * to adjust the vertical timing to suit.
	 */
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vdisplay /= 2;
		vblank /= 2;
		v_de_vs /= 2;
		vsync_len /= 2;
	}

1482 1483 1484 1485 1486
	/* Set up horizontal active pixel width */
	hdmi_writeb(hdmi, mode->hdisplay >> 8, HDMI_FC_INHACTV1);
	hdmi_writeb(hdmi, mode->hdisplay, HDMI_FC_INHACTV0);

	/* Set up vertical active lines */
1487 1488
	hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1);
	hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	/* Set up horizontal blanking pixel region width */
	hblank = mode->htotal - mode->hdisplay;
	hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1);
	hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0);

	/* Set up vertical blanking pixel region width */
	hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK);

	/* Set up HSYNC active edge delay width (in pixel clks) */
	h_de_hs = mode->hsync_start - mode->hdisplay;
	hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1);
	hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY);

	/* Set up HSYNC active pulse width (in pixel clks) */
	hsync_len = mode->hsync_end - mode->hsync_start;
	hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1);
	hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH);
}

/* HDMI Initialization Step B.4 */
1516
static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi)
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
{
	u8 clkdis;

	/* control period minimum duration */
	hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR);
	hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR);
	hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC);

	/* Set to fill TMDS data channels */
	hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM);
	hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM);
	hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM);

	/* Enable pixel clock and tmds data path */
	clkdis = 0x7F;
	clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
	hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);

	clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
	hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);

	/* Enable csc path */
	if (is_color_space_conversion(hdmi)) {
		clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE;
		hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);
	}
1543

1544 1545
	/* Enable color space conversion if needed */
	if (is_color_space_conversion(hdmi))
1546 1547 1548 1549 1550
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH,
			    HDMI_MC_FLOWCTRL);
	else
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS,
			    HDMI_MC_FLOWCTRL);
1551 1552
}

1553
static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi)
1554
{
1555
	hdmi_modb(hdmi, 0, HDMI_MC_CLKDIS_AUDCLK_DISABLE, HDMI_MC_CLKDIS);
1556 1557 1558
}

/* Workaround to clear the overflow condition */
1559
static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi)
1560
{
1561 1562
	unsigned int count;
	unsigned int i;
1563 1564
	u8 val;

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	/*
	 * Under some circumstances the Frame Composer arithmetic unit can miss
	 * an FC register write due to being busy processing the previous one.
	 * The issue can be worked around by issuing a TMDS software reset and
	 * then write one of the FC registers several times.
	 *
	 * The number of iterations matters and depends on the HDMI TX revision
	 * (and possibly on the platform). So far only i.MX6Q (v1.30a) and
	 * i.MX6DL (v1.31a) have been identified as needing the workaround, with
	 * 4 and 1 iterations respectively.
	 */
1576

1577 1578 1579 1580 1581 1582 1583 1584
	switch (hdmi->version) {
	case 0x130a:
		count = 4;
		break;
	case 0x131a:
		count = 1;
		break;
	default:
1585 1586 1587
		return;
	}

1588 1589 1590 1591 1592
	/* TMDS software reset */
	hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ);

	val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF);
	for (i = 0; i < count; i++)
1593 1594 1595
		hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF);
}

1596
static void hdmi_enable_overflow_interrupts(struct dw_hdmi *hdmi)
1597 1598 1599 1600 1601
{
	hdmi_writeb(hdmi, 0, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0, HDMI_IH_MUTE_FC_STAT2);
}

1602
static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi)
1603 1604 1605 1606 1607
{
	hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK,
		    HDMI_IH_MUTE_FC_STAT2);
}

1608
static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
{
	int ret;

	hdmi_disable_overflow_interrupts(hdmi);

	hdmi->vic = drm_match_cea_mode(mode);

	if (!hdmi->vic) {
		dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n");
	} else {
		dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic);
	}

	if ((hdmi->vic == 6) || (hdmi->vic == 7) ||
1623 1624 1625
	    (hdmi->vic == 21) || (hdmi->vic == 22) ||
	    (hdmi->vic == 2) || (hdmi->vic == 3) ||
	    (hdmi->vic == 17) || (hdmi->vic == 18))
1626
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601;
1627
	else
1628
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709;
1629

1630
	hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0;
1631 1632
	hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0;

