dw-hdmi.c 67.7 KB
Newer Older
1
/*
2 3 4
 * DesignWare High-Definition Multimedia Interface (HDMI) driver
 *
 * Copyright (C) 2013-2015 Mentor Graphics Inc.
5
 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc.
6
 * Copyright (C) 2010, Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7 8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */
14
#include <linux/module.h>
15 16 17 18
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
S
Sachin Kamat 已提交
19
#include <linux/hdmi.h>
20
#include <linux/mutex.h>
21
#include <linux/of_device.h>
22
#include <linux/regmap.h>
23
#include <linux/spinlock.h>
24

25
#include <drm/drm_of.h>
26
#include <drm/drmP.h>
27
#include <drm/drm_atomic_helper.h>
28 29 30
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_encoder_slave.h>
31
#include <drm/bridge/dw_hdmi.h>
32

33 34 35
#include <uapi/linux/media-bus-format.h>
#include <uapi/linux/videodev2.h>

36 37
#include "dw-hdmi.h"
#include "dw-hdmi-audio.h"
38

39
#define DDC_SEGMENT_ADDR	0x30
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
#define HDMI_EDID_LEN		512

enum hdmi_datamap {
	RGB444_8B = 0x01,
	RGB444_10B = 0x03,
	RGB444_12B = 0x05,
	RGB444_16B = 0x07,
	YCbCr444_8B = 0x09,
	YCbCr444_10B = 0x0B,
	YCbCr444_12B = 0x0D,
	YCbCr444_16B = 0x0F,
	YCbCr422_8B = 0x16,
	YCbCr422_10B = 0x14,
	YCbCr422_12B = 0x12,
};

static const u16 csc_coeff_default[3][4] = {
	{ 0x2000, 0x0000, 0x0000, 0x0000 },
	{ 0x0000, 0x2000, 0x0000, 0x0000 },
	{ 0x0000, 0x0000, 0x2000, 0x0000 }
};

static const u16 csc_coeff_rgb_out_eitu601[3][4] = {
	{ 0x2000, 0x6926, 0x74fd, 0x010e },
	{ 0x2000, 0x2cdd, 0x0000, 0x7e9a },
	{ 0x2000, 0x0000, 0x38b4, 0x7e3b }
};

static const u16 csc_coeff_rgb_out_eitu709[3][4] = {
	{ 0x2000, 0x7106, 0x7a02, 0x00a7 },
	{ 0x2000, 0x3264, 0x0000, 0x7e6d },
	{ 0x2000, 0x0000, 0x3b61, 0x7e25 }
};

static const u16 csc_coeff_rgb_in_eitu601[3][4] = {
	{ 0x2591, 0x1322, 0x074b, 0x0000 },
	{ 0x6535, 0x2000, 0x7acc, 0x0200 },
	{ 0x6acd, 0x7534, 0x2000, 0x0200 }
};

static const u16 csc_coeff_rgb_in_eitu709[3][4] = {
	{ 0x2dc5, 0x0d9b, 0x049e, 0x0000 },
	{ 0x62f0, 0x2000, 0x7d11, 0x0200 },
	{ 0x6756, 0x78ab, 0x2000, 0x0200 }
};

struct hdmi_vmode {
	bool mdataenablepolarity;

	unsigned int mpixelclock;
	unsigned int mpixelrepetitioninput;
	unsigned int mpixelrepetitionoutput;
};

struct hdmi_data_info {
95 96 97 98
	unsigned int enc_in_bus_format;
	unsigned int enc_out_bus_format;
	unsigned int enc_in_encoding;
	unsigned int enc_out_encoding;
99 100 101 102 103
	unsigned int pix_repet_factor;
	unsigned int hdcp_enable;
	struct hdmi_vmode video_mode;
};

104 105 106 107 108 109 110 111 112
struct dw_hdmi_i2c {
	struct i2c_adapter	adap;

	struct mutex		lock;	/* used to serialize data transfers */
	struct completion	cmp;
	u8			stat;

	u8			slave_reg;
	bool			is_regaddr;
113
	bool			is_segment;
114 115
};

116 117 118
struct dw_hdmi_phy_data {
	enum dw_hdmi_phy_type type;
	const char *name;
119
	unsigned int gen;
120
	bool has_svsret;
121 122 123
	int (*configure)(struct dw_hdmi *hdmi,
			 const struct dw_hdmi_plat_data *pdata,
			 unsigned long mpixelclock);
124 125
};

126
struct dw_hdmi {
127
	struct drm_connector connector;
128
	struct drm_bridge bridge;
129

130 131 132
	unsigned int version;

	struct platform_device *audio;
133 134 135
	struct device *dev;
	struct clk *isfr_clk;
	struct clk *iahb_clk;
136
	struct dw_hdmi_i2c *i2c;
137 138

	struct hdmi_data_info hdmi_data;
139 140
	const struct dw_hdmi_plat_data *plat_data;

141 142 143 144 145
	int vic;

	u8 edid[HDMI_EDID_LEN];
	bool cable_plugin;

146 147 148 149 150 151
	struct {
		const struct dw_hdmi_phy_ops *ops;
		const char *name;
		void *data;
		bool enabled;
	} phy;
152

153 154 155 156
	struct drm_display_mode previous_mode;

	struct i2c_adapter *ddc;
	void __iomem *regs;
157
	bool sink_is_hdmi;
158
	bool sink_has_audio;
159

160
	struct mutex mutex;		/* for state below and previous_mode */
161
	enum drm_connector_force force;	/* mutex-protected force state */
162
	bool disabled;			/* DRM has disabled our bridge */
163
	bool bridge_is_on;		/* indicates the bridge is on */
164 165
	bool rxsense;			/* rxsense state */
	u8 phy_mask;			/* desired phy int mask settings */
166

167
	spinlock_t audio_lock;
168
	struct mutex audio_mutex;
169
	unsigned int sample_rate;
170 171 172
	unsigned int audio_cts;
	unsigned int audio_n;
	bool audio_enable;
173

174 175
	unsigned int reg_shift;
	struct regmap *regm;
176 177
	void (*enable_audio)(struct dw_hdmi *hdmi);
	void (*disable_audio)(struct dw_hdmi *hdmi);
178 179
};

180 181 182 183 184 185 186 187
#define HDMI_IH_PHY_STAT0_RX_SENSE \
	(HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \
	 HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3)

#define HDMI_PHY_RX_SENSE \
	(HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \
	 HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3)

188 189
static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
190
	regmap_write(hdmi->regm, offset << hdmi->reg_shift, val);
191 192 193 194
}

static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
195 196 197 198 199
	unsigned int val = 0;

	regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val);

	return val;
200 201
}

202
static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg)
203
{
204
	regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data);
205 206
}

207
static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg,
208
			     u8 shift, u8 mask)
209
{
210
	hdmi_modb(hdmi, data << shift, mask, reg);
211 212
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi)
{
	/* Software reset */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ);

	/* Set Standard Mode speed (determined to be 100KHz on iMX6) */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV);

	/* Set done, not acknowledged and arbitration interrupt polarities */
	hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL,
		    HDMI_I2CM_CTLINT);

	/* Clear DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_I2CM_STAT0);

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);
}

static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi,
			    unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		dev_dbg(hdmi->dev, "set read register address to 0\n");
		i2c->slave_reg = 0x00;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
251 252 253 254 255 256
		if (i2c->is_segment)
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT,
				    HDMI_I2CM_OPERATION);
		else
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ,
				    HDMI_I2CM_OPERATION);
257 258 259 260 261 262 263 264 265 266 267

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;

		*buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI);
	}
268
	i2c->is_segment = false;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

	return 0;
}

static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi,
			     unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		/* Use the first write byte as register address */
		i2c->slave_reg = buf[0];
		length--;
		buf++;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO);
		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
		hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE,
			    HDMI_I2CM_OPERATION);

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;
	}

	return 0;
}

static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap,
			    struct i2c_msg *msgs, int num)
{
	struct dw_hdmi *hdmi = i2c_get_adapdata(adap);
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	u8 addr = msgs[0].addr;
	int i, ret = 0;

	dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr);

	for (i = 0; i < num; i++) {
		if (msgs[i].len == 0) {
			dev_dbg(hdmi->dev,
				"unsupported transfer %d/%d, no data\n",
				i + 1, num);
			return -EOPNOTSUPP;
		}
	}

	mutex_lock(&i2c->lock);

	/* Unmute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0);

	/* Set slave device address taken from the first I2C message */
	hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE);

	/* Set slave device register address on transfer */
	i2c->is_regaddr = false;

337 338 339
	/* Set segment pointer for I2C extended read mode operation */
	i2c->is_segment = false;

