dw-hdmi.c 64.3 KB
Newer Older
1
/*
2 3 4
 * DesignWare High-Definition Multimedia Interface (HDMI) driver
 *
 * Copyright (C) 2013-2015 Mentor Graphics Inc.
5
 * Copyright (C) 2011-2013 Freescale Semiconductor, Inc.
6
 * Copyright (C) 2010, Guennadi Liakhovetski <g.liakhovetski@gmx.de>
7 8 9 10 11 12 13
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */
14
#include <linux/module.h>
15 16 17 18
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
S
Sachin Kamat 已提交
19
#include <linux/hdmi.h>
20
#include <linux/mutex.h>
21
#include <linux/of_device.h>
22
#include <linux/regmap.h>
23
#include <linux/spinlock.h>
24

25
#include <drm/drm_of.h>
26
#include <drm/drmP.h>
27
#include <drm/drm_atomic_helper.h>
28 29 30
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_encoder_slave.h>
31
#include <drm/bridge/dw_hdmi.h>
32

33 34
#include "dw-hdmi.h"
#include "dw-hdmi-audio.h"
35

36
#define DDC_SEGMENT_ADDR	0x30
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
#define HDMI_EDID_LEN		512

#define RGB			0
#define YCBCR444		1
#define YCBCR422_16BITS		2
#define YCBCR422_8BITS		3
#define XVYCC444		4

enum hdmi_datamap {
	RGB444_8B = 0x01,
	RGB444_10B = 0x03,
	RGB444_12B = 0x05,
	RGB444_16B = 0x07,
	YCbCr444_8B = 0x09,
	YCbCr444_10B = 0x0B,
	YCbCr444_12B = 0x0D,
	YCbCr444_16B = 0x0F,
	YCbCr422_8B = 0x16,
	YCbCr422_10B = 0x14,
	YCbCr422_12B = 0x12,
};

static const u16 csc_coeff_default[3][4] = {
	{ 0x2000, 0x0000, 0x0000, 0x0000 },
	{ 0x0000, 0x2000, 0x0000, 0x0000 },
	{ 0x0000, 0x0000, 0x2000, 0x0000 }
};

static const u16 csc_coeff_rgb_out_eitu601[3][4] = {
	{ 0x2000, 0x6926, 0x74fd, 0x010e },
	{ 0x2000, 0x2cdd, 0x0000, 0x7e9a },
	{ 0x2000, 0x0000, 0x38b4, 0x7e3b }
};

static const u16 csc_coeff_rgb_out_eitu709[3][4] = {
	{ 0x2000, 0x7106, 0x7a02, 0x00a7 },
	{ 0x2000, 0x3264, 0x0000, 0x7e6d },
	{ 0x2000, 0x0000, 0x3b61, 0x7e25 }
};

static const u16 csc_coeff_rgb_in_eitu601[3][4] = {
	{ 0x2591, 0x1322, 0x074b, 0x0000 },
	{ 0x6535, 0x2000, 0x7acc, 0x0200 },
	{ 0x6acd, 0x7534, 0x2000, 0x0200 }
};

static const u16 csc_coeff_rgb_in_eitu709[3][4] = {
	{ 0x2dc5, 0x0d9b, 0x049e, 0x0000 },
	{ 0x62f0, 0x2000, 0x7d11, 0x0200 },
	{ 0x6756, 0x78ab, 0x2000, 0x0200 }
};

struct hdmi_vmode {
	bool mdataenablepolarity;

	unsigned int mpixelclock;
	unsigned int mpixelrepetitioninput;
	unsigned int mpixelrepetitionoutput;
};

struct hdmi_data_info {
	unsigned int enc_in_format;
	unsigned int enc_out_format;
	unsigned int enc_color_depth;
	unsigned int colorimetry;
	unsigned int pix_repet_factor;
	unsigned int hdcp_enable;
	struct hdmi_vmode video_mode;
};

107 108 109 110 111 112 113 114 115
struct dw_hdmi_i2c {
	struct i2c_adapter	adap;

	struct mutex		lock;	/* used to serialize data transfers */
	struct completion	cmp;
	u8			stat;

	u8			slave_reg;
	bool			is_regaddr;
116
	bool			is_segment;
117 118
};

119 120 121
struct dw_hdmi_phy_data {
	enum dw_hdmi_phy_type type;
	const char *name;
122
	unsigned int gen;
123
	bool has_svsret;
124 125 126
	int (*configure)(struct dw_hdmi *hdmi,
			 const struct dw_hdmi_plat_data *pdata,
			 unsigned long mpixelclock);
127 128
};

129
struct dw_hdmi {
130
	struct drm_connector connector;
131
	struct drm_bridge bridge;
132

133 134 135
	unsigned int version;

	struct platform_device *audio;
136 137 138
	struct device *dev;
	struct clk *isfr_clk;
	struct clk *iahb_clk;
139
	struct dw_hdmi_i2c *i2c;
140 141

	struct hdmi_data_info hdmi_data;
142 143
	const struct dw_hdmi_plat_data *plat_data;

144 145 146 147 148
	int vic;

	u8 edid[HDMI_EDID_LEN];
	bool cable_plugin;

149 150 151 152 153 154
	struct {
		const struct dw_hdmi_phy_ops *ops;
		const char *name;
		void *data;
		bool enabled;
	} phy;
155

156 157 158 159
	struct drm_display_mode previous_mode;

	struct i2c_adapter *ddc;
	void __iomem *regs;
160
	bool sink_is_hdmi;
161
	bool sink_has_audio;
162

163
	struct mutex mutex;		/* for state below and previous_mode */
164
	enum drm_connector_force force;	/* mutex-protected force state */
165
	bool disabled;			/* DRM has disabled our bridge */
166
	bool bridge_is_on;		/* indicates the bridge is on */
167 168
	bool rxsense;			/* rxsense state */
	u8 phy_mask;			/* desired phy int mask settings */
169

170
	spinlock_t audio_lock;
171
	struct mutex audio_mutex;
172
	unsigned int sample_rate;
173 174 175
	unsigned int audio_cts;
	unsigned int audio_n;
	bool audio_enable;
176

177 178
	unsigned int reg_shift;
	struct regmap *regm;
179 180
};

181 182 183 184 185 186 187 188
#define HDMI_IH_PHY_STAT0_RX_SENSE \
	(HDMI_IH_PHY_STAT0_RX_SENSE0 | HDMI_IH_PHY_STAT0_RX_SENSE1 | \
	 HDMI_IH_PHY_STAT0_RX_SENSE2 | HDMI_IH_PHY_STAT0_RX_SENSE3)

#define HDMI_PHY_RX_SENSE \
	(HDMI_PHY_RX_SENSE0 | HDMI_PHY_RX_SENSE1 | \
	 HDMI_PHY_RX_SENSE2 | HDMI_PHY_RX_SENSE3)

189 190
static inline void hdmi_writeb(struct dw_hdmi *hdmi, u8 val, int offset)
{
191
	regmap_write(hdmi->regm, offset << hdmi->reg_shift, val);
192 193 194 195
}

static inline u8 hdmi_readb(struct dw_hdmi *hdmi, int offset)
{
196 197 198 199 200
	unsigned int val = 0;

	regmap_read(hdmi->regm, offset << hdmi->reg_shift, &val);

	return val;
201 202
}

203
static void hdmi_modb(struct dw_hdmi *hdmi, u8 data, u8 mask, unsigned reg)
204
{
205
	regmap_update_bits(hdmi->regm, reg << hdmi->reg_shift, mask, data);
206 207
}

208
static void hdmi_mask_writeb(struct dw_hdmi *hdmi, u8 data, unsigned int reg,
209
			     u8 shift, u8 mask)
210
{
211
	hdmi_modb(hdmi, data << shift, mask, reg);
212 213
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
static void dw_hdmi_i2c_init(struct dw_hdmi *hdmi)
{
	/* Software reset */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_SOFTRSTZ);