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	/* TOFIX: Get input format from plat data or fallback to RGB888 */
	if (hdmi->plat_data->input_bus_format >= 0)
		hdmi->hdmi_data.enc_in_bus_format =
			hdmi->plat_data->input_bus_format;
	else
		hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_RGB888_1X24;

	/* TOFIX: Get input encoding from plat data or fallback to none */
	if (hdmi->plat_data->input_bus_encoding >= 0)
		hdmi->hdmi_data.enc_in_encoding =
			hdmi->plat_data->input_bus_encoding;
	else
		hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT;
1646

1647 1648
	/* TOFIX: Default to RGB888 output format */
	hdmi->hdmi_data.enc_out_bus_format = MEDIA_BUS_FMT_RGB888_1X24;
1649 1650 1651 1652 1653 1654 1655 1656 1657

	hdmi->hdmi_data.pix_repet_factor = 0;
	hdmi->hdmi_data.hdcp_enable = 0;
	hdmi->hdmi_data.video_mode.mdataenablepolarity = true;

	/* HDMI Initialization Step B.1 */
	hdmi_av_composer(hdmi, mode);

	/* HDMI Initializateion Step B.2 */
1658
	ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data, &hdmi->previous_mode);
1659 1660
	if (ret)
		return ret;
1661
	hdmi->phy.enabled = true;
1662 1663

	/* HDMI Initialization Step B.3 */
1664
	dw_hdmi_enable_video_path(hdmi);
1665

1666 1667
	if (hdmi->sink_has_audio) {
		dev_dbg(hdmi->dev, "sink has audio support\n");
1668 1669 1670 1671

		/* HDMI Initialization Step E - Configure audio */
		hdmi_clk_regenerator_update_pixel_clock(hdmi);
		hdmi_enable_audio_clk(hdmi);
1672 1673 1674 1675 1676
	}

	/* not for DVI mode */
	if (hdmi->sink_is_hdmi) {
		dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__);
1677 1678

		/* HDMI Initialization Step F - Configure AVI InfoFrame */
1679
		hdmi_config_AVI(hdmi, mode);
1680
		hdmi_config_vendor_specific_infoframe(hdmi, mode);
1681 1682
	} else {
		dev_dbg(hdmi->dev, "%s DVI mode\n", __func__);
1683 1684 1685 1686 1687 1688 1689
	}

	hdmi_video_packetize(hdmi);
	hdmi_video_csc(hdmi);
	hdmi_video_sample(hdmi);
	hdmi_tx_hdcp_config(hdmi);

1690
	dw_hdmi_clear_overflow(hdmi);
1691
	if (hdmi->cable_plugin && hdmi->sink_is_hdmi)
1692 1693 1694 1695 1696
		hdmi_enable_overflow_interrupts(hdmi);

	return 0;
}

1697
static void dw_hdmi_setup_i2c(struct dw_hdmi *hdmi)
1698 1699 1700 1701 1702 1703 1704 1705 1706
{
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL,
		    HDMI_PHY_I2CM_INT_ADDR);

	hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
		    HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL,
		    HDMI_PHY_I2CM_CTLINT_ADDR);
}

1707
static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi)
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
{
	u8 ih_mute;

	/*
	 * Boot up defaults are:
	 * HDMI_IH_MUTE   = 0x03 (disabled)
	 * HDMI_IH_MUTE_* = 0x00 (enabled)
	 *
	 * Disable top level interrupt bits in HDMI block
	 */
	ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) |
		  HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		  HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;

	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);

	/* by default mask all interrupts */
	hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK);
	hdmi_writeb(hdmi, 0xff, HDMI_CEC_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT);

	/* Disable interrupts in the IH_MUTE_* registers */
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0);

	/* Enable top level interrupt bits in HDMI block */
	ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		    HDMI_IH_MUTE_MUTE_ALL_INTERRUPT);
	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
}

1759
static void dw_hdmi_poweron(struct dw_hdmi *hdmi)
1760
{
1761
	hdmi->bridge_is_on = true;
1762
	dw_hdmi_setup(hdmi, &hdmi->previous_mode);
1763 1764
}