340 341 342
	for (i = 0; i < num; i++) {
		dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n",
			i + 1, num, msgs[i].len, msgs[i].flags);
343 344 345 346 347 348 349 350 351 352 353 354
		if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) {
			i2c->is_segment = true;
			hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR);
			hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR);
		} else {
			if (msgs[i].flags & I2C_M_RD)
				ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf,
						       msgs[i].len);
			else
				ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf,
							msgs[i].len);
		}
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
		if (ret < 0)
			break;
	}

	if (!ret)
		ret = num;

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);

	mutex_unlock(&i2c->lock);

	return ret;
}

static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm dw_hdmi_algorithm = {
	.master_xfer	= dw_hdmi_i2c_xfer,
	.functionality	= dw_hdmi_i2c_func,
};

static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi)
{
	struct i2c_adapter *adap;
	struct dw_hdmi_i2c *i2c;
	int ret;

	i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
	if (!i2c)
		return ERR_PTR(-ENOMEM);

	mutex_init(&i2c->lock);
	init_completion(&i2c->cmp);

	adap = &i2c->adap;
	adap->class = I2C_CLASS_DDC;
	adap->owner = THIS_MODULE;
	adap->dev.parent = hdmi->dev;
	adap->algo = &dw_hdmi_algorithm;
	strlcpy(adap->name, "DesignWare HDMI", sizeof(adap->name));
	i2c_set_adapdata(adap, hdmi);

	ret = i2c_add_adapter(adap);
	if (ret) {
		dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
		devm_kfree(hdmi->dev, i2c);
		return ERR_PTR(ret);
	}

	hdmi->i2c = i2c;

	dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name);

	return adap;
}

416 417
static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts,
			   unsigned int n)
418
{
419 420
	/* Must be set/cleared first */
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
421 422

	/* nshift factor = 0 */
423
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3);
424 425 426

	hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) |
		    HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
427 428 429 430 431 432
	hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2);
	hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1);

	hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3);
	hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2);
	hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1);
433 434
}

435
static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk)
436 437
{
	unsigned int n = (128 * freq) / 1000;
438 439 440 441 442 443
	unsigned int mult = 1;

	while (freq > 48000) {
		mult *= 2;
		freq /= 2;
	}
444 445 446

	switch (freq) {
	case 32000:
447
		if (pixel_clk == 25175000)
448
			n = 4576;
449
		else if (pixel_clk == 27027000)
450
			n = 4096;
451
		else if (pixel_clk == 74176000 || pixel_clk == 148352000)
452 453 454
			n = 11648;
		else
			n = 4096;
455
		n *= mult;
456 457 458
		break;

	case 44100:
459
		if (pixel_clk == 25175000)
460
			n = 7007;
461
		else if (pixel_clk == 74176000)
462
			n = 17836;
463
		else if (pixel_clk == 148352000)
464
			n = 8918;
465 466
		else
			n = 6272;
467
		n *= mult;
468 469 470
		break;

	case 48000:
471
		if (pixel_clk == 25175000)
472
			n = 6864;
473
		else if (pixel_clk == 27027000)
474
			n = 6144;
475
		else if (pixel_clk == 74176000)
476
			n = 11648;
477
		else if (pixel_clk == 148352000)
478
			n = 5824;
479 480
		else
			n = 6144;
481
		n *= mult;
482 483 484 485 486 487 488 489 490
		break;

	default:
		break;
	}

	return n;
}

491
static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi,
492
	unsigned long pixel_clk, unsigned int sample_rate)
493
{
494
	unsigned long ftdms = pixel_clk;
495
	unsigned int n, cts;
496
	u64 tmp;
497

498
	n = hdmi_compute_n(sample_rate, pixel_clk);
499

500 501 502 503 504 505 506 507 508 509 510 511 512 513
	/*
	 * Compute the CTS value from the N value.  Note that CTS and N
	 * can be up to 20 bits in total, so we need 64-bit math.  Also
	 * note that our TDMS clock is not fully accurate; it is accurate
	 * to kHz.  This can introduce an unnecessary remainder in the
	 * calculation below, so we don't try to warn about that.
	 */
	tmp = (u64)ftdms * n;
	do_div(tmp, 128 * sample_rate);
	cts = tmp;

	dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n",
		__func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000,
		n, cts);
514

515 516 517 518 519
	spin_lock_irq(&hdmi->audio_lock);
	hdmi->audio_n = n;
	hdmi->audio_cts = cts;
	hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0);
	spin_unlock_irq(&hdmi->audio_lock);
520 521
}

522
static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi)
523
{
524
	mutex_lock(&hdmi->audio_mutex);
525
	hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate);
526
	mutex_unlock(&hdmi->audio_mutex);
527 528
}

529
static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi)
530
{
531
	mutex_lock(&hdmi->audio_mutex);
532
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
533
				 hdmi->sample_rate);
534
	mutex_unlock(&hdmi->audio_mutex);
535 536
}

537 538 539 540 541
void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate)
{
	mutex_lock(&hdmi->audio_mutex);
	hdmi->sample_rate = rate;
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
542
				 hdmi->sample_rate);
543 544 545 546
	mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate);

547 548 549 550 551 552
static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi, bool enable)
{
	hdmi_modb(hdmi, enable ? 0 : HDMI_MC_CLKDIS_AUDCLK_DISABLE,
		  HDMI_MC_CLKDIS_AUDCLK_DISABLE, HDMI_MC_CLKDIS);
}

553 554 555 556 557 558 559 560 561 562 563 564 565
static void dw_hdmi_ahb_audio_enable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
}

static void dw_hdmi_ahb_audio_disable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
}

static void dw_hdmi_i2s_audio_enable(struct dw_hdmi *hdmi)
{
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
566 567 568 569 570 571
	hdmi_enable_audio_clk(hdmi, true);
}

static void dw_hdmi_i2s_audio_disable(struct dw_hdmi *hdmi)
{
	hdmi_enable_audio_clk(hdmi, false);
572 573
}

574 575 576 577 578 579
void dw_hdmi_audio_enable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = true;
580 581
	if (hdmi->enable_audio)
		hdmi->enable_audio(hdmi);
582 583 584 585 586 587 588 589 590 591
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable);

void dw_hdmi_audio_disable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = false;
592 593
	if (hdmi->disable_audio)
		hdmi->disable_audio(hdmi);
594 595 596 597
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable);

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static bool hdmi_bus_fmt_is_rgb(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_RGB161616_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv444(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_YUV16_1X48:
		return true;

	default:
		return false;
	}
}

static bool hdmi_bus_fmt_is_yuv422(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYVY12_1X24:
		return true;

	default:
		return false;
	}
}

static int hdmi_bus_fmt_color_depth(unsigned int bus_format)
{
	switch (bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYVY8_1X16:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		return 8;

	case MEDIA_BUS_FMT_RGB101010_1X30:
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYVY10_1X20:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		return 10;

	case MEDIA_BUS_FMT_RGB121212_1X36:
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYVY12_1X24:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		return 12;

	case MEDIA_BUS_FMT_RGB161616_1X48:
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		return 16;

	default:
		return 0;
	}
}

670 671 672 673 674 675 676
/*
 * this submodule is responsible for the video data synchronization.
 * for example, for RGB 4:4:4 input, the data map is defined as
 *			pin{47~40} <==> R[7:0]
 *			pin{31~24} <==> G[7:0]
 *			pin{15~8}  <==> B[7:0]
 */
677
static void hdmi_video_sample(struct dw_hdmi *hdmi)
678 679 680 681
{
	int color_format = 0;
	u8 val;

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	switch (hdmi->hdmi_data.enc_in_bus_format) {
	case MEDIA_BUS_FMT_RGB888_1X24:
		color_format = 0x01;
		break;
	case MEDIA_BUS_FMT_RGB101010_1X30:
		color_format = 0x03;
		break;
	case MEDIA_BUS_FMT_RGB121212_1X36:
		color_format = 0x05;
		break;
	case MEDIA_BUS_FMT_RGB161616_1X48:
		color_format = 0x07;
		break;

	case MEDIA_BUS_FMT_YUV8_1X24:
	case MEDIA_BUS_FMT_UYYVYY8_0_5X24:
		color_format = 0x09;
		break;
	case MEDIA_BUS_FMT_YUV10_1X30:
	case MEDIA_BUS_FMT_UYYVYY10_0_5X30:
		color_format = 0x0B;
		break;
	case MEDIA_BUS_FMT_YUV12_1X36:
	case MEDIA_BUS_FMT_UYYVYY12_0_5X36:
		color_format = 0x0D;
		break;
	case MEDIA_BUS_FMT_YUV16_1X48:
	case MEDIA_BUS_FMT_UYYVYY16_0_5X48:
		color_format = 0x0F;
		break;

	case MEDIA_BUS_FMT_UYVY8_1X16:
		color_format = 0x16;
		break;
	case MEDIA_BUS_FMT_UYVY10_1X20:
		color_format = 0x14;
		break;
	case MEDIA_BUS_FMT_UYVY12_1X24:
		color_format = 0x12;
		break;

	default:
		return;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
	}

	val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
		((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
		HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
	hdmi_writeb(hdmi, val, HDMI_TX_INVID0);