	/* Set Standard Mode speed (determined to be 100KHz on iMX6) */
	hdmi_writeb(hdmi, 0x00, HDMI_I2CM_DIV);

	/* Set done, not acknowledged and arbitration interrupt polarities */
	hdmi_writeb(hdmi, HDMI_I2CM_INT_DONE_POL, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, HDMI_I2CM_CTLINT_NAC_POL | HDMI_I2CM_CTLINT_ARB_POL,
		    HDMI_I2CM_CTLINT);

	/* Clear DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_I2CM_STAT0);

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);
}

static int dw_hdmi_i2c_read(struct dw_hdmi *hdmi,
			    unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		dev_dbg(hdmi->dev, "set read register address to 0\n");
		i2c->slave_reg = 0x00;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
252 253 254 255 256 257
		if (i2c->is_segment)
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ_EXT,
				    HDMI_I2CM_OPERATION);
		else
			hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_READ,
				    HDMI_I2CM_OPERATION);
258 259 260 261 262 263 264 265 266 267 268

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;

		*buf++ = hdmi_readb(hdmi, HDMI_I2CM_DATAI);
	}
269
	i2c->is_segment = false;
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

	return 0;
}

static int dw_hdmi_i2c_write(struct dw_hdmi *hdmi,
			     unsigned char *buf, unsigned int length)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	int stat;

	if (!i2c->is_regaddr) {
		/* Use the first write byte as register address */
		i2c->slave_reg = buf[0];
		length--;
		buf++;
		i2c->is_regaddr = true;
	}

	while (length--) {
		reinit_completion(&i2c->cmp);

		hdmi_writeb(hdmi, *buf++, HDMI_I2CM_DATAO);
		hdmi_writeb(hdmi, i2c->slave_reg++, HDMI_I2CM_ADDRESS);
		hdmi_writeb(hdmi, HDMI_I2CM_OPERATION_WRITE,
			    HDMI_I2CM_OPERATION);

		stat = wait_for_completion_timeout(&i2c->cmp, HZ / 10);
		if (!stat)
			return -EAGAIN;

		/* Check for error condition on the bus */
		if (i2c->stat & HDMI_IH_I2CM_STAT0_ERROR)
			return -EIO;
	}

	return 0;
}

static int dw_hdmi_i2c_xfer(struct i2c_adapter *adap,
			    struct i2c_msg *msgs, int num)
{
	struct dw_hdmi *hdmi = i2c_get_adapdata(adap);
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	u8 addr = msgs[0].addr;
	int i, ret = 0;

	dev_dbg(hdmi->dev, "xfer: num: %d, addr: %#x\n", num, addr);

	for (i = 0; i < num; i++) {
		if (msgs[i].len == 0) {
			dev_dbg(hdmi->dev,
				"unsupported transfer %d/%d, no data\n",
				i + 1, num);
			return -EOPNOTSUPP;
		}
	}

	mutex_lock(&i2c->lock);

	/* Unmute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, 0x00, HDMI_IH_MUTE_I2CM_STAT0);

	/* Set slave device address taken from the first I2C message */
	hdmi_writeb(hdmi, addr, HDMI_I2CM_SLAVE);

	/* Set slave device register address on transfer */
	i2c->is_regaddr = false;

338 339 340
	/* Set segment pointer for I2C extended read mode operation */
	i2c->is_segment = false;

341 342 343
	for (i = 0; i < num; i++) {
		dev_dbg(hdmi->dev, "xfer: num: %d/%d, len: %d, flags: %#x\n",
			i + 1, num, msgs[i].len, msgs[i].flags);
344 345 346 347 348 349 350 351 352 353 354 355
		if (msgs[i].addr == DDC_SEGMENT_ADDR && msgs[i].len == 1) {
			i2c->is_segment = true;
			hdmi_writeb(hdmi, DDC_SEGMENT_ADDR, HDMI_I2CM_SEGADDR);
			hdmi_writeb(hdmi, *msgs[i].buf, HDMI_I2CM_SEGPTR);
		} else {
			if (msgs[i].flags & I2C_M_RD)
				ret = dw_hdmi_i2c_read(hdmi, msgs[i].buf,
						       msgs[i].len);
			else
				ret = dw_hdmi_i2c_write(hdmi, msgs[i].buf,
							msgs[i].len);
		}
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
		if (ret < 0)
			break;
	}

	if (!ret)
		ret = num;

	/* Mute DONE and ERROR interrupts */
	hdmi_writeb(hdmi, HDMI_IH_I2CM_STAT0_ERROR | HDMI_IH_I2CM_STAT0_DONE,
		    HDMI_IH_MUTE_I2CM_STAT0);

	mutex_unlock(&i2c->lock);

	return ret;
}

static u32 dw_hdmi_i2c_func(struct i2c_adapter *adapter)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}

static const struct i2c_algorithm dw_hdmi_algorithm = {
	.master_xfer	= dw_hdmi_i2c_xfer,
	.functionality	= dw_hdmi_i2c_func,
};

static struct i2c_adapter *dw_hdmi_i2c_adapter(struct dw_hdmi *hdmi)
{
	struct i2c_adapter *adap;
	struct dw_hdmi_i2c *i2c;
	int ret;

	i2c = devm_kzalloc(hdmi->dev, sizeof(*i2c), GFP_KERNEL);
	if (!i2c)
		return ERR_PTR(-ENOMEM);

	mutex_init(&i2c->lock);
	init_completion(&i2c->cmp);

	adap = &i2c->adap;
	adap->class = I2C_CLASS_DDC;
	adap->owner = THIS_MODULE;
	adap->dev.parent = hdmi->dev;
	adap->algo = &dw_hdmi_algorithm;
	strlcpy(adap->name, "DesignWare HDMI", sizeof(adap->name));
	i2c_set_adapdata(adap, hdmi);

	ret = i2c_add_adapter(adap);
	if (ret) {
		dev_warn(hdmi->dev, "cannot add %s I2C adapter\n", adap->name);
		devm_kfree(hdmi->dev, i2c);
		return ERR_PTR(ret);
	}

	hdmi->i2c = i2c;

	dev_info(hdmi->dev, "registered %s I2C bus driver\n", adap->name);

	return adap;
}

417 418
static void hdmi_set_cts_n(struct dw_hdmi *hdmi, unsigned int cts,
			   unsigned int n)
419
{
420 421
	/* Must be set/cleared first */
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
422 423

	/* nshift factor = 0 */
424
	hdmi_modb(hdmi, 0, HDMI_AUD_CTS3_N_SHIFT_MASK, HDMI_AUD_CTS3);
425 426 427

	hdmi_writeb(hdmi, ((cts >> 16) & HDMI_AUD_CTS3_AUDCTS19_16_MASK) |
		    HDMI_AUD_CTS3_CTS_MANUAL, HDMI_AUD_CTS3);
428 429 430 431 432 433
	hdmi_writeb(hdmi, (cts >> 8) & 0xff, HDMI_AUD_CTS2);
	hdmi_writeb(hdmi, cts & 0xff, HDMI_AUD_CTS1);

	hdmi_writeb(hdmi, (n >> 16) & 0x0f, HDMI_AUD_N3);
	hdmi_writeb(hdmi, (n >> 8) & 0xff, HDMI_AUD_N2);
	hdmi_writeb(hdmi, n & 0xff, HDMI_AUD_N1);
434 435
}