1765
static void dw_hdmi_poweroff(struct dw_hdmi *hdmi)
1766
{
1767 1768 1769 1770 1771
	if (hdmi->phy.enabled) {
		hdmi->phy.ops->disable(hdmi, hdmi->phy.data);
		hdmi->phy.enabled = false;
	}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	hdmi->bridge_is_on = false;
}

static void dw_hdmi_update_power(struct dw_hdmi *hdmi)
{
	int force = hdmi->force;

	if (hdmi->disabled) {
		force = DRM_FORCE_OFF;
	} else if (force == DRM_FORCE_UNSPECIFIED) {
1782
		if (hdmi->rxsense)
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
			force = DRM_FORCE_ON;
		else
			force = DRM_FORCE_OFF;
	}

	if (force == DRM_FORCE_OFF) {
		if (hdmi->bridge_is_on)
			dw_hdmi_poweroff(hdmi);
	} else {
		if (!hdmi->bridge_is_on)
			dw_hdmi_poweron(hdmi);
	}
1795 1796
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
/*
 * Adjust the detection of RXSENSE according to whether we have a forced
 * connection mode enabled, or whether we have been disabled.  There is
 * no point processing RXSENSE interrupts if we have a forced connection
 * state, or DRM has us disabled.
 *
 * We also disable rxsense interrupts when we think we're disconnected
 * to avoid floating TDMS signals giving false rxsense interrupts.
 *
 * Note: we still need to listen for HPD interrupts even when DRM has us
 * disabled so that we can detect a connect event.
 */
static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi)
{
	u8 old_mask = hdmi->phy_mask;

	if (hdmi->force || hdmi->disabled || !hdmi->rxsense)
		hdmi->phy_mask |= HDMI_PHY_RX_SENSE;
	else
		hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE;

	if (old_mask != hdmi->phy_mask)
		hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi)
{
	/*
	 * Configure the PHY RX SENSE and HPD interrupts polarities and clear
	 * any pending interrupt.
	 */
	hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0);
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);

	/* Enable cable hot plug irq. */
	hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);

	/* Clear and unmute interrupts. */
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
}

1842 1843
static enum drm_connector_status
dw_hdmi_connector_detect(struct drm_connector *connector, bool force)
1844
{
1845
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1846
					     connector);
1847

1848 1849 1850
	mutex_lock(&hdmi->mutex);
	hdmi->force = DRM_FORCE_UNSPECIFIED;
	dw_hdmi_update_power(hdmi);
1851
	dw_hdmi_update_phy_mask(hdmi);
1852 1853
	mutex_unlock(&hdmi->mutex);

1854
	return hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data);
1855 1856
}

1857
static int dw_hdmi_connector_get_modes(struct drm_connector *connector)
1858
{
1859
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1860 1861
					     connector);
	struct edid *edid;
1862
	int ret = 0;
1863 1864 1865 1866 1867 1868 1869 1870 1871

	if (!hdmi->ddc)
		return 0;

	edid = drm_get_edid(connector, hdmi->ddc);
	if (edid) {
		dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n",
			edid->width_cm, edid->height_cm);

1872
		hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid);
1873
		hdmi->sink_has_audio = drm_detect_monitor_audio(edid);
1874 1875
		drm_mode_connector_update_edid_property(connector, edid);
		ret = drm_add_edid_modes(connector, edid);
1876 1877
		/* Store the ELD */
		drm_edid_to_eld(connector, edid);
1878 1879 1880 1881 1882
		kfree(edid);
	} else {
		dev_dbg(hdmi->dev, "failed to get edid\n");
	}

1883
	return ret;
1884 1885
}

1886 1887 1888 1889 1890 1891 1892 1893
static enum drm_mode_status
dw_hdmi_connector_mode_valid(struct drm_connector *connector,
			     struct drm_display_mode *mode)
{
	struct dw_hdmi *hdmi = container_of(connector,
					   struct dw_hdmi, connector);
	enum drm_mode_status mode_status = MODE_OK;

1894 1895 1896 1897
	/* We don't support double-clocked modes */
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_BAD;

1898 1899 1900 1901 1902 1903
	if (hdmi->plat_data->mode_valid)
		mode_status = hdmi->plat_data->mode_valid(connector, mode);

	return mode_status;
}

1904 1905 1906 1907 1908 1909 1910 1911
static void dw_hdmi_connector_force(struct drm_connector *connector)
{
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
					     connector);

	mutex_lock(&hdmi->mutex);
	hdmi->force = connector->force;
	dw_hdmi_update_power(hdmi);
1912
	dw_hdmi_update_phy_mask(hdmi);
1913 1914 1915
	mutex_unlock(&hdmi->mutex);
}