	/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
	val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
	hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1);
}

745
static int is_color_space_conversion(struct dw_hdmi *hdmi)
746
{
747
	return hdmi->hdmi_data.enc_in_bus_format != hdmi->hdmi_data.enc_out_bus_format;
748 749
}

750
static int is_color_space_decimation(struct dw_hdmi *hdmi)
751
{
752
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
753
		return 0;
754 755 756

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_in_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_in_bus_format))
757
		return 1;
758

759
	return 0;
760 761
}

762
static int is_color_space_interpolation(struct dw_hdmi *hdmi)
763
{
764
	if (!hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_in_bus_format))
765
		return 0;
766 767 768

	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
769
		return 1;
770

771
	return 0;
772 773
}

774
static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi)
775 776
{
	const u16 (*csc_coeff)[3][4] = &csc_coeff_default;
777
	unsigned i;
778 779 780
	u32 csc_scale = 1;

	if (is_color_space_conversion(hdmi)) {
781 782 783
		if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
784 785 786
				csc_coeff = &csc_coeff_rgb_out_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_out_eitu709;
787 788 789 790
		} else if (hdmi_bus_fmt_is_rgb(
					hdmi->hdmi_data.enc_in_bus_format)) {
			if (hdmi->hdmi_data.enc_out_encoding ==
						V4L2_YCBCR_ENC_601)
791 792 793 794 795 796 797
				csc_coeff = &csc_coeff_rgb_in_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_in_eitu709;
			csc_scale = 0;
		}
	}

798 799 800 801 802 803
	/* The CSC registers are sequential, alternating MSB then LSB */
	for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) {
		u16 coeff_a = (*csc_coeff)[0][i];
		u16 coeff_b = (*csc_coeff)[1][i];
		u16 coeff_c = (*csc_coeff)[2][i];

804
		hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2);
805 806 807
		hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2);
		hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2);
		hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2);
808
		hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2);
809 810
		hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2);
	}
811

812 813
	hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
		  HDMI_CSC_SCALE);
814 815
}

816
static void hdmi_video_csc(struct dw_hdmi *hdmi)
817 818 819 820 821 822 823 824 825 826 827
{
	int color_depth = 0;
	int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
	int decimation = 0;

	/* YCC422 interpolation to 444 mode */
	if (is_color_space_interpolation(hdmi))
		interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1;
	else if (is_color_space_decimation(hdmi))
		decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3;

828 829
	switch (hdmi_bus_fmt_color_depth(hdmi->hdmi_data.enc_out_bus_format)) {
	case 8:
830
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
831 832
		break;
	case 10:
833
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP;
834 835
		break;
	case 12:
836
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP;
837 838
		break;
	case 16:
839
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP;
840 841 842
		break;

	default:
843
		return;
844
	}
845 846 847

	/* Configure the CSC registers */
	hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG);
848 849
	hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK,
		  HDMI_CSC_SCALE);
850

851
	dw_hdmi_update_csc_coeffs(hdmi);
852 853 854 855 856 857 858
}

/*
 * HDMI video packetizer is used to packetize the data.
 * for example, if input is YCC422 mode or repeater is used,
 * data should be repacked this module can be bypassed.
 */
859
static void hdmi_video_packetize(struct dw_hdmi *hdmi)
860 861 862 863 864
{
	unsigned int color_depth = 0;
	unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit;
	unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
	struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
865
	u8 val, vp_conf;
866

867 868 869 870 871
	if (hdmi_bus_fmt_is_rgb(hdmi->hdmi_data.enc_out_bus_format) ||
	    hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format)) {
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 8:
872 873
			color_depth = 4;
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
874 875
			break;
		case 10:
876
			color_depth = 5;
877 878
			break;
		case 12:
879
			color_depth = 6;
880 881
			break;
		case 16:
882
			color_depth = 7;
883 884 885
			break;
		default:
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
886
		}
887 888 889 890 891
	} else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format)) {
		switch (hdmi_bus_fmt_color_depth(
					hdmi->hdmi_data.enc_out_bus_format)) {
		case 0:
		case 8:
892
			remap_size = HDMI_VP_REMAP_YCC422_16bit;
893 894
			break;
		case 10:
895
			remap_size = HDMI_VP_REMAP_YCC422_20bit;
896 897
			break;
		case 12:
898
			remap_size = HDMI_VP_REMAP_YCC422_24bit;
899 900 901
			break;

		default:
902
			return;
903
		}
904
		output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422;
905
	} else {
906
		return;
907
	}
908 909 910 911 912 913 914 915 916

	/* set the packetizer registers */
	val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
		HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
		((hdmi_data->pix_repet_factor <<
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_VP_PR_CD);

917 918
	hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF);
919 920 921

	/* Data from pixel repeater block */
	if (hdmi_data->pix_repet_factor > 1) {
922 923
		vp_conf = HDMI_VP_CONF_PR_EN_ENABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER;
924
	} else { /* data from packetizer block */
925 926
		vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
927 928
	}

929 930 931 932
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_PR_EN_MASK |
		  HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF);

933 934
	hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET,
		  HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF);
935 936 937 938

	hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP);

	if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
939 940 941
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_ENABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
942
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
943 944 945
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_ENABLE;
946
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
947 948 949
		vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
950 951 952 953
	} else {
		return;
	}

954 955 956 957
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK |
		  HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF);

958 959 960 961
	hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
			HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PP_STUFFING_MASK |
		  HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF);
962

963 964
	hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
		  HDMI_VP_CONF);
965 966
}

967 968 969 970
/* -----------------------------------------------------------------------------
 * Synopsys PHY Handling
 */

971
static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi,
972
				       unsigned char bit)
973
{
974 975
	hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET,
		  HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0);
976 977
}

978
static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec)
979
{
980 981 982
	u32 val;

	while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) {
983 984
		if (msec-- == 0)
			return false;
985
		udelay(1000);
986
	}
987 988
	hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0);

989 990 991
	return true;
}

992 993
void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data,
			   unsigned char addr)
994 995 996 997
{
	hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR);
	hdmi_writeb(hdmi, (unsigned char)(data >> 8),
998
		    HDMI_PHY_I2CM_DATAO_1_ADDR);
999
	hdmi_writeb(hdmi, (unsigned char)(data >> 0),
1000
		    HDMI_PHY_I2CM_DATAO_0_ADDR);
1001
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE,
1002
		    HDMI_PHY_I2CM_OPERATION_ADDR);
1003 1004
	hdmi_phy_wait_i2c_done(hdmi, 1000);
}
1005
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write);
1006

1007
static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable)
1008
{
1009
	hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0,
1010 1011 1012 1013
			 HDMI_PHY_CONF0_PDZ_OFFSET,
			 HDMI_PHY_CONF0_PDZ_MASK);
}

1014
static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable)
1015 1016 1017 1018 1019 1020
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_ENTMDS_OFFSET,
			 HDMI_PHY_CONF0_ENTMDS_MASK);
}

1021
static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable)
1022 1023
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
1024 1025
			 HDMI_PHY_CONF0_SVSRET_OFFSET,
			 HDMI_PHY_CONF0_SVSRET_MASK);
1026 1027
}

1028
static void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable)
1029 1030 1031 1032 1033 1034
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET,
			 HDMI_PHY_CONF0_GEN2_PDDQ_MASK);
}

1035
static void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable)
1036 1037 1038 1039 1040 1041
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_MASK);
}

1042
static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable)
1043 1044 1045 1046 1047 1048
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDATAENPOL_OFFSET,
			 HDMI_PHY_CONF0_SELDATAENPOL_MASK);
}

1049
static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable)
1050 1051 1052 1053 1054 1055
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDIPIF_OFFSET,
			 HDMI_PHY_CONF0_SELDIPIF_MASK);
}

1056 1057
static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi)
{
1058
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	unsigned int i;
	u16 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_powerdown(hdmi, true);
		return;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 0);

	/*
	 * Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went
	 * to low power mode.
	 */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0);
		if (!(val & HDMI_PHY_TX_PHY_LOCK))
			break;

		usleep_range(1000, 2000);
	}

	if (val & HDMI_PHY_TX_PHY_LOCK)
		dev_warn(hdmi->dev, "PHY failed to power down\n");
	else
		dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i);

	dw_hdmi_phy_gen2_pddq(hdmi, 1);
}

1090 1091
static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi)
{
1092
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	unsigned int i;
	u8 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_powerdown(hdmi, false);