436
static unsigned int hdmi_compute_n(unsigned int freq, unsigned long pixel_clk)
437 438
{
	unsigned int n = (128 * freq) / 1000;
439 440 441 442 443 444
	unsigned int mult = 1;

	while (freq > 48000) {
		mult *= 2;
		freq /= 2;
	}
445 446 447

	switch (freq) {
	case 32000:
448
		if (pixel_clk == 25175000)
449
			n = 4576;
450
		else if (pixel_clk == 27027000)
451
			n = 4096;
452
		else if (pixel_clk == 74176000 || pixel_clk == 148352000)
453 454 455
			n = 11648;
		else
			n = 4096;
456
		n *= mult;
457 458 459
		break;

	case 44100:
460
		if (pixel_clk == 25175000)
461
			n = 7007;
462
		else if (pixel_clk == 74176000)
463
			n = 17836;
464
		else if (pixel_clk == 148352000)
465
			n = 8918;
466 467
		else
			n = 6272;
468
		n *= mult;
469 470 471
		break;

	case 48000:
472
		if (pixel_clk == 25175000)
473
			n = 6864;
474
		else if (pixel_clk == 27027000)
475
			n = 6144;
476
		else if (pixel_clk == 74176000)
477
			n = 11648;
478
		else if (pixel_clk == 148352000)
479
			n = 5824;
480 481
		else
			n = 6144;
482
		n *= mult;
483 484 485 486 487 488 489 490 491
		break;

	default:
		break;
	}

	return n;
}

492
static void hdmi_set_clk_regenerator(struct dw_hdmi *hdmi,
493
	unsigned long pixel_clk, unsigned int sample_rate)
494
{
495
	unsigned long ftdms = pixel_clk;
496
	unsigned int n, cts;
497
	u64 tmp;
498

499
	n = hdmi_compute_n(sample_rate, pixel_clk);
500

501 502 503 504 505 506 507 508 509 510 511 512 513 514
	/*
	 * Compute the CTS value from the N value.  Note that CTS and N
	 * can be up to 20 bits in total, so we need 64-bit math.  Also
	 * note that our TDMS clock is not fully accurate; it is accurate
	 * to kHz.  This can introduce an unnecessary remainder in the
	 * calculation below, so we don't try to warn about that.
	 */
	tmp = (u64)ftdms * n;
	do_div(tmp, 128 * sample_rate);
	cts = tmp;

	dev_dbg(hdmi->dev, "%s: fs=%uHz ftdms=%lu.%03luMHz N=%d cts=%d\n",
		__func__, sample_rate, ftdms / 1000000, (ftdms / 1000) % 1000,
		n, cts);
515

516 517 518 519 520
	spin_lock_irq(&hdmi->audio_lock);
	hdmi->audio_n = n;
	hdmi->audio_cts = cts;
	hdmi_set_cts_n(hdmi, cts, hdmi->audio_enable ? n : 0);
	spin_unlock_irq(&hdmi->audio_lock);
521 522
}

523
static void hdmi_init_clk_regenerator(struct dw_hdmi *hdmi)
524
{
525
	mutex_lock(&hdmi->audio_mutex);
526
	hdmi_set_clk_regenerator(hdmi, 74250000, hdmi->sample_rate);
527
	mutex_unlock(&hdmi->audio_mutex);
528 529
}

530
static void hdmi_clk_regenerator_update_pixel_clock(struct dw_hdmi *hdmi)
531
{
532
	mutex_lock(&hdmi->audio_mutex);
533
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
534
				 hdmi->sample_rate);
535
	mutex_unlock(&hdmi->audio_mutex);
536 537
}

538 539 540 541 542
void dw_hdmi_set_sample_rate(struct dw_hdmi *hdmi, unsigned int rate)
{
	mutex_lock(&hdmi->audio_mutex);
	hdmi->sample_rate = rate;
	hdmi_set_clk_regenerator(hdmi, hdmi->hdmi_data.video_mode.mpixelclock,
543
				 hdmi->sample_rate);
544 545 546 547
	mutex_unlock(&hdmi->audio_mutex);
}
EXPORT_SYMBOL_GPL(dw_hdmi_set_sample_rate);

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
void dw_hdmi_audio_enable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = true;
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, hdmi->audio_n);
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_enable);

void dw_hdmi_audio_disable(struct dw_hdmi *hdmi)
{
	unsigned long flags;

	spin_lock_irqsave(&hdmi->audio_lock, flags);
	hdmi->audio_enable = false;
	hdmi_set_cts_n(hdmi, hdmi->audio_cts, 0);
	spin_unlock_irqrestore(&hdmi->audio_lock, flags);
}
EXPORT_SYMBOL_GPL(dw_hdmi_audio_disable);

570 571 572 573 574 575 576
/*
 * this submodule is responsible for the video data synchronization.
 * for example, for RGB 4:4:4 input, the data map is defined as
 *			pin{47~40} <==> R[7:0]
 *			pin{31~24} <==> G[7:0]
 *			pin{15~8}  <==> B[7:0]
 */
577
static void hdmi_video_sample(struct dw_hdmi *hdmi)
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
{
	int color_format = 0;
	u8 val;

	if (hdmi->hdmi_data.enc_in_format == RGB) {
		if (hdmi->hdmi_data.enc_color_depth == 8)
			color_format = 0x01;
		else if (hdmi->hdmi_data.enc_color_depth == 10)
			color_format = 0x03;
		else if (hdmi->hdmi_data.enc_color_depth == 12)
			color_format = 0x05;
		else if (hdmi->hdmi_data.enc_color_depth == 16)
			color_format = 0x07;
		else
			return;
	} else if (hdmi->hdmi_data.enc_in_format == YCBCR444) {
		if (hdmi->hdmi_data.enc_color_depth == 8)
			color_format = 0x09;
		else if (hdmi->hdmi_data.enc_color_depth == 10)
			color_format = 0x0B;
		else if (hdmi->hdmi_data.enc_color_depth == 12)
			color_format = 0x0D;
		else if (hdmi->hdmi_data.enc_color_depth == 16)
			color_format = 0x0F;
		else
			return;
	} else if (hdmi->hdmi_data.enc_in_format == YCBCR422_8BITS) {
		if (hdmi->hdmi_data.enc_color_depth == 8)
			color_format = 0x16;
		else if (hdmi->hdmi_data.enc_color_depth == 10)
			color_format = 0x14;
		else if (hdmi->hdmi_data.enc_color_depth == 12)
			color_format = 0x12;
		else
			return;
	}

	val = HDMI_TX_INVID0_INTERNAL_DE_GENERATOR_DISABLE |
		((color_format << HDMI_TX_INVID0_VIDEO_MAPPING_OFFSET) &
		HDMI_TX_INVID0_VIDEO_MAPPING_MASK);
	hdmi_writeb(hdmi, val, HDMI_TX_INVID0);

	/* Enable TX stuffing: When DE is inactive, fix the output data to 0 */
	val = HDMI_TX_INSTUFFING_BDBDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_RCRDATA_STUFFING_ENABLE |
		HDMI_TX_INSTUFFING_GYDATA_STUFFING_ENABLE;
	hdmi_writeb(hdmi, val, HDMI_TX_INSTUFFING);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_GYDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_RCRDATA1);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA0);
	hdmi_writeb(hdmi, 0x0, HDMI_TX_BCBDATA1);
}

633
static int is_color_space_conversion(struct dw_hdmi *hdmi)
634
{
635
	return hdmi->hdmi_data.enc_in_format != hdmi->hdmi_data.enc_out_format;
636 637
}

638
static int is_color_space_decimation(struct dw_hdmi *hdmi)
639
{
640 641 642 643 644 645
	if (hdmi->hdmi_data.enc_out_format != YCBCR422_8BITS)
		return 0;
	if (hdmi->hdmi_data.enc_in_format == RGB ||
	    hdmi->hdmi_data.enc_in_format == YCBCR444)
		return 1;
	return 0;
646 647
}

648
static int is_color_space_interpolation(struct dw_hdmi *hdmi)
649
{
650 651 652 653 654 655
	if (hdmi->hdmi_data.enc_in_format != YCBCR422_8BITS)
		return 0;
	if (hdmi->hdmi_data.enc_out_format == RGB ||
	    hdmi->hdmi_data.enc_out_format == YCBCR444)
		return 1;
	return 0;
656 657
}