1916
static const struct drm_connector_funcs dw_hdmi_connector_funcs = {
1917 1918 1919
	.dpms = drm_atomic_helper_connector_dpms,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.detect = dw_hdmi_connector_detect,
1920
	.destroy = drm_connector_cleanup,
1921 1922 1923 1924 1925 1926
	.force = dw_hdmi_connector_force,
	.reset = drm_atomic_helper_connector_reset,
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};

1927
static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = {
1928
	.get_modes = dw_hdmi_connector_get_modes,
1929
	.mode_valid = dw_hdmi_connector_mode_valid,
1930
	.best_encoder = drm_atomic_helper_best_encoder,
1931 1932
};

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
static int dw_hdmi_bridge_attach(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;
	struct drm_encoder *encoder = bridge->encoder;
	struct drm_connector *connector = &hdmi->connector;

	connector->interlace_allowed = 1;
	connector->polled = DRM_CONNECTOR_POLL_HPD;

	drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs);

	drm_connector_init(bridge->dev, connector, &dw_hdmi_connector_funcs,
			   DRM_MODE_CONNECTOR_HDMIA);

	drm_mode_connector_attach_encoder(connector, encoder);

	return 0;
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge,
				    struct drm_display_mode *orig_mode,
				    struct drm_display_mode *mode)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);

	/* Store the display mode for plugin/DKMS poweron events */
	memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode));

	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_disable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = true;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_enable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = false;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

1988
static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = {
1989
	.attach = dw_hdmi_bridge_attach,
1990 1991 1992
	.enable = dw_hdmi_bridge_enable,
	.disable = dw_hdmi_bridge_disable,
	.mode_set = dw_hdmi_bridge_mode_set,
1993 1994
};

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	unsigned int stat;

	stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
	if (!stat)
		return IRQ_NONE;

	hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0);

	i2c->stat = stat;

	complete(&i2c->cmp);

	return IRQ_HANDLED;
}

2013
static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id)
2014
{
2015
	struct dw_hdmi *hdmi = dev_id;
2016
	u8 intr_stat;
2017 2018 2019 2020
	irqreturn_t ret = IRQ_NONE;

	if (hdmi->i2c)
		ret = dw_hdmi_i2c_irq(hdmi);
2021 2022

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
2023
	if (intr_stat) {
2024
		hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
2025 2026
		return IRQ_WAKE_THREAD;
	}
2027

2028
	return ret;
2029 2030
}

2031
static irqreturn_t dw_hdmi_irq(int irq, void *dev_id)
2032
{
2033
	struct dw_hdmi *hdmi = dev_id;
2034
	u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat;
2035 2036 2037

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
	phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0);

	phy_pol_mask = 0;
	if (intr_stat & HDMI_IH_PHY_STAT0_HPD)
		phy_pol_mask |= HDMI_PHY_HPD;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0)
		phy_pol_mask |= HDMI_PHY_RX_SENSE0;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1)
		phy_pol_mask |= HDMI_PHY_RX_SENSE1;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2)
		phy_pol_mask |= HDMI_PHY_RX_SENSE2;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3)
		phy_pol_mask |= HDMI_PHY_RX_SENSE3;

	if (phy_pol_mask)
		hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0);
2054

2055 2056 2057 2058 2059 2060 2061 2062 2063
	/*
	 * RX sense tells us whether the TDMS transmitters are detecting
	 * load - in other words, there's something listening on the
	 * other end of the link.  Use this to decide whether we should
	 * power on the phy as HPD may be toggled by the sink to merely
	 * ask the source to re-read the EDID.
	 */
	if (intr_stat &
	    (HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD)) {
2064
		mutex_lock(&hdmi->mutex);
2065
		if (!hdmi->force) {
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
			/*
			 * If the RX sense status indicates we're disconnected,
			 * clear the software rxsense status.
			 */
			if (!(phy_stat & HDMI_PHY_RX_SENSE))
				hdmi->rxsense = false;