		/* Toggle TMDS enable. */
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_tmds(hdmi, 1);
		return 0;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 1);
	dw_hdmi_phy_gen2_pddq(hdmi, 0);

	/* Wait for PHY PLL lock */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
		if (val)
			break;

		usleep_range(1000, 2000);
	}

	if (!val) {
		dev_err(hdmi->dev, "PHY PLL failed to lock\n");
		return -ETIMEDOUT;
	}

	dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i);
	return 0;
}

1126 1127 1128 1129 1130 1131 1132 1133
/*
 * PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available
 * information the DWC MHL PHY has the same register layout and is thus also
 * supported by this function.
 */
static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi,
		const struct dw_hdmi_plat_data *pdata,
		unsigned long mpixelclock)
1134
{
1135 1136 1137
	const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg;
	const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr;
	const struct dw_hdmi_phy_config *phy_config = pdata->phy_config;
1138

1139 1140
	/* PLL/MPLL Cfg - always match on final entry */
	for (; mpll_config->mpixelclock != ~0UL; mpll_config++)
1141
		if (mpixelclock <= mpll_config->mpixelclock)
1142 1143 1144
			break;

	for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++)
1145
		if (mpixelclock <= curr_ctrl->mpixelclock)
1146 1147 1148
			break;

	for (; phy_config->mpixelclock != ~0UL; phy_config++)
1149
		if (mpixelclock <= phy_config->mpixelclock)
1150 1151 1152 1153
			break;

	if (mpll_config->mpixelclock == ~0UL ||
	    curr_ctrl->mpixelclock == ~0UL ||
1154
	    phy_config->mpixelclock == ~0UL)
1155
		return -EINVAL;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce,
			      HDMI_3D_TX_PHY_CPCE_CTRL);
	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp,
			      HDMI_3D_TX_PHY_GMPCTRL);
	dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0],
			      HDMI_3D_TX_PHY_CURRCTRL);

	dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL);
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK,
			      HDMI_3D_TX_PHY_MSM_CTRL);

	dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr,
			      HDMI_3D_TX_PHY_CKSYMTXCTRL);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr,
			      HDMI_3D_TX_PHY_VLEVCTRL);

	/* Override and disable clock termination. */
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE,
			      HDMI_3D_TX_PHY_CKCALCTRL);

	return 0;
}

static int hdmi_phy_configure(struct dw_hdmi *hdmi)
{
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
	const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
	unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock;
	int ret;
1187

1188
	dw_hdmi_phy_power_off(hdmi);
1189

1190
	/* Leave low power consumption mode by asserting SVSRET. */
1191
	if (phy->has_svsret)
1192 1193
		dw_hdmi_phy_enable_svsret(hdmi, 1);

1194 1195 1196
	/* PHY reset. The reset signal is active high on Gen2 PHYs. */
	hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
	hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
1197 1198 1199 1200 1201

	hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST);

	hdmi_phy_test_clear(hdmi, 1);
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2,
1202
		    HDMI_PHY_I2CM_SLAVE_ADDR);
1203 1204
	hdmi_phy_test_clear(hdmi, 0);

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	/* Write to the PHY as configured by the platform */
	if (pdata->configure_phy)
		ret = pdata->configure_phy(hdmi, pdata, mpixelclock);
	else
		ret = phy->configure(hdmi, pdata, mpixelclock);
	if (ret) {
		dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n",
			mpixelclock);
		return ret;
	}
1215

1216
	return dw_hdmi_phy_power_on(hdmi);
1217 1218
}

1219 1220
static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data,
			    struct drm_display_mode *mode)
1221 1222 1223 1224 1225
{
	int i, ret;

	/* HDMI Phy spec says to do the phy initialization sequence twice */
	for (i = 0; i < 2; i++) {
1226 1227
		dw_hdmi_phy_sel_data_en_pol(hdmi, 1);
		dw_hdmi_phy_sel_interface_control(hdmi, 0);
1228

1229
		ret = hdmi_phy_configure(hdmi);
1230 1231 1232 1233 1234 1235 1236
		if (ret)
			return ret;
	}

	return 0;
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data)
{
	dw_hdmi_phy_power_off(hdmi);
}

static enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi,
						      void *data)
{
	return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ?
		connector_status_connected : connector_status_disconnected;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
static void dw_hdmi_phy_update_hpd(struct dw_hdmi *hdmi, void *data,
				   bool force, bool disabled, bool rxsense)
{
	u8 old_mask = hdmi->phy_mask;

	if (force || disabled || !rxsense)
		hdmi->phy_mask |= HDMI_PHY_RX_SENSE;
	else
		hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE;

	if (old_mask != hdmi->phy_mask)
		hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
}

static void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi, void *data)
{
	/*
	 * Configure the PHY RX SENSE and HPD interrupts polarities and clear
	 * any pending interrupt.
	 */
	hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0);
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);

	/* Enable cable hot plug irq. */
	hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);

	/* Clear and unmute interrupts. */
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
}

1283 1284 1285 1286
static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = {
	.init = dw_hdmi_phy_init,
	.disable = dw_hdmi_phy_disable,
	.read_hpd = dw_hdmi_phy_read_hpd,
1287 1288
	.update_hpd = dw_hdmi_phy_update_hpd,
	.setup_hpd = dw_hdmi_phy_setup_hpd,
1289 1290 1291 1292 1293 1294
};

/* -----------------------------------------------------------------------------
 * HDMI TX Setup
 */

1295
static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi)
1296
{
1297
	u8 de;
1298 1299 1300 1301 1302 1303 1304

	if (hdmi->hdmi_data.video_mode.mdataenablepolarity)
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH;
	else
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW;

	/* disable rx detect */
1305 1306
	hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE,
		  HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0);
1307

1308
	hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG);
1309

1310 1311
	hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE,
		  HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1);
1312 1313
}

1314
static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1315
{
1316 1317
	struct hdmi_avi_infoframe frame;
	u8 val;
1318

1319
	/* Initialise info frame from DRM mode */
1320
	drm_hdmi_avi_infoframe_from_display_mode(&frame, mode, false);
1321

1322
	if (hdmi_bus_fmt_is_yuv444(hdmi->hdmi_data.enc_out_bus_format))
1323
		frame.colorspace = HDMI_COLORSPACE_YUV444;
1324
	else if (hdmi_bus_fmt_is_yuv422(hdmi->hdmi_data.enc_out_bus_format))
1325
		frame.colorspace = HDMI_COLORSPACE_YUV422;
1326
	else
1327
		frame.colorspace = HDMI_COLORSPACE_RGB;
1328 1329

	/* Set up colorimetry */
1330 1331 1332 1333 1334 1335 1336
	switch (hdmi->hdmi_data.enc_out_encoding) {
	case V4L2_YCBCR_ENC_601:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV601)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
1337
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
1338
		break;
1339 1340 1341 1342 1343 1344
	case V4L2_YCBCR_ENC_709:
		if (hdmi->hdmi_data.enc_in_encoding == V4L2_YCBCR_ENC_XV709)
			frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
		else
			frame.colorimetry = HDMI_COLORIMETRY_ITU_709;
		frame.extended_colorimetry =
1345
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_709;
1346 1347 1348 1349 1350 1351
		break;
	default: /* Carries no data */
		frame.colorimetry = HDMI_COLORIMETRY_ITU_601;
		frame.extended_colorimetry =
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
		break;
1352 1353
	}

1354 1355 1356 1357 1358 1359 1360 1361 1362
	frame.scan_mode = HDMI_SCAN_MODE_NONE;

	/*
	 * The Designware IP uses a different byte format from standard
	 * AVI info frames, though generally the bits are in the correct
	 * bytes.
	 */

	/*
1363 1364 1365
	 * AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6,
	 * scan info in bits 4,5 rather than 0,1 and active aspect present in
	 * bit 6 rather than 4.
1366
	 */
1367
	val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	if (frame.active_aspect & 15)
		val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT;
	if (frame.top_bar || frame.bottom_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR;
	if (frame.left_bar || frame.right_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR;
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0);

	/* AVI data byte 2 differences: none */
	val = ((frame.colorimetry & 0x3) << 6) |
	      ((frame.picture_aspect & 0x3) << 4) |
	      (frame.active_aspect & 0xf);
1380 1381
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1);