658
static void dw_hdmi_update_csc_coeffs(struct dw_hdmi *hdmi)
659 660
{
	const u16 (*csc_coeff)[3][4] = &csc_coeff_default;
661
	unsigned i;
662 663 664 665
	u32 csc_scale = 1;

	if (is_color_space_conversion(hdmi)) {
		if (hdmi->hdmi_data.enc_out_format == RGB) {
666 667
			if (hdmi->hdmi_data.colorimetry ==
					HDMI_COLORIMETRY_ITU_601)
668 669 670 671
				csc_coeff = &csc_coeff_rgb_out_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_out_eitu709;
		} else if (hdmi->hdmi_data.enc_in_format == RGB) {
672 673
			if (hdmi->hdmi_data.colorimetry ==
					HDMI_COLORIMETRY_ITU_601)
674 675 676 677 678 679 680
				csc_coeff = &csc_coeff_rgb_in_eitu601;
			else
				csc_coeff = &csc_coeff_rgb_in_eitu709;
			csc_scale = 0;
		}
	}

681 682 683 684 685 686
	/* The CSC registers are sequential, alternating MSB then LSB */
	for (i = 0; i < ARRAY_SIZE(csc_coeff_default[0]); i++) {
		u16 coeff_a = (*csc_coeff)[0][i];
		u16 coeff_b = (*csc_coeff)[1][i];
		u16 coeff_c = (*csc_coeff)[2][i];

687
		hdmi_writeb(hdmi, coeff_a & 0xff, HDMI_CSC_COEF_A1_LSB + i * 2);
688 689 690
		hdmi_writeb(hdmi, coeff_a >> 8, HDMI_CSC_COEF_A1_MSB + i * 2);
		hdmi_writeb(hdmi, coeff_b & 0xff, HDMI_CSC_COEF_B1_LSB + i * 2);
		hdmi_writeb(hdmi, coeff_b >> 8, HDMI_CSC_COEF_B1_MSB + i * 2);
691
		hdmi_writeb(hdmi, coeff_c & 0xff, HDMI_CSC_COEF_C1_LSB + i * 2);
692 693
		hdmi_writeb(hdmi, coeff_c >> 8, HDMI_CSC_COEF_C1_MSB + i * 2);
	}
694

695 696
	hdmi_modb(hdmi, csc_scale, HDMI_CSC_SCALE_CSCSCALE_MASK,
		  HDMI_CSC_SCALE);
697 698
}

699
static void hdmi_video_csc(struct dw_hdmi *hdmi)
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
{
	int color_depth = 0;
	int interpolation = HDMI_CSC_CFG_INTMODE_DISABLE;
	int decimation = 0;

	/* YCC422 interpolation to 444 mode */
	if (is_color_space_interpolation(hdmi))
		interpolation = HDMI_CSC_CFG_INTMODE_CHROMA_INT_FORMULA1;
	else if (is_color_space_decimation(hdmi))
		decimation = HDMI_CSC_CFG_DECMODE_CHROMA_INT_FORMULA3;

	if (hdmi->hdmi_data.enc_color_depth == 8)
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_24BPP;
	else if (hdmi->hdmi_data.enc_color_depth == 10)
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_30BPP;
	else if (hdmi->hdmi_data.enc_color_depth == 12)
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_36BPP;
	else if (hdmi->hdmi_data.enc_color_depth == 16)
		color_depth = HDMI_CSC_SCALE_CSC_COLORDE_PTH_48BPP;
	else
		return;

	/* Configure the CSC registers */
	hdmi_writeb(hdmi, interpolation | decimation, HDMI_CSC_CFG);
724 725
	hdmi_modb(hdmi, color_depth, HDMI_CSC_SCALE_CSC_COLORDE_PTH_MASK,
		  HDMI_CSC_SCALE);
726

727
	dw_hdmi_update_csc_coeffs(hdmi);
728 729 730 731 732 733 734
}

/*
 * HDMI video packetizer is used to packetize the data.
 * for example, if input is YCC422 mode or repeater is used,
 * data should be repacked this module can be bypassed.
 */
735
static void hdmi_video_packetize(struct dw_hdmi *hdmi)
736 737 738 739 740
{
	unsigned int color_depth = 0;
	unsigned int remap_size = HDMI_VP_REMAP_YCC422_16bit;
	unsigned int output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_PP;
	struct hdmi_data_info *hdmi_data = &hdmi->hdmi_data;
741
	u8 val, vp_conf;
742

743 744 745
	if (hdmi_data->enc_out_format == RGB ||
	    hdmi_data->enc_out_format == YCBCR444) {
		if (!hdmi_data->enc_color_depth) {
746
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
747
		} else if (hdmi_data->enc_color_depth == 8) {
748 749
			color_depth = 4;
			output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS;
750
		} else if (hdmi_data->enc_color_depth == 10) {
751
			color_depth = 5;
752
		} else if (hdmi_data->enc_color_depth == 12) {
753
			color_depth = 6;
754
		} else if (hdmi_data->enc_color_depth == 16) {
755
			color_depth = 7;
756
		} else {
757
			return;
758
		}
759 760 761 762 763 764 765 766 767 768 769
	} else if (hdmi_data->enc_out_format == YCBCR422_8BITS) {
		if (!hdmi_data->enc_color_depth ||
		    hdmi_data->enc_color_depth == 8)
			remap_size = HDMI_VP_REMAP_YCC422_16bit;
		else if (hdmi_data->enc_color_depth == 10)
			remap_size = HDMI_VP_REMAP_YCC422_20bit;
		else if (hdmi_data->enc_color_depth == 12)
			remap_size = HDMI_VP_REMAP_YCC422_24bit;
		else
			return;
		output_select = HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422;
770
	} else {
771
		return;
772
	}
773 774 775 776 777 778 779 780 781

	/* set the packetizer registers */
	val = ((color_depth << HDMI_VP_PR_CD_COLOR_DEPTH_OFFSET) &
		HDMI_VP_PR_CD_COLOR_DEPTH_MASK) |
		((hdmi_data->pix_repet_factor <<
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_OFFSET) &
		HDMI_VP_PR_CD_DESIRED_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_VP_PR_CD);

782 783
	hdmi_modb(hdmi, HDMI_VP_STUFF_PR_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PR_STUFFING_MASK, HDMI_VP_STUFF);
784 785 786

	/* Data from pixel repeater block */
	if (hdmi_data->pix_repet_factor > 1) {
787 788
		vp_conf = HDMI_VP_CONF_PR_EN_ENABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_PIX_REPEATER;
789
	} else { /* data from packetizer block */
790 791
		vp_conf = HDMI_VP_CONF_PR_EN_DISABLE |
			  HDMI_VP_CONF_BYPASS_SELECT_VID_PACKETIZER;
792 793
	}

794 795 796 797
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_PR_EN_MASK |
		  HDMI_VP_CONF_BYPASS_SELECT_MASK, HDMI_VP_CONF);

798 799
	hdmi_modb(hdmi, 1 << HDMI_VP_STUFF_IDEFAULT_PHASE_OFFSET,
		  HDMI_VP_STUFF_IDEFAULT_PHASE_MASK, HDMI_VP_STUFF);
800 801 802 803

	hdmi_writeb(hdmi, remap_size, HDMI_VP_REMAP);

	if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_PP) {
804 805 806
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_ENABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
807
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_YCC422) {
808 809 810
		vp_conf = HDMI_VP_CONF_BYPASS_EN_DISABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_ENABLE;
811
	} else if (output_select == HDMI_VP_CONF_OUTPUT_SELECTOR_BYPASS) {
812 813 814
		vp_conf = HDMI_VP_CONF_BYPASS_EN_ENABLE |
			  HDMI_VP_CONF_PP_EN_DISABLE |
			  HDMI_VP_CONF_YCC422_EN_DISABLE;
815 816 817 818
	} else {
		return;
	}