			/*
			 * Only set the software rxsense status when both
			 * rxsense and hpd indicates we're connected.
			 * This avoids what seems to be bad behaviour in
			 * at least iMX6S versions of the phy.
			 */
			if (phy_stat & HDMI_PHY_HPD)
				hdmi->rxsense = true;

			dw_hdmi_update_power(hdmi);
			dw_hdmi_update_phy_mask(hdmi);
2084
		}
2085
		mutex_unlock(&hdmi->mutex);
2086 2087 2088 2089 2090
	}

	if (intr_stat & HDMI_IH_PHY_STAT0_HPD) {
		dev_dbg(hdmi->dev, "EVENT=%s\n",
			phy_int_pol & HDMI_PHY_HPD ? "plugin" : "plugout");
2091 2092
		if (hdmi->bridge.dev)
			drm_helper_hpd_irq_event(hdmi->bridge.dev);
2093 2094 2095
	}

	hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0);
2096 2097
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
2098 2099 2100 2101

	return IRQ_HANDLED;
}

2102 2103 2104 2105
static const struct dw_hdmi_phy_data dw_hdmi_phys[] = {
	{
		.type = DW_HDMI_PHY_DWC_HDMI_TX_PHY,
		.name = "DWC HDMI TX PHY",
2106
		.gen = 1,
2107 2108 2109
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC,
		.name = "DWC MHL PHY + HEAC PHY",
2110
		.gen = 2,
2111
		.has_svsret = true,
2112
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2113 2114 2115
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY,
		.name = "DWC MHL PHY",
2116
		.gen = 2,
2117
		.has_svsret = true,
2118
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2119 2120 2121
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC,
		.name = "DWC HDMI 3D TX PHY + HEAC PHY",
2122
		.gen = 2,
2123
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2124 2125 2126
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY,
		.name = "DWC HDMI 3D TX PHY",
2127
		.gen = 2,
2128
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2129 2130 2131
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
		.name = "DWC HDMI 2.0 TX PHY",
2132
		.gen = 2,
2133
		.has_svsret = true,
2134 2135 2136
	}, {
		.type = DW_HDMI_PHY_VENDOR_PHY,
		.name = "Vendor PHY",
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
	}
};

static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi)
{
	unsigned int i;
	u8 phy_type;

	phy_type = hdmi_readb(hdmi, HDMI_CONFIG2_ID);

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
	if (phy_type == DW_HDMI_PHY_VENDOR_PHY) {
		/* Vendor PHYs require support from the glue layer. */
		if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) {
			dev_err(hdmi->dev,
				"Vendor HDMI PHY not supported by glue layer\n");
			return -ENODEV;
		}

		hdmi->phy.ops = hdmi->plat_data->phy_ops;
		hdmi->phy.data = hdmi->plat_data->phy_data;
		hdmi->phy.name = hdmi->plat_data->phy_name;
		return 0;
	}

	/* Synopsys PHYs are handled internally. */
2162 2163
	for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) {
		if (dw_hdmi_phys[i].type == phy_type) {
2164 2165 2166
			hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops;
			hdmi->phy.name = dw_hdmi_phys[i].name;
			hdmi->phy.data = (void *)&dw_hdmi_phys[i];
2167 2168 2169 2170 2171 2172 2173 2174

			if (!dw_hdmi_phys[i].configure &&
			    !hdmi->plat_data->configure_phy) {
				dev_err(hdmi->dev, "%s requires platform support\n",
					hdmi->phy.name);
				return -ENODEV;
			}

2175 2176 2177 2178
			return 0;
		}
	}

2179
	dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type);
2180 2181 2182
	return -ENODEV;
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
static const struct regmap_config hdmi_regmap_8bit_config = {
	.reg_bits	= 32,
	.val_bits	= 8,
	.reg_stride	= 1,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR,
};

static const struct regmap_config hdmi_regmap_32bit_config = {
	.reg_bits	= 32,
	.val_bits	= 32,
	.reg_stride	= 4,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2,
};

2197 2198 2199
static struct dw_hdmi *
__dw_hdmi_probe(struct platform_device *pdev,
		const struct dw_hdmi_plat_data *plat_data)
2200
{
2201
	struct device *dev = &pdev->dev;
2202
	struct device_node *np = dev->of_node;
2203
	struct platform_device_info pdevinfo;
2204
	struct device_node *ddc_node;
2205
	struct dw_hdmi *hdmi;
2206
	struct resource *iores = NULL;
2207
	int irq;
2208
	int ret;
2209
	u32 val = 1;
2210 2211
	u8 prod_id0;
	u8 prod_id1;
2212
	u8 config0;
2213
	u8 config3;
2214

2215
	hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
2216
	if (!hdmi)
2217
		return ERR_PTR(-ENOMEM);
2218

2219
	hdmi->plat_data = plat_data;
2220
	hdmi->dev = dev;
2221
	hdmi->sample_rate = 48000;
2222
	hdmi->disabled = true;
2223 2224
	hdmi->rxsense = true;
	hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE);
2225