1382 1383 1384 1385 1386 1387
	/* AVI data byte 3 differences: none */
	val = ((frame.extended_colorimetry & 0x7) << 4) |
	      ((frame.quantization_range & 0x3) << 2) |
	      (frame.nups & 0x3);
	if (frame.itc)
		val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID;
1388 1389
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2);

1390 1391 1392
	/* AVI data byte 4 differences: none */
	val = frame.video_code & 0x7f;
	hdmi_writeb(hdmi, val, HDMI_FC_AVIVID);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

	/* AVI Data Byte 5- set up input and output pixel repetition */
	val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) <<
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) |
		((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput <<
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_FC_PRCONF);

1403 1404 1405 1406 1407 1408
	/*
	 * AVI data byte 5 differences: content type in 0,1 rather than 4,5,
	 * ycc range in bits 2,3 rather than 6,7
	 */
	val = ((frame.ycc_quantization_range & 0x3) << 2) |
	      (frame.content_type & 0x3);
1409 1410 1411
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3);

	/* AVI Data Bytes 6-13 */
1412 1413 1414 1415 1416 1417 1418 1419
	hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0);
	hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1);
	hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0);
	hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1);
	hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0);
	hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1);
	hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0);
	hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1);
1420 1421
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi,
						 struct drm_display_mode *mode)
{
	struct hdmi_vendor_infoframe frame;
	u8 buffer[10];
	ssize_t err;

	err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, mode);
	if (err < 0)
		/*
		 * Going into that statement does not means vendor infoframe
		 * fails. It just informed us that vendor infoframe is not
		 * needed for the selected mode. Only 4k or stereoscopic 3D
		 * mode requires vendor infoframe. So just simply return.
		 */
		return;

	err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer));
	if (err < 0) {
		dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n",
			err);
		return;
	}
	hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);

	/* Set the length of HDMI vendor specific InfoFrame payload */
	hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE);

	/* Set 24bit IEEE Registration Identifier */
	hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0);
	hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1);
	hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2);

	/* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */
	hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0);
	hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1);

	if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
		hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2);

	/* Packet frame interpolation */
	hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1);

	/* Auto packets per frame and line spacing */
	hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2);

	/* Configures the Frame Composer On RDRB mode */
	hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);
}

1474
static void hdmi_av_composer(struct dw_hdmi *hdmi,
1475 1476 1477 1478 1479
			     const struct drm_display_mode *mode)
{
	u8 inv_val;
	struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode;
	int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len;
1480
	unsigned int vdisplay;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	vmode->mpixelclock = mode->clock * 1000;

	dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock);

	/* Set up HDMI_FC_INVIDCONF */
	inv_val = (hdmi->hdmi_data.hdcp_enable ?
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE :
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE);

1491
	inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
1492
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
1493
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW;
1494

1495
	inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
1496
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
1497
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW;
1498 1499 1500 1501 1502 1503 1504 1505

	inv_val |= (vmode->mdataenablepolarity ?
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);

	if (hdmi->vic == 39)
		inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH;
	else
1506
		inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1507
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
1508
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
1509

1510
	inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1511
		HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
1512
		HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
1513

1514 1515 1516
	inv_val |= hdmi->sink_is_hdmi ?
		HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
		HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE;
1517 1518 1519

	hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF);

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
	vdisplay = mode->vdisplay;
	vblank = mode->vtotal - mode->vdisplay;
	v_de_vs = mode->vsync_start - mode->vdisplay;
	vsync_len = mode->vsync_end - mode->vsync_start;

	/*
	 * When we're setting an interlaced mode, we need
	 * to adjust the vertical timing to suit.
	 */
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vdisplay /= 2;
		vblank /= 2;
		v_de_vs /= 2;
		vsync_len /= 2;
	}

1536 1537 1538 1539 1540
	/* Set up horizontal active pixel width */
	hdmi_writeb(hdmi, mode->hdisplay >> 8, HDMI_FC_INHACTV1);
	hdmi_writeb(hdmi, mode->hdisplay, HDMI_FC_INHACTV0);

	/* Set up vertical active lines */
1541 1542
	hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1);
	hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0);
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569

	/* Set up horizontal blanking pixel region width */
	hblank = mode->htotal - mode->hdisplay;
	hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1);
	hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0);

	/* Set up vertical blanking pixel region width */
	hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK);

	/* Set up HSYNC active edge delay width (in pixel clks) */
	h_de_hs = mode->hsync_start - mode->hdisplay;
	hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1);
	hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY);

	/* Set up HSYNC active pulse width (in pixel clks) */
	hsync_len = mode->hsync_end - mode->hsync_start;
	hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1);
	hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH);
}

/* HDMI Initialization Step B.4 */
1570
static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi)
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
{
	u8 clkdis;

	/* control period minimum duration */
	hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR);
	hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR);
	hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC);

	/* Set to fill TMDS data channels */
	hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM);
	hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM);
	hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM);

	/* Enable pixel clock and tmds data path */
	clkdis = 0x7F;
	clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
	hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);

	clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
	hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);

	/* Enable csc path */
	if (is_color_space_conversion(hdmi)) {
		clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE;
		hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);
	}
1597

1598 1599
	/* Enable color space conversion if needed */
	if (is_color_space_conversion(hdmi))
1600 1601 1602 1603 1604
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH,
			    HDMI_MC_FLOWCTRL);
	else
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS,
			    HDMI_MC_FLOWCTRL);
1605 1606 1607
}

/* Workaround to clear the overflow condition */
1608
static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi)
1609
{
1610 1611
	unsigned int count;
	unsigned int i;
1612 1613
	u8 val;

1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	/*
	 * Under some circumstances the Frame Composer arithmetic unit can miss
	 * an FC register write due to being busy processing the previous one.
	 * The issue can be worked around by issuing a TMDS software reset and
	 * then write one of the FC registers several times.
	 *
	 * The number of iterations matters and depends on the HDMI TX revision
	 * (and possibly on the platform). So far only i.MX6Q (v1.30a) and
	 * i.MX6DL (v1.31a) have been identified as needing the workaround, with
	 * 4 and 1 iterations respectively.
	 */
1625

1626 1627 1628 1629 1630 1631 1632 1633
	switch (hdmi->version) {
	case 0x130a:
		count = 4;
		break;
	case 0x131a:
		count = 1;
		break;
	default:
1634 1635 1636
		return;
	}

1637 1638 1639 1640 1641
	/* TMDS software reset */
	hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ);

	val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF);
	for (i = 0; i < count; i++)
1642 1643 1644
		hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF);
}

1645
static void hdmi_enable_overflow_interrupts(struct dw_hdmi *hdmi)
1646 1647 1648 1649 1650
{
	hdmi_writeb(hdmi, 0, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0, HDMI_IH_MUTE_FC_STAT2);
}

1651
static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi)
1652 1653 1654 1655 1656
{
	hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK,
		    HDMI_IH_MUTE_FC_STAT2);
}

1657
static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
{
	int ret;

	hdmi_disable_overflow_interrupts(hdmi);

	hdmi->vic = drm_match_cea_mode(mode);

	if (!hdmi->vic) {
		dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n");
	} else {
		dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic);
	}

	if ((hdmi->vic == 6) || (hdmi->vic == 7) ||
1672 1673 1674
	    (hdmi->vic == 21) || (hdmi->vic == 22) ||
	    (hdmi->vic == 2) || (hdmi->vic == 3) ||
	    (hdmi->vic == 17) || (hdmi->vic == 18))
1675
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_601;
1676
	else
1677
		hdmi->hdmi_data.enc_out_encoding = V4L2_YCBCR_ENC_709;
1678

1679
	hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0;
1680 1681
	hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0;

1682
	/* TOFIX: Get input format from plat data or fallback to RGB888 */
1683
	if (hdmi->plat_data->input_bus_format)
1684 1685 1686 1687 1688 1689
		hdmi->hdmi_data.enc_in_bus_format =
			hdmi->plat_data->input_bus_format;
	else
		hdmi->hdmi_data.enc_in_bus_format = MEDIA_BUS_FMT_RGB888_1X24;

	/* TOFIX: Get input encoding from plat data or fallback to none */
1690
	if (hdmi->plat_data->input_bus_encoding)
1691 1692 1693 1694
		hdmi->hdmi_data.enc_in_encoding =
			hdmi->plat_data->input_bus_encoding;
	else
		hdmi->hdmi_data.enc_in_encoding = V4L2_YCBCR_ENC_DEFAULT;
1695

1696 1697
	/* TOFIX: Default to RGB888 output format */
	hdmi->hdmi_data.enc_out_bus_format = MEDIA_BUS_FMT_RGB888_1X24;
1698 1699 1700 1701 1702 1703 1704 1705 1706

	hdmi->hdmi_data.pix_repet_factor = 0;
	hdmi->hdmi_data.hdcp_enable = 0;
	hdmi->hdmi_data.video_mode.mdataenablepolarity = true;