819 820 821 822
	hdmi_modb(hdmi, vp_conf,
		  HDMI_VP_CONF_BYPASS_EN_MASK | HDMI_VP_CONF_PP_EN_ENMASK |
		  HDMI_VP_CONF_YCC422_EN_MASK, HDMI_VP_CONF);

823 824 825 826
	hdmi_modb(hdmi, HDMI_VP_STUFF_PP_STUFFING_STUFFING_MODE |
			HDMI_VP_STUFF_YCC422_STUFFING_STUFFING_MODE,
		  HDMI_VP_STUFF_PP_STUFFING_MASK |
		  HDMI_VP_STUFF_YCC422_STUFFING_MASK, HDMI_VP_STUFF);
827

828 829
	hdmi_modb(hdmi, output_select, HDMI_VP_CONF_OUTPUT_SELECTOR_MASK,
		  HDMI_VP_CONF);
830 831
}

832 833 834 835
/* -----------------------------------------------------------------------------
 * Synopsys PHY Handling
 */

836
static inline void hdmi_phy_test_clear(struct dw_hdmi *hdmi,
837
				       unsigned char bit)
838
{
839 840
	hdmi_modb(hdmi, bit << HDMI_PHY_TST0_TSTCLR_OFFSET,
		  HDMI_PHY_TST0_TSTCLR_MASK, HDMI_PHY_TST0);
841 842
}

843
static bool hdmi_phy_wait_i2c_done(struct dw_hdmi *hdmi, int msec)
844
{
845 846 847
	u32 val;

	while ((val = hdmi_readb(hdmi, HDMI_IH_I2CMPHY_STAT0) & 0x3) == 0) {
848 849
		if (msec-- == 0)
			return false;
850
		udelay(1000);
851
	}
852 853
	hdmi_writeb(hdmi, val, HDMI_IH_I2CMPHY_STAT0);

854 855 856
	return true;
}

857 858
void dw_hdmi_phy_i2c_write(struct dw_hdmi *hdmi, unsigned short data,
			   unsigned char addr)
859 860 861 862
{
	hdmi_writeb(hdmi, 0xFF, HDMI_IH_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, addr, HDMI_PHY_I2CM_ADDRESS_ADDR);
	hdmi_writeb(hdmi, (unsigned char)(data >> 8),
863
		    HDMI_PHY_I2CM_DATAO_1_ADDR);
864
	hdmi_writeb(hdmi, (unsigned char)(data >> 0),
865
		    HDMI_PHY_I2CM_DATAO_0_ADDR);
866
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_OPERATION_ADDR_WRITE,
867
		    HDMI_PHY_I2CM_OPERATION_ADDR);
868 869
	hdmi_phy_wait_i2c_done(hdmi, 1000);
}
870
EXPORT_SYMBOL_GPL(dw_hdmi_phy_i2c_write);
871

872
static void dw_hdmi_phy_enable_powerdown(struct dw_hdmi *hdmi, bool enable)
873
{
874
	hdmi_mask_writeb(hdmi, !enable, HDMI_PHY_CONF0,
875 876 877 878
			 HDMI_PHY_CONF0_PDZ_OFFSET,
			 HDMI_PHY_CONF0_PDZ_MASK);
}

879
static void dw_hdmi_phy_enable_tmds(struct dw_hdmi *hdmi, u8 enable)
880 881 882 883 884 885
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_ENTMDS_OFFSET,
			 HDMI_PHY_CONF0_ENTMDS_MASK);
}

886
static void dw_hdmi_phy_enable_svsret(struct dw_hdmi *hdmi, u8 enable)
887 888
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
889 890
			 HDMI_PHY_CONF0_SVSRET_OFFSET,
			 HDMI_PHY_CONF0_SVSRET_MASK);
891 892
}

893
static void dw_hdmi_phy_gen2_pddq(struct dw_hdmi *hdmi, u8 enable)
894 895 896 897 898 899
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_PDDQ_OFFSET,
			 HDMI_PHY_CONF0_GEN2_PDDQ_MASK);
}

900
static void dw_hdmi_phy_gen2_txpwron(struct dw_hdmi *hdmi, u8 enable)
901 902 903 904 905 906
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_OFFSET,
			 HDMI_PHY_CONF0_GEN2_TXPWRON_MASK);
}

907
static void dw_hdmi_phy_sel_data_en_pol(struct dw_hdmi *hdmi, u8 enable)
908 909 910 911 912 913
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDATAENPOL_OFFSET,
			 HDMI_PHY_CONF0_SELDATAENPOL_MASK);
}

914
static void dw_hdmi_phy_sel_interface_control(struct dw_hdmi *hdmi, u8 enable)
915 916 917 918 919 920
{
	hdmi_mask_writeb(hdmi, enable, HDMI_PHY_CONF0,
			 HDMI_PHY_CONF0_SELDIPIF_OFFSET,
			 HDMI_PHY_CONF0_SELDIPIF_MASK);
}

921 922
static void dw_hdmi_phy_power_off(struct dw_hdmi *hdmi)
{
923
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	unsigned int i;
	u16 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_powerdown(hdmi, true);
		return;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 0);

	/*
	 * Wait for TX_PHY_LOCK to be deasserted to indicate that the PHY went
	 * to low power mode.
	 */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0);
		if (!(val & HDMI_PHY_TX_PHY_LOCK))
			break;

		usleep_range(1000, 2000);
	}

	if (val & HDMI_PHY_TX_PHY_LOCK)
		dev_warn(hdmi->dev, "PHY failed to power down\n");
	else
		dev_dbg(hdmi->dev, "PHY powered down in %u iterations\n", i);

	dw_hdmi_phy_gen2_pddq(hdmi, 1);
}

955 956
static int dw_hdmi_phy_power_on(struct dw_hdmi *hdmi)
{
957
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	unsigned int i;
	u8 val;

	if (phy->gen == 1) {
		dw_hdmi_phy_enable_powerdown(hdmi, false);

		/* Toggle TMDS enable. */
		dw_hdmi_phy_enable_tmds(hdmi, 0);
		dw_hdmi_phy_enable_tmds(hdmi, 1);
		return 0;
	}

	dw_hdmi_phy_gen2_txpwron(hdmi, 1);
	dw_hdmi_phy_gen2_pddq(hdmi, 0);

	/* Wait for PHY PLL lock */
	for (i = 0; i < 5; ++i) {
		val = hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_TX_PHY_LOCK;
		if (val)
			break;

		usleep_range(1000, 2000);
	}

	if (!val) {
		dev_err(hdmi->dev, "PHY PLL failed to lock\n");
		return -ETIMEDOUT;
	}

	dev_dbg(hdmi->dev, "PHY PLL locked %u iterations\n", i);
	return 0;
}

991 992 993 994 995 996 997 998
/*
 * PHY configuration function for the DWC HDMI 3D TX PHY. Based on the available
 * information the DWC MHL PHY has the same register layout and is thus also
 * supported by this function.
 */
static int hdmi_phy_configure_dwc_hdmi_3d_tx(struct dw_hdmi *hdmi,
		const struct dw_hdmi_plat_data *pdata,
		unsigned long mpixelclock)
999
{
1000 1001 1002
	const struct dw_hdmi_mpll_config *mpll_config = pdata->mpll_cfg;
	const struct dw_hdmi_curr_ctrl *curr_ctrl = pdata->cur_ctr;
	const struct dw_hdmi_phy_config *phy_config = pdata->phy_config;
1003