2226
	mutex_init(&hdmi->mutex);
2227
	mutex_init(&hdmi->audio_mutex);
2228
	spin_lock_init(&hdmi->audio_lock);
2229

2230
	ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0);
2231
	if (ddc_node) {
2232
		hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node);
2233 2234
		of_node_put(ddc_node);
		if (!hdmi->ddc) {
2235
			dev_dbg(hdmi->dev, "failed to read ddc node\n");
2236
			return ERR_PTR(-EPROBE_DEFER);
2237
		}
2238 2239 2240 2241 2242

	} else {
		dev_dbg(hdmi->dev, "no ddc property found\n");
	}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	if (!plat_data->regm) {
		const struct regmap_config *reg_config;

		of_property_read_u32(np, "reg-io-width", &val);
		switch (val) {
		case 4:
			reg_config = &hdmi_regmap_32bit_config;
			hdmi->reg_shift = 2;
			break;
		case 1:
			reg_config = &hdmi_regmap_8bit_config;
			break;
		default:
			dev_err(dev, "reg-io-width must be 1 or 4\n");
			return ERR_PTR(-EINVAL);
		}

		iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		hdmi->regs = devm_ioremap_resource(dev, iores);
		if (IS_ERR(hdmi->regs)) {
			ret = PTR_ERR(hdmi->regs);
			goto err_res;
		}

		hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config);
		if (IS_ERR(hdmi->regm)) {
			dev_err(dev, "Failed to configure regmap\n");
			ret = PTR_ERR(hdmi->regm);
			goto err_res;
		}
	} else {
		hdmi->regm = plat_data->regm;
2275
	}
2276 2277 2278 2279

	hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr");
	if (IS_ERR(hdmi->isfr_clk)) {
		ret = PTR_ERR(hdmi->isfr_clk);
2280
		dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret);
2281
		goto err_res;
2282 2283 2284 2285
	}

	ret = clk_prepare_enable(hdmi->isfr_clk);
	if (ret) {
2286
		dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret);
2287
		goto err_res;
2288 2289 2290 2291 2292
	}

	hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb");
	if (IS_ERR(hdmi->iahb_clk)) {
		ret = PTR_ERR(hdmi->iahb_clk);
2293
		dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret);
2294 2295 2296 2297 2298
		goto err_isfr;
	}

	ret = clk_prepare_enable(hdmi->iahb_clk);
	if (ret) {
2299
		dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret);
2300 2301 2302 2303
		goto err_isfr;
	}

	/* Product and revision IDs */
2304 2305
	hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8)
		      | (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0);
2306 2307 2308 2309 2310 2311
	prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0);
	prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1);

	if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX ||
	    (prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) {
		dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n",
2312
			hdmi->version, prod_id0, prod_id1);
2313 2314 2315 2316
		ret = -ENODEV;
		goto err_iahb;
	}

2317 2318 2319 2320 2321
	ret = dw_hdmi_detect_phy(hdmi);
	if (ret < 0)
		goto err_iahb;

	dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n",
2322
		 hdmi->version >> 12, hdmi->version & 0xfff,
2323
		 prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without",
2324
		 hdmi->phy.name);
2325 2326 2327

	initialize_hdmi_ih_mutes(hdmi);

2328
	irq = platform_get_irq(pdev, 0);
2329 2330
	if (irq < 0) {
		ret = irq;
2331
		goto err_iahb;
2332
	}
2333

2334 2335 2336 2337
	ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq,
					dw_hdmi_irq, IRQF_SHARED,
					dev_name(dev), hdmi);
	if (ret)
2338
		goto err_iahb;
2339

2340 2341 2342 2343 2344 2345
	/*
	 * To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator
	 * N and cts values before enabling phy
	 */
	hdmi_init_clk_regenerator(hdmi);

2346 2347 2348 2349 2350 2351 2352
	/* If DDC bus is not specified, try to register HDMI I2C bus */
	if (!hdmi->ddc) {
		hdmi->ddc = dw_hdmi_i2c_adapter(hdmi);
		if (IS_ERR(hdmi->ddc))
			hdmi->ddc = NULL;
	}

2353 2354
	hdmi->bridge.driver_private = hdmi;
	hdmi->bridge.funcs = &dw_hdmi_bridge_funcs;
2355
#ifdef CONFIG_OF
2356
	hdmi->bridge.of_node = pdev->dev.of_node;
2357
#endif
2358