	/* HDMI Initialization Step B.1 */
	hdmi_av_composer(hdmi, mode);

	/* HDMI Initializateion Step B.2 */
1707
	ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data, &hdmi->previous_mode);
1708 1709
	if (ret)
		return ret;
1710
	hdmi->phy.enabled = true;
1711 1712

	/* HDMI Initialization Step B.3 */
1713
	dw_hdmi_enable_video_path(hdmi);
1714

1715 1716
	if (hdmi->sink_has_audio) {
		dev_dbg(hdmi->dev, "sink has audio support\n");
1717 1718 1719

		/* HDMI Initialization Step E - Configure audio */
		hdmi_clk_regenerator_update_pixel_clock(hdmi);
1720
		hdmi_enable_audio_clk(hdmi, true);
1721 1722 1723 1724 1725
	}

	/* not for DVI mode */
	if (hdmi->sink_is_hdmi) {
		dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__);
1726 1727

		/* HDMI Initialization Step F - Configure AVI InfoFrame */
1728
		hdmi_config_AVI(hdmi, mode);
1729
		hdmi_config_vendor_specific_infoframe(hdmi, mode);
1730 1731
	} else {
		dev_dbg(hdmi->dev, "%s DVI mode\n", __func__);
1732 1733 1734 1735 1736 1737 1738
	}

	hdmi_video_packetize(hdmi);
	hdmi_video_csc(hdmi);
	hdmi_video_sample(hdmi);
	hdmi_tx_hdcp_config(hdmi);

1739
	dw_hdmi_clear_overflow(hdmi);
1740
	if (hdmi->cable_plugin && hdmi->sink_is_hdmi)
1741 1742 1743 1744 1745
		hdmi_enable_overflow_interrupts(hdmi);

	return 0;
}

1746
static void dw_hdmi_setup_i2c(struct dw_hdmi *hdmi)
1747 1748 1749 1750 1751 1752 1753 1754 1755
{
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL,
		    HDMI_PHY_I2CM_INT_ADDR);

	hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
		    HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL,
		    HDMI_PHY_I2CM_CTLINT_ADDR);
}

1756
static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi)
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
{
	u8 ih_mute;

	/*
	 * Boot up defaults are:
	 * HDMI_IH_MUTE   = 0x03 (disabled)
	 * HDMI_IH_MUTE_* = 0x00 (enabled)
	 *
	 * Disable top level interrupt bits in HDMI block
	 */
	ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) |
		  HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		  HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;

	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);

	/* by default mask all interrupts */
	hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK);
	hdmi_writeb(hdmi, 0xff, HDMI_CEC_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT);

	/* Disable interrupts in the IH_MUTE_* registers */
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0);

	/* Enable top level interrupt bits in HDMI block */
	ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		    HDMI_IH_MUTE_MUTE_ALL_INTERRUPT);
	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
}

1808
static void dw_hdmi_poweron(struct dw_hdmi *hdmi)
1809
{
1810
	hdmi->bridge_is_on = true;
1811
	dw_hdmi_setup(hdmi, &hdmi->previous_mode);
1812 1813
}

1814
static void dw_hdmi_poweroff(struct dw_hdmi *hdmi)
1815
{
1816 1817 1818 1819 1820
	if (hdmi->phy.enabled) {
		hdmi->phy.ops->disable(hdmi, hdmi->phy.data);
		hdmi->phy.enabled = false;
	}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	hdmi->bridge_is_on = false;
}

static void dw_hdmi_update_power(struct dw_hdmi *hdmi)
{
	int force = hdmi->force;

	if (hdmi->disabled) {
		force = DRM_FORCE_OFF;
	} else if (force == DRM_FORCE_UNSPECIFIED) {
1831
		if (hdmi->rxsense)
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
			force = DRM_FORCE_ON;
		else
			force = DRM_FORCE_OFF;
	}

	if (force == DRM_FORCE_OFF) {
		if (hdmi->bridge_is_on)
			dw_hdmi_poweroff(hdmi);
	} else {
		if (!hdmi->bridge_is_on)
			dw_hdmi_poweron(hdmi);
	}
1844 1845
}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
/*
 * Adjust the detection of RXSENSE according to whether we have a forced
 * connection mode enabled, or whether we have been disabled.  There is
 * no point processing RXSENSE interrupts if we have a forced connection
 * state, or DRM has us disabled.
 *
 * We also disable rxsense interrupts when we think we're disconnected
 * to avoid floating TDMS signals giving false rxsense interrupts.
 *
 * Note: we still need to listen for HPD interrupts even when DRM has us
 * disabled so that we can detect a connect event.
 */
static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi)
{
1860 1861 1862 1863
	if (hdmi->phy.ops->update_hpd)
		hdmi->phy.ops->update_hpd(hdmi, hdmi->phy.data,
					  hdmi->force, hdmi->disabled,
					  hdmi->rxsense);
1864 1865
}

1866 1867
static enum drm_connector_status
dw_hdmi_connector_detect(struct drm_connector *connector, bool force)
1868
{
1869
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1870
					     connector);
1871

1872 1873 1874
	mutex_lock(&hdmi->mutex);
	hdmi->force = DRM_FORCE_UNSPECIFIED;
	dw_hdmi_update_power(hdmi);
1875
	dw_hdmi_update_phy_mask(hdmi);
1876 1877
	mutex_unlock(&hdmi->mutex);

1878
	return hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data);
1879 1880
}

1881
static int dw_hdmi_connector_get_modes(struct drm_connector *connector)
1882
{
1883
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1884 1885
					     connector);
	struct edid *edid;
1886
	int ret = 0;
1887 1888 1889 1890 1891 1892 1893 1894 1895

	if (!hdmi->ddc)
		return 0;

	edid = drm_get_edid(connector, hdmi->ddc);
	if (edid) {
		dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n",
			edid->width_cm, edid->height_cm);

1896
		hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid);
1897
		hdmi->sink_has_audio = drm_detect_monitor_audio(edid);
1898 1899
		drm_mode_connector_update_edid_property(connector, edid);
		ret = drm_add_edid_modes(connector, edid);
1900 1901
		/* Store the ELD */
		drm_edid_to_eld(connector, edid);
1902 1903 1904 1905 1906
		kfree(edid);
	} else {
		dev_dbg(hdmi->dev, "failed to get edid\n");
	}

1907
	return ret;
1908 1909
}

1910 1911 1912 1913 1914 1915 1916 1917
static void dw_hdmi_connector_force(struct drm_connector *connector)
{
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
					     connector);

	mutex_lock(&hdmi->mutex);
	hdmi->force = connector->force;
	dw_hdmi_update_power(hdmi);
1918
	dw_hdmi_update_phy_mask(hdmi);
1919 1920 1921
	mutex_unlock(&hdmi->mutex);
}

1922
static const struct drm_connector_funcs dw_hdmi_connector_funcs = {
1923 1924 1925
	.dpms = drm_atomic_helper_connector_dpms,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.detect = dw_hdmi_connector_detect,
1926
	.destroy = drm_connector_cleanup,
1927 1928 1929 1930 1931 1932
	.force = dw_hdmi_connector_force,
	.reset = drm_atomic_helper_connector_reset,
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};

1933
static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = {
1934
	.get_modes = dw_hdmi_connector_get_modes,
1935
	.best_encoder = drm_atomic_helper_best_encoder,
1936 1937
};

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
static int dw_hdmi_bridge_attach(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;
	struct drm_encoder *encoder = bridge->encoder;
	struct drm_connector *connector = &hdmi->connector;

	connector->interlace_allowed = 1;
	connector->polled = DRM_CONNECTOR_POLL_HPD;

	drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs);

	drm_connector_init(bridge->dev, connector, &dw_hdmi_connector_funcs,
			   DRM_MODE_CONNECTOR_HDMIA);

	drm_mode_connector_attach_encoder(connector, encoder);

	return 0;
}

1957 1958 1959
static enum drm_mode_status
dw_hdmi_bridge_mode_valid(struct drm_bridge *bridge,
			  const struct drm_display_mode *mode)
1960 1961 1962
{
	struct dw_hdmi *hdmi = bridge->driver_private;
	struct drm_connector *connector = &hdmi->connector;
1963
	enum drm_mode_status mode_status = MODE_OK;
1964

1965 1966 1967 1968 1969 1970 1971 1972
	/* We don't support double-clocked modes */
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_BAD;

	if (hdmi->plat_data->mode_valid)
		mode_status = hdmi->plat_data->mode_valid(connector, mode);

	return mode_status;
1973 1974
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge,
				    struct drm_display_mode *orig_mode,
				    struct drm_display_mode *mode)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);