1004 1005
	/* PLL/MPLL Cfg - always match on final entry */
	for (; mpll_config->mpixelclock != ~0UL; mpll_config++)
1006
		if (mpixelclock <= mpll_config->mpixelclock)
1007 1008 1009
			break;

	for (; curr_ctrl->mpixelclock != ~0UL; curr_ctrl++)
1010
		if (mpixelclock <= curr_ctrl->mpixelclock)
1011 1012 1013
			break;

	for (; phy_config->mpixelclock != ~0UL; phy_config++)
1014
		if (mpixelclock <= phy_config->mpixelclock)
1015 1016 1017 1018
			break;

	if (mpll_config->mpixelclock == ~0UL ||
	    curr_ctrl->mpixelclock == ~0UL ||
1019
	    phy_config->mpixelclock == ~0UL)
1020
		return -EINVAL;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].cpce,
			      HDMI_3D_TX_PHY_CPCE_CTRL);
	dw_hdmi_phy_i2c_write(hdmi, mpll_config->res[0].gmp,
			      HDMI_3D_TX_PHY_GMPCTRL);
	dw_hdmi_phy_i2c_write(hdmi, curr_ctrl->curr[0],
			      HDMI_3D_TX_PHY_CURRCTRL);

	dw_hdmi_phy_i2c_write(hdmi, 0, HDMI_3D_TX_PHY_PLLPHBYCTRL);
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_MSM_CTRL_CKO_SEL_FB_CLK,
			      HDMI_3D_TX_PHY_MSM_CTRL);

	dw_hdmi_phy_i2c_write(hdmi, phy_config->term, HDMI_3D_TX_PHY_TXTERM);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->sym_ctr,
			      HDMI_3D_TX_PHY_CKSYMTXCTRL);
	dw_hdmi_phy_i2c_write(hdmi, phy_config->vlev_ctr,
			      HDMI_3D_TX_PHY_VLEVCTRL);

	/* Override and disable clock termination. */
	dw_hdmi_phy_i2c_write(hdmi, HDMI_3D_TX_PHY_CKCALCTRL_OVERRIDE,
			      HDMI_3D_TX_PHY_CKCALCTRL);

	return 0;
}

static int hdmi_phy_configure(struct dw_hdmi *hdmi)
{
	const struct dw_hdmi_phy_data *phy = hdmi->phy.data;
	const struct dw_hdmi_plat_data *pdata = hdmi->plat_data;
	unsigned long mpixelclock = hdmi->hdmi_data.video_mode.mpixelclock;
	int ret;
1052

1053
	dw_hdmi_phy_power_off(hdmi);
1054

1055
	/* Leave low power consumption mode by asserting SVSRET. */
1056
	if (phy->has_svsret)
1057 1058
		dw_hdmi_phy_enable_svsret(hdmi, 1);

1059 1060 1061
	/* PHY reset. The reset signal is active high on Gen2 PHYs. */
	hdmi_writeb(hdmi, HDMI_MC_PHYRSTZ_PHYRSTZ, HDMI_MC_PHYRSTZ);
	hdmi_writeb(hdmi, 0, HDMI_MC_PHYRSTZ);
1062 1063 1064 1065 1066

	hdmi_writeb(hdmi, HDMI_MC_HEACPHY_RST_ASSERT, HDMI_MC_HEACPHY_RST);

	hdmi_phy_test_clear(hdmi, 1);
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_SLAVE_ADDR_PHY_GEN2,
1067
		    HDMI_PHY_I2CM_SLAVE_ADDR);
1068 1069
	hdmi_phy_test_clear(hdmi, 0);

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	/* Write to the PHY as configured by the platform */
	if (pdata->configure_phy)
		ret = pdata->configure_phy(hdmi, pdata, mpixelclock);
	else
		ret = phy->configure(hdmi, pdata, mpixelclock);
	if (ret) {
		dev_err(hdmi->dev, "PHY configuration failed (clock %lu)\n",
			mpixelclock);
		return ret;
	}
1080

1081
	return dw_hdmi_phy_power_on(hdmi);
1082 1083
}

1084 1085
static int dw_hdmi_phy_init(struct dw_hdmi *hdmi, void *data,
			    struct drm_display_mode *mode)
1086 1087 1088 1089 1090
{
	int i, ret;

	/* HDMI Phy spec says to do the phy initialization sequence twice */
	for (i = 0; i < 2; i++) {
1091 1092
		dw_hdmi_phy_sel_data_en_pol(hdmi, 1);
		dw_hdmi_phy_sel_interface_control(hdmi, 0);
1093

1094
		ret = hdmi_phy_configure(hdmi);
1095 1096 1097 1098 1099 1100 1101
		if (ret)
			return ret;
	}

	return 0;
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static void dw_hdmi_phy_disable(struct dw_hdmi *hdmi, void *data)
{
	dw_hdmi_phy_power_off(hdmi);
}

static enum drm_connector_status dw_hdmi_phy_read_hpd(struct dw_hdmi *hdmi,
						      void *data)
{
	return hdmi_readb(hdmi, HDMI_PHY_STAT0) & HDMI_PHY_HPD ?
		connector_status_connected : connector_status_disconnected;
}

static const struct dw_hdmi_phy_ops dw_hdmi_synopsys_phy_ops = {
	.init = dw_hdmi_phy_init,
	.disable = dw_hdmi_phy_disable,
	.read_hpd = dw_hdmi_phy_read_hpd,
};

/* -----------------------------------------------------------------------------
 * HDMI TX Setup
 */

1124
static void hdmi_tx_hdcp_config(struct dw_hdmi *hdmi)
1125
{
1126
	u8 de;
1127 1128 1129 1130 1131 1132 1133

	if (hdmi->hdmi_data.video_mode.mdataenablepolarity)
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_HIGH;
	else
		de = HDMI_A_VIDPOLCFG_DATAENPOL_ACTIVE_LOW;

	/* disable rx detect */
1134 1135
	hdmi_modb(hdmi, HDMI_A_HDCPCFG0_RXDETECT_DISABLE,
		  HDMI_A_HDCPCFG0_RXDETECT_MASK, HDMI_A_HDCPCFG0);
1136

1137
	hdmi_modb(hdmi, de, HDMI_A_VIDPOLCFG_DATAENPOL_MASK, HDMI_A_VIDPOLCFG);
1138

1139 1140
	hdmi_modb(hdmi, HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_DISABLE,
		  HDMI_A_HDCPCFG1_ENCRYPTIONDISABLE_MASK, HDMI_A_HDCPCFG1);
1141 1142
}

1143
static void hdmi_config_AVI(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1144
{
1145 1146
	struct hdmi_avi_infoframe frame;
	u8 val;
1147

1148 1149
	/* Initialise info frame from DRM mode */
	drm_hdmi_avi_infoframe_from_display_mode(&frame, mode);
1150 1151

	if (hdmi->hdmi_data.enc_out_format == YCBCR444)
1152
		frame.colorspace = HDMI_COLORSPACE_YUV444;
1153
	else if (hdmi->hdmi_data.enc_out_format == YCBCR422_8BITS)
1154
		frame.colorspace = HDMI_COLORSPACE_YUV422;
1155
	else
1156
		frame.colorspace = HDMI_COLORSPACE_RGB;
1157 1158 1159

	/* Set up colorimetry */
	if (hdmi->hdmi_data.enc_out_format == XVYCC444) {
1160
		frame.colorimetry = HDMI_COLORIMETRY_EXTENDED;
S
Sachin Kamat 已提交
1161
		if (hdmi->hdmi_data.colorimetry == HDMI_COLORIMETRY_ITU_601)
1162 1163
			frame.extended_colorimetry =
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
S
Sachin Kamat 已提交
1164
		else /*hdmi->hdmi_data.colorimetry == HDMI_COLORIMETRY_ITU_709*/
1165 1166
			frame.extended_colorimetry =
				HDMI_EXTENDED_COLORIMETRY_XV_YCC_709;
1167
	} else if (hdmi->hdmi_data.enc_out_format != RGB) {
1168
		frame.colorimetry = hdmi->hdmi_data.colorimetry;
1169
		frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
1170
	} else { /* Carries no data */
1171 1172
		frame.colorimetry = HDMI_COLORIMETRY_NONE;
		frame.extended_colorimetry = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601;
1173 1174
	}