2359 2360
	dw_hdmi_setup_i2c(hdmi);
	dw_hdmi_phy_setup_hpd(hdmi);
2361

2362 2363 2364 2365
	memset(&pdevinfo, 0, sizeof(pdevinfo));
	pdevinfo.parent = dev;
	pdevinfo.id = PLATFORM_DEVID_AUTO;

2366
	config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID);
2367
	config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID);
2368

2369
	if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) {
2370 2371
		struct dw_hdmi_audio_data audio;

2372 2373 2374 2375
		audio.phys = iores->start;
		audio.base = hdmi->regs;
		audio.irq = irq;
		audio.hdmi = hdmi;
2376
		audio.eld = hdmi->connector.eld;
2377 2378 2379 2380 2381 2382

		pdevinfo.name = "dw-hdmi-ahb-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	} else if (config0 & HDMI_CONFIG0_I2S) {
		struct dw_hdmi_i2s_audio_data audio;

		audio.hdmi	= hdmi;
		audio.write	= hdmi_writeb;
		audio.read	= hdmi_readb;

		pdevinfo.name = "dw-hdmi-i2s-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2395 2396
	}

2397 2398 2399 2400
	/* Reset HDMI DDC I2C master controller and mute I2CM interrupts */
	if (hdmi->i2c)
		dw_hdmi_i2c_init(hdmi);

2401
	platform_set_drvdata(pdev, hdmi);
2402

2403
	return hdmi;
2404 2405

err_iahb:
2406 2407 2408 2409 2410
	if (hdmi->i2c) {
		i2c_del_adapter(&hdmi->i2c->adap);
		hdmi->ddc = NULL;
	}

2411 2412 2413
	clk_disable_unprepare(hdmi->iahb_clk);
err_isfr:
	clk_disable_unprepare(hdmi->isfr_clk);
2414 2415
err_res:
	i2c_put_adapter(hdmi->ddc);
2416

2417
	return ERR_PTR(ret);
2418 2419
}

2420
static void __dw_hdmi_remove(struct dw_hdmi *hdmi)
2421
{
2422 2423 2424
	if (hdmi->audio && !IS_ERR(hdmi->audio))
		platform_device_unregister(hdmi->audio);

2425 2426 2427
	/* Disable all interrupts */
	hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);

2428 2429
	clk_disable_unprepare(hdmi->iahb_clk);
	clk_disable_unprepare(hdmi->isfr_clk);
2430 2431 2432 2433 2434

	if (hdmi->i2c)
		i2c_del_adapter(&hdmi->i2c->adap);
	else
		i2c_put_adapter(hdmi->ddc);
2435
}
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

/* -----------------------------------------------------------------------------
 * Probe/remove API, used from platforms based on the DRM bridge API.
 */
int dw_hdmi_probe(struct platform_device *pdev,
		  const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;
	int ret;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

	ret = drm_bridge_add(&hdmi->bridge);
	if (ret < 0) {
		__dw_hdmi_remove(hdmi);
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_probe);

void dw_hdmi_remove(struct platform_device *pdev)
{
	struct dw_hdmi *hdmi = platform_get_drvdata(pdev);

	drm_bridge_remove(&hdmi->bridge);

	__dw_hdmi_remove(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_remove);

/* -----------------------------------------------------------------------------
 * Bind/unbind API, used from platforms based on the component framework.
 */
int dw_hdmi_bind(struct platform_device *pdev, struct drm_encoder *encoder,
		 const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;
	int ret;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

	ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL);
	if (ret) {
		dw_hdmi_remove(pdev);
		DRM_ERROR("Failed to initialize bridge with drm\n");
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_bind);

void dw_hdmi_unbind(struct device *dev)
{
	struct dw_hdmi *hdmi = dev_get_drvdata(dev);

	__dw_hdmi_remove(hdmi);
}
2500
EXPORT_SYMBOL_GPL(dw_hdmi_unbind);
2501 2502

MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
2503 2504
MODULE_AUTHOR("Andy Yan <andy.yan@rock-chips.com>");
MODULE_AUTHOR("Yakir Yang <ykk@rock-chips.com>");
2505
MODULE_AUTHOR("Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com>");
2506
MODULE_DESCRIPTION("DW HDMI transmitter driver");
2507
MODULE_LICENSE("GPL");
2508
MODULE_ALIAS("platform:dw-hdmi");