	/* Store the display mode for plugin/DKMS poweron events */
	memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode));

	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_disable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = true;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_enable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = false;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

2011
static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = {
2012
	.attach = dw_hdmi_bridge_attach,
2013 2014 2015
	.enable = dw_hdmi_bridge_enable,
	.disable = dw_hdmi_bridge_disable,
	.mode_set = dw_hdmi_bridge_mode_set,
2016
	.mode_valid = dw_hdmi_bridge_mode_valid,
2017 2018
};

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	unsigned int stat;

	stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
	if (!stat)
		return IRQ_NONE;

	hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0);

	i2c->stat = stat;

	complete(&i2c->cmp);

	return IRQ_HANDLED;
}

2037
static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id)
2038
{
2039
	struct dw_hdmi *hdmi = dev_id;
2040
	u8 intr_stat;
2041 2042 2043 2044
	irqreturn_t ret = IRQ_NONE;

	if (hdmi->i2c)
		ret = dw_hdmi_i2c_irq(hdmi);
2045 2046

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
2047
	if (intr_stat) {
2048
		hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
2049 2050
		return IRQ_WAKE_THREAD;
	}
2051

2052
	return ret;
2053 2054
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
void __dw_hdmi_setup_rx_sense(struct dw_hdmi *hdmi, bool hpd, bool rx_sense)
{
	mutex_lock(&hdmi->mutex);

	if (!hdmi->force) {
		/*
		 * If the RX sense status indicates we're disconnected,
		 * clear the software rxsense status.
		 */
		if (!rx_sense)
			hdmi->rxsense = false;

		/*
		 * Only set the software rxsense status when both
		 * rxsense and hpd indicates we're connected.
		 * This avoids what seems to be bad behaviour in
		 * at least iMX6S versions of the phy.
		 */
		if (hpd)
			hdmi->rxsense = true;

		dw_hdmi_update_power(hdmi);
		dw_hdmi_update_phy_mask(hdmi);
	}
	mutex_unlock(&hdmi->mutex);
}

void dw_hdmi_setup_rx_sense(struct device *dev, bool hpd, bool rx_sense)
{
	struct dw_hdmi *hdmi = dev_get_drvdata(dev);

	__dw_hdmi_setup_rx_sense(hdmi, hpd, rx_sense);
}
EXPORT_SYMBOL_GPL(dw_hdmi_setup_rx_sense);

2090
static irqreturn_t dw_hdmi_irq(int irq, void *dev_id)
2091
{
2092
	struct dw_hdmi *hdmi = dev_id;
2093
	u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat;
2094 2095 2096

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
	phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
	phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0);

	phy_pol_mask = 0;
	if (intr_stat & HDMI_IH_PHY_STAT0_HPD)
		phy_pol_mask |= HDMI_PHY_HPD;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0)
		phy_pol_mask |= HDMI_PHY_RX_SENSE0;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1)
		phy_pol_mask |= HDMI_PHY_RX_SENSE1;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2)
		phy_pol_mask |= HDMI_PHY_RX_SENSE2;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3)
		phy_pol_mask |= HDMI_PHY_RX_SENSE3;

	if (phy_pol_mask)
		hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0);
2113

2114 2115 2116 2117 2118 2119 2120 2121
	/*
	 * RX sense tells us whether the TDMS transmitters are detecting
	 * load - in other words, there's something listening on the
	 * other end of the link.  Use this to decide whether we should
	 * power on the phy as HPD may be toggled by the sink to merely
	 * ask the source to re-read the EDID.
	 */
	if (intr_stat &
2122 2123 2124 2125
	    (HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD))
		__dw_hdmi_setup_rx_sense(hdmi,
					 phy_stat & HDMI_PHY_HPD,
					 phy_stat & HDMI_PHY_RX_SENSE);
2126 2127 2128 2129

	if (intr_stat & HDMI_IH_PHY_STAT0_HPD) {
		dev_dbg(hdmi->dev, "EVENT=%s\n",
			phy_int_pol & HDMI_PHY_HPD ? "plugin" : "plugout");
2130 2131
		if (hdmi->bridge.dev)
			drm_helper_hpd_irq_event(hdmi->bridge.dev);
2132 2133 2134
	}

	hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0);
2135 2136
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
2137 2138 2139 2140

	return IRQ_HANDLED;
}

2141 2142 2143 2144
static const struct dw_hdmi_phy_data dw_hdmi_phys[] = {
	{
		.type = DW_HDMI_PHY_DWC_HDMI_TX_PHY,
		.name = "DWC HDMI TX PHY",
2145
		.gen = 1,
2146 2147 2148
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC,
		.name = "DWC MHL PHY + HEAC PHY",
2149
		.gen = 2,
2150
		.has_svsret = true,
2151
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2152 2153 2154
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY,
		.name = "DWC MHL PHY",
2155
		.gen = 2,
2156
		.has_svsret = true,
2157
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2158 2159 2160
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC,
		.name = "DWC HDMI 3D TX PHY + HEAC PHY",
2161
		.gen = 2,
2162
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2163 2164 2165
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY,
		.name = "DWC HDMI 3D TX PHY",
2166
		.gen = 2,
2167
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
2168 2169 2170
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
		.name = "DWC HDMI 2.0 TX PHY",
2171
		.gen = 2,
2172
		.has_svsret = true,
2173 2174 2175
	}, {
		.type = DW_HDMI_PHY_VENDOR_PHY,
		.name = "Vendor PHY",
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	}
};

static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi)
{
	unsigned int i;
	u8 phy_type;

	phy_type = hdmi_readb(hdmi, HDMI_CONFIG2_ID);

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	if (phy_type == DW_HDMI_PHY_VENDOR_PHY) {
		/* Vendor PHYs require support from the glue layer. */
		if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) {
			dev_err(hdmi->dev,
				"Vendor HDMI PHY not supported by glue layer\n");
			return -ENODEV;
		}

		hdmi->phy.ops = hdmi->plat_data->phy_ops;
		hdmi->phy.data = hdmi->plat_data->phy_data;
		hdmi->phy.name = hdmi->plat_data->phy_name;
		return 0;
	}

	/* Synopsys PHYs are handled internally. */
2201 2202
	for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) {
		if (dw_hdmi_phys[i].type == phy_type) {
2203 2204 2205
			hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops;
			hdmi->phy.name = dw_hdmi_phys[i].name;
			hdmi->phy.data = (void *)&dw_hdmi_phys[i];
2206 2207 2208 2209 2210 2211 2212 2213

			if (!dw_hdmi_phys[i].configure &&
			    !hdmi->plat_data->configure_phy) {
				dev_err(hdmi->dev, "%s requires platform support\n",
					hdmi->phy.name);
				return -ENODEV;
			}

2214 2215 2216 2217
			return 0;
		}
	}

2218
	dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type);
2219 2220 2221
	return -ENODEV;
}

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
static const struct regmap_config hdmi_regmap_8bit_config = {
	.reg_bits	= 32,
	.val_bits	= 8,
	.reg_stride	= 1,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR,
};

static const struct regmap_config hdmi_regmap_32bit_config = {
	.reg_bits	= 32,
	.val_bits	= 32,
	.reg_stride	= 4,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2,
};

2236 2237 2238
static struct dw_hdmi *
__dw_hdmi_probe(struct platform_device *pdev,
		const struct dw_hdmi_plat_data *plat_data)
2239
{
2240
	struct device *dev = &pdev->dev;
2241
	struct device_node *np = dev->of_node;
2242
	struct platform_device_info pdevinfo;
2243
	struct device_node *ddc_node;
2244
	struct dw_hdmi *hdmi;
2245
	struct resource *iores = NULL;
2246
	int irq;
2247
	int ret;
2248
	u32 val = 1;
2249 2250
	u8 prod_id0;
	u8 prod_id1;
2251
	u8 config0;
2252
	u8 config3;
2253

2254
	hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
2255
	if (!hdmi)
2256
		return ERR_PTR(-ENOMEM);
2257

2258
	hdmi->plat_data = plat_data;
2259
	hdmi->dev = dev;
2260
	hdmi->sample_rate = 48000;
2261
	hdmi->disabled = true;
2262 2263
	hdmi->rxsense = true;
	hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE);
2264

2265
	mutex_init(&hdmi->mutex);
2266
	mutex_init(&hdmi->audio_mutex);
2267
	spin_lock_init(&hdmi->audio_lock);
2268

2269
	ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0);
2270
	if (ddc_node) {
2271
		hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node);
2272 2273
		of_node_put(ddc_node);
		if (!hdmi->ddc) {
2274
			dev_dbg(hdmi->dev, "failed to read ddc node\n");
2275
			return ERR_PTR(-EPROBE_DEFER);
2276
		}
2277 2278 2279 2280 2281