1175 1176 1177 1178 1179 1180 1181 1182 1183
	frame.scan_mode = HDMI_SCAN_MODE_NONE;

	/*
	 * The Designware IP uses a different byte format from standard
	 * AVI info frames, though generally the bits are in the correct
	 * bytes.
	 */

	/*
1184 1185 1186
	 * AVI data byte 1 differences: Colorspace in bits 0,1 rather than 5,6,
	 * scan info in bits 4,5 rather than 0,1 and active aspect present in
	 * bit 6 rather than 4.
1187
	 */
1188
	val = (frame.scan_mode & 3) << 4 | (frame.colorspace & 3);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	if (frame.active_aspect & 15)
		val |= HDMI_FC_AVICONF0_ACTIVE_FMT_INFO_PRESENT;
	if (frame.top_bar || frame.bottom_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_HORIZ_BAR;
	if (frame.left_bar || frame.right_bar)
		val |= HDMI_FC_AVICONF0_BAR_DATA_VERT_BAR;
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF0);

	/* AVI data byte 2 differences: none */
	val = ((frame.colorimetry & 0x3) << 6) |
	      ((frame.picture_aspect & 0x3) << 4) |
	      (frame.active_aspect & 0xf);
1201 1202
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF1);

1203 1204 1205 1206 1207 1208
	/* AVI data byte 3 differences: none */
	val = ((frame.extended_colorimetry & 0x7) << 4) |
	      ((frame.quantization_range & 0x3) << 2) |
	      (frame.nups & 0x3);
	if (frame.itc)
		val |= HDMI_FC_AVICONF2_IT_CONTENT_VALID;
1209 1210
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF2);

1211 1212 1213
	/* AVI data byte 4 differences: none */
	val = frame.video_code & 0x7f;
	hdmi_writeb(hdmi, val, HDMI_FC_AVIVID);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223

	/* AVI Data Byte 5- set up input and output pixel repetition */
	val = (((hdmi->hdmi_data.video_mode.mpixelrepetitioninput + 1) <<
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_INCOMING_PR_FACTOR_MASK) |
		((hdmi->hdmi_data.video_mode.mpixelrepetitionoutput <<
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_OFFSET) &
		HDMI_FC_PRCONF_OUTPUT_PR_FACTOR_MASK);
	hdmi_writeb(hdmi, val, HDMI_FC_PRCONF);

1224 1225 1226 1227 1228 1229
	/*
	 * AVI data byte 5 differences: content type in 0,1 rather than 4,5,
	 * ycc range in bits 2,3 rather than 6,7
	 */
	val = ((frame.ycc_quantization_range & 0x3) << 2) |
	      (frame.content_type & 0x3);
1230 1231 1232
	hdmi_writeb(hdmi, val, HDMI_FC_AVICONF3);

	/* AVI Data Bytes 6-13 */
1233 1234 1235 1236 1237 1238 1239 1240
	hdmi_writeb(hdmi, frame.top_bar & 0xff, HDMI_FC_AVIETB0);
	hdmi_writeb(hdmi, (frame.top_bar >> 8) & 0xff, HDMI_FC_AVIETB1);
	hdmi_writeb(hdmi, frame.bottom_bar & 0xff, HDMI_FC_AVISBB0);
	hdmi_writeb(hdmi, (frame.bottom_bar >> 8) & 0xff, HDMI_FC_AVISBB1);
	hdmi_writeb(hdmi, frame.left_bar & 0xff, HDMI_FC_AVIELB0);
	hdmi_writeb(hdmi, (frame.left_bar >> 8) & 0xff, HDMI_FC_AVIELB1);
	hdmi_writeb(hdmi, frame.right_bar & 0xff, HDMI_FC_AVISRB0);
	hdmi_writeb(hdmi, (frame.right_bar >> 8) & 0xff, HDMI_FC_AVISRB1);
1241 1242
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
static void hdmi_config_vendor_specific_infoframe(struct dw_hdmi *hdmi,
						 struct drm_display_mode *mode)
{
	struct hdmi_vendor_infoframe frame;
	u8 buffer[10];
	ssize_t err;

	err = drm_hdmi_vendor_infoframe_from_display_mode(&frame, mode);
	if (err < 0)
		/*
		 * Going into that statement does not means vendor infoframe
		 * fails. It just informed us that vendor infoframe is not
		 * needed for the selected mode. Only 4k or stereoscopic 3D
		 * mode requires vendor infoframe. So just simply return.
		 */
		return;

	err = hdmi_vendor_infoframe_pack(&frame, buffer, sizeof(buffer));
	if (err < 0) {
		dev_err(hdmi->dev, "Failed to pack vendor infoframe: %zd\n",
			err);
		return;
	}
	hdmi_mask_writeb(hdmi, 0, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);

	/* Set the length of HDMI vendor specific InfoFrame payload */
	hdmi_writeb(hdmi, buffer[2], HDMI_FC_VSDSIZE);

	/* Set 24bit IEEE Registration Identifier */
	hdmi_writeb(hdmi, buffer[4], HDMI_FC_VSDIEEEID0);
	hdmi_writeb(hdmi, buffer[5], HDMI_FC_VSDIEEEID1);
	hdmi_writeb(hdmi, buffer[6], HDMI_FC_VSDIEEEID2);

	/* Set HDMI_Video_Format and HDMI_VIC/3D_Structure */
	hdmi_writeb(hdmi, buffer[7], HDMI_FC_VSDPAYLOAD0);
	hdmi_writeb(hdmi, buffer[8], HDMI_FC_VSDPAYLOAD1);

	if (frame.s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
		hdmi_writeb(hdmi, buffer[9], HDMI_FC_VSDPAYLOAD2);

	/* Packet frame interpolation */
	hdmi_writeb(hdmi, 1, HDMI_FC_DATAUTO1);

	/* Auto packets per frame and line spacing */
	hdmi_writeb(hdmi, 0x11, HDMI_FC_DATAUTO2);

	/* Configures the Frame Composer On RDRB mode */
	hdmi_mask_writeb(hdmi, 1, HDMI_FC_DATAUTO0, HDMI_FC_DATAUTO0_VSD_OFFSET,
			HDMI_FC_DATAUTO0_VSD_MASK);
}

1295
static void hdmi_av_composer(struct dw_hdmi *hdmi,
1296 1297 1298 1299 1300
			     const struct drm_display_mode *mode)
{
	u8 inv_val;
	struct hdmi_vmode *vmode = &hdmi->hdmi_data.video_mode;
	int hblank, vblank, h_de_hs, v_de_vs, hsync_len, vsync_len;
1301
	unsigned int vdisplay;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	vmode->mpixelclock = mode->clock * 1000;

	dev_dbg(hdmi->dev, "final pixclk = %d\n", vmode->mpixelclock);

	/* Set up HDMI_FC_INVIDCONF */
	inv_val = (hdmi->hdmi_data.hdcp_enable ?
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_ACTIVE :
		HDMI_FC_INVIDCONF_HDCP_KEEPOUT_INACTIVE);

1312
	inv_val |= mode->flags & DRM_MODE_FLAG_PVSYNC ?
1313
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_HIGH :
1314
		HDMI_FC_INVIDCONF_VSYNC_IN_POLARITY_ACTIVE_LOW;
1315

1316
	inv_val |= mode->flags & DRM_MODE_FLAG_PHSYNC ?
1317
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_HIGH :
1318
		HDMI_FC_INVIDCONF_HSYNC_IN_POLARITY_ACTIVE_LOW;
1319 1320 1321 1322 1323 1324 1325 1326

	inv_val |= (vmode->mdataenablepolarity ?
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_HIGH :
		HDMI_FC_INVIDCONF_DE_IN_POLARITY_ACTIVE_LOW);

	if (hdmi->vic == 39)
		inv_val |= HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH;
	else
1327
		inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1328
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_HIGH :
1329
			HDMI_FC_INVIDCONF_R_V_BLANK_IN_OSC_ACTIVE_LOW;
1330

1331
	inv_val |= mode->flags & DRM_MODE_FLAG_INTERLACE ?
1332
		HDMI_FC_INVIDCONF_IN_I_P_INTERLACED :
1333
		HDMI_FC_INVIDCONF_IN_I_P_PROGRESSIVE;
1334

1335 1336 1337
	inv_val |= hdmi->sink_is_hdmi ?
		HDMI_FC_INVIDCONF_DVI_MODEZ_HDMI_MODE :
		HDMI_FC_INVIDCONF_DVI_MODEZ_DVI_MODE;
1338 1339 1340

	hdmi_writeb(hdmi, inv_val, HDMI_FC_INVIDCONF);

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
	vdisplay = mode->vdisplay;
	vblank = mode->vtotal - mode->vdisplay;
	v_de_vs = mode->vsync_start - mode->vdisplay;
	vsync_len = mode->vsync_end - mode->vsync_start;

	/*
	 * When we're setting an interlaced mode, we need
	 * to adjust the vertical timing to suit.
	 */
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vdisplay /= 2;
		vblank /= 2;
		v_de_vs /= 2;
		vsync_len /= 2;
	}

1357 1358 1359 1360 1361
	/* Set up horizontal active pixel width */
	hdmi_writeb(hdmi, mode->hdisplay >> 8, HDMI_FC_INHACTV1);
	hdmi_writeb(hdmi, mode->hdisplay, HDMI_FC_INHACTV0);

	/* Set up vertical active lines */
1362 1363
	hdmi_writeb(hdmi, vdisplay >> 8, HDMI_FC_INVACTV1);
	hdmi_writeb(hdmi, vdisplay, HDMI_FC_INVACTV0);
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

	/* Set up horizontal blanking pixel region width */
	hblank = mode->htotal - mode->hdisplay;
	hdmi_writeb(hdmi, hblank >> 8, HDMI_FC_INHBLANK1);
	hdmi_writeb(hdmi, hblank, HDMI_FC_INHBLANK0);

	/* Set up vertical blanking pixel region width */
	hdmi_writeb(hdmi, vblank, HDMI_FC_INVBLANK);

	/* Set up HSYNC active edge delay width (in pixel clks) */
	h_de_hs = mode->hsync_start - mode->hdisplay;
	hdmi_writeb(hdmi, h_de_hs >> 8, HDMI_FC_HSYNCINDELAY1);
	hdmi_writeb(hdmi, h_de_hs, HDMI_FC_HSYNCINDELAY0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, v_de_vs, HDMI_FC_VSYNCINDELAY);

	/* Set up HSYNC active pulse width (in pixel clks) */
	hsync_len = mode->hsync_end - mode->hsync_start;
	hdmi_writeb(hdmi, hsync_len >> 8, HDMI_FC_HSYNCINWIDTH1);
	hdmi_writeb(hdmi, hsync_len, HDMI_FC_HSYNCINWIDTH0);

	/* Set up VSYNC active edge delay (in lines) */
	hdmi_writeb(hdmi, vsync_len, HDMI_FC_VSYNCINWIDTH);
}

/* HDMI Initialization Step B.4 */
1391
static void dw_hdmi_enable_video_path(struct dw_hdmi *hdmi)
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
{
	u8 clkdis;

	/* control period minimum duration */
	hdmi_writeb(hdmi, 12, HDMI_FC_CTRLDUR);
	hdmi_writeb(hdmi, 32, HDMI_FC_EXCTRLDUR);
	hdmi_writeb(hdmi, 1, HDMI_FC_EXCTRLSPAC);

	/* Set to fill TMDS data channels */
	hdmi_writeb(hdmi, 0x0B, HDMI_FC_CH0PREAM);
	hdmi_writeb(hdmi, 0x16, HDMI_FC_CH1PREAM);
	hdmi_writeb(hdmi, 0x21, HDMI_FC_CH2PREAM);

	/* Enable pixel clock and tmds data path */
	clkdis = 0x7F;
	clkdis &= ~HDMI_MC_CLKDIS_PIXELCLK_DISABLE;
	hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);

	clkdis &= ~HDMI_MC_CLKDIS_TMDSCLK_DISABLE;
	hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);

	/* Enable csc path */
	if (is_color_space_conversion(hdmi)) {
		clkdis &= ~HDMI_MC_CLKDIS_CSCCLK_DISABLE;
		hdmi_writeb(hdmi, clkdis, HDMI_MC_CLKDIS);
	}
1418

1419 1420
	/* Enable color space conversion if needed */
	if (is_color_space_conversion(hdmi))
1421 1422 1423 1424 1425
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_IN_PATH,
			    HDMI_MC_FLOWCTRL);
	else
		hdmi_writeb(hdmi, HDMI_MC_FLOWCTRL_FEED_THROUGH_OFF_CSC_BYPASS,
			    HDMI_MC_FLOWCTRL);
1426 1427
}

1428
static void hdmi_enable_audio_clk(struct dw_hdmi *hdmi)
1429
{
1430
	hdmi_modb(hdmi, 0, HDMI_MC_CLKDIS_AUDCLK_DISABLE, HDMI_MC_CLKDIS);
1431 1432 1433
}

/* Workaround to clear the overflow condition */
1434
static void dw_hdmi_clear_overflow(struct dw_hdmi *hdmi)
1435
{
1436 1437
	unsigned int count;
	unsigned int i;
1438 1439
	u8 val;

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	/*
	 * Under some circumstances the Frame Composer arithmetic unit can miss
	 * an FC register write due to being busy processing the previous one.
	 * The issue can be worked around by issuing a TMDS software reset and
	 * then write one of the FC registers several times.
	 *
	 * The number of iterations matters and depends on the HDMI TX revision
	 * (and possibly on the platform). So far only i.MX6Q (v1.30a) and
	 * i.MX6DL (v1.31a) have been identified as needing the workaround, with
	 * 4 and 1 iterations respectively.
	 */
1451

1452 1453 1454 1455 1456 1457 1458 1459
	switch (hdmi->version) {
	case 0x130a:
		count = 4;
		break;
	case 0x131a:
		count = 1;
		break;
	default:
1460 1461 1462
		return;
	}

1463 1464 1465 1466 1467
	/* TMDS software reset */
	hdmi_writeb(hdmi, (u8)~HDMI_MC_SWRSTZ_TMDSSWRST_REQ, HDMI_MC_SWRSTZ);

	val = hdmi_readb(hdmi, HDMI_FC_INVIDCONF);
	for (i = 0; i < count; i++)
1468 1469 1470
		hdmi_writeb(hdmi, val, HDMI_FC_INVIDCONF);
}

1471
static void hdmi_enable_overflow_interrupts(struct dw_hdmi *hdmi)
1472 1473 1474 1475 1476
{
	hdmi_writeb(hdmi, 0, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0, HDMI_IH_MUTE_FC_STAT2);
}

1477
static void hdmi_disable_overflow_interrupts(struct dw_hdmi *hdmi)
1478 1479 1480 1481 1482
{
	hdmi_writeb(hdmi, HDMI_IH_MUTE_FC_STAT2_OVERFLOW_MASK,
		    HDMI_IH_MUTE_FC_STAT2);
}

1483
static int dw_hdmi_setup(struct dw_hdmi *hdmi, struct drm_display_mode *mode)
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
{
	int ret;

	hdmi_disable_overflow_interrupts(hdmi);

	hdmi->vic = drm_match_cea_mode(mode);

	if (!hdmi->vic) {
		dev_dbg(hdmi->dev, "Non-CEA mode used in HDMI\n");
	} else {
		dev_dbg(hdmi->dev, "CEA mode used vic=%d\n", hdmi->vic);
	}

	if ((hdmi->vic == 6) || (hdmi->vic == 7) ||