	} else {
		dev_dbg(hdmi->dev, "no ddc property found\n");
	}

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	if (!plat_data->regm) {
		const struct regmap_config *reg_config;

		of_property_read_u32(np, "reg-io-width", &val);
		switch (val) {
		case 4:
			reg_config = &hdmi_regmap_32bit_config;
			hdmi->reg_shift = 2;
			break;
		case 1:
			reg_config = &hdmi_regmap_8bit_config;
			break;
		default:
			dev_err(dev, "reg-io-width must be 1 or 4\n");
			return ERR_PTR(-EINVAL);
		}

		iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		hdmi->regs = devm_ioremap_resource(dev, iores);
		if (IS_ERR(hdmi->regs)) {
			ret = PTR_ERR(hdmi->regs);
			goto err_res;
		}

		hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config);
		if (IS_ERR(hdmi->regm)) {
			dev_err(dev, "Failed to configure regmap\n");
			ret = PTR_ERR(hdmi->regm);
			goto err_res;
		}
	} else {
		hdmi->regm = plat_data->regm;
2314
	}
2315 2316 2317 2318

	hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr");
	if (IS_ERR(hdmi->isfr_clk)) {
		ret = PTR_ERR(hdmi->isfr_clk);
2319
		dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret);
2320
		goto err_res;
2321 2322 2323 2324
	}

	ret = clk_prepare_enable(hdmi->isfr_clk);
	if (ret) {
2325
		dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret);
2326
		goto err_res;
2327 2328 2329 2330 2331
	}

	hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb");
	if (IS_ERR(hdmi->iahb_clk)) {
		ret = PTR_ERR(hdmi->iahb_clk);
2332
		dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret);
2333 2334 2335 2336 2337
		goto err_isfr;
	}

	ret = clk_prepare_enable(hdmi->iahb_clk);
	if (ret) {
2338
		dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret);
2339 2340 2341 2342
		goto err_isfr;
	}

	/* Product and revision IDs */
2343 2344
	hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8)
		      | (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0);
2345 2346 2347 2348 2349 2350
	prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0);
	prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1);

	if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX ||
	    (prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) {
		dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n",
2351
			hdmi->version, prod_id0, prod_id1);
2352 2353 2354 2355
		ret = -ENODEV;
		goto err_iahb;
	}

2356 2357 2358 2359 2360
	ret = dw_hdmi_detect_phy(hdmi);
	if (ret < 0)
		goto err_iahb;

	dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n",
2361
		 hdmi->version >> 12, hdmi->version & 0xfff,
2362
		 prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without",
2363
		 hdmi->phy.name);
2364 2365 2366

	initialize_hdmi_ih_mutes(hdmi);

2367
	irq = platform_get_irq(pdev, 0);
2368 2369
	if (irq < 0) {
		ret = irq;
2370
		goto err_iahb;
2371
	}
2372

2373 2374 2375 2376
	ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq,
					dw_hdmi_irq, IRQF_SHARED,
					dev_name(dev), hdmi);
	if (ret)
2377
		goto err_iahb;
2378

2379 2380 2381 2382 2383 2384
	/*
	 * To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator
	 * N and cts values before enabling phy
	 */
	hdmi_init_clk_regenerator(hdmi);

2385 2386 2387 2388 2389 2390 2391
	/* If DDC bus is not specified, try to register HDMI I2C bus */
	if (!hdmi->ddc) {
		hdmi->ddc = dw_hdmi_i2c_adapter(hdmi);
		if (IS_ERR(hdmi->ddc))
			hdmi->ddc = NULL;
	}

2392 2393
	hdmi->bridge.driver_private = hdmi;
	hdmi->bridge.funcs = &dw_hdmi_bridge_funcs;
2394
#ifdef CONFIG_OF
2395
	hdmi->bridge.of_node = pdev->dev.of_node;
2396
#endif
2397

2398
	dw_hdmi_setup_i2c(hdmi);
2399 2400
	if (hdmi->phy.ops->setup_hpd)
		hdmi->phy.ops->setup_hpd(hdmi, hdmi->phy.data);
2401

2402 2403 2404 2405
	memset(&pdevinfo, 0, sizeof(pdevinfo));
	pdevinfo.parent = dev;
	pdevinfo.id = PLATFORM_DEVID_AUTO;

2406
	config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID);
2407
	config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID);
2408

2409
	if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) {
2410 2411
		struct dw_hdmi_audio_data audio;

2412 2413 2414 2415
		audio.phys = iores->start;
		audio.base = hdmi->regs;
		audio.irq = irq;
		audio.hdmi = hdmi;
2416
		audio.eld = hdmi->connector.eld;
2417 2418
		hdmi->enable_audio = dw_hdmi_ahb_audio_enable;
		hdmi->disable_audio = dw_hdmi_ahb_audio_disable;
2419 2420 2421 2422 2423 2424

		pdevinfo.name = "dw-hdmi-ahb-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2425 2426 2427 2428 2429 2430
	} else if (config0 & HDMI_CONFIG0_I2S) {
		struct dw_hdmi_i2s_audio_data audio;

		audio.hdmi	= hdmi;
		audio.write	= hdmi_writeb;
		audio.read	= hdmi_readb;
2431
		hdmi->enable_audio = dw_hdmi_i2s_audio_enable;
2432
		hdmi->disable_audio = dw_hdmi_i2s_audio_disable;
2433 2434 2435 2436 2437 2438

		pdevinfo.name = "dw-hdmi-i2s-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2439 2440
	}

2441 2442 2443 2444
	/* Reset HDMI DDC I2C master controller and mute I2CM interrupts */
	if (hdmi->i2c)
		dw_hdmi_i2c_init(hdmi);

2445
	platform_set_drvdata(pdev, hdmi);
2446

2447
	return hdmi;
2448 2449

err_iahb:
2450 2451 2452 2453 2454
	if (hdmi->i2c) {
		i2c_del_adapter(&hdmi->i2c->adap);
		hdmi->ddc = NULL;
	}

2455 2456 2457
	clk_disable_unprepare(hdmi->iahb_clk);
err_isfr:
	clk_disable_unprepare(hdmi->isfr_clk);
2458 2459
err_res:
	i2c_put_adapter(hdmi->ddc);
2460

2461
	return ERR_PTR(ret);
2462 2463
}

2464
static void __dw_hdmi_remove(struct dw_hdmi *hdmi)
2465
{
2466 2467 2468
	if (hdmi->audio && !IS_ERR(hdmi->audio))
		platform_device_unregister(hdmi->audio);

2469 2470 2471
	/* Disable all interrupts */
	hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);

2472 2473
	clk_disable_unprepare(hdmi->iahb_clk);
	clk_disable_unprepare(hdmi->isfr_clk);
2474 2475 2476 2477 2478

	if (hdmi->i2c)
		i2c_del_adapter(&hdmi->i2c->adap);
	else
		i2c_put_adapter(hdmi->ddc);
2479
}
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

/* -----------------------------------------------------------------------------
 * Probe/remove API, used from platforms based on the DRM bridge API.
 */
int dw_hdmi_probe(struct platform_device *pdev,
		  const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

2493
	drm_bridge_add(&hdmi->bridge);
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_probe);

void dw_hdmi_remove(struct platform_device *pdev)
{
	struct dw_hdmi *hdmi = platform_get_drvdata(pdev);

	drm_bridge_remove(&hdmi->bridge);

	__dw_hdmi_remove(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_remove);

/* -----------------------------------------------------------------------------
 * Bind/unbind API, used from platforms based on the component framework.
 */
int dw_hdmi_bind(struct platform_device *pdev, struct drm_encoder *encoder,
		 const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;
	int ret;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

	ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL);
	if (ret) {
		dw_hdmi_remove(pdev);
		DRM_ERROR("Failed to initialize bridge with drm\n");
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_bind);

void dw_hdmi_unbind(struct device *dev)
{
	struct dw_hdmi *hdmi = dev_get_drvdata(dev);

	__dw_hdmi_remove(hdmi);
}
2539
EXPORT_SYMBOL_GPL(dw_hdmi_unbind);
2540 2541

MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
2542 2543
MODULE_AUTHOR("Andy Yan <andy.yan@rock-chips.com>");
MODULE_AUTHOR("Yakir Yang <ykk@rock-chips.com>");
2544
MODULE_AUTHOR("Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com>");
2545
MODULE_DESCRIPTION("DW HDMI transmitter driver");
2546
MODULE_LICENSE("GPL");
2547
MODULE_ALIAS("platform:dw-hdmi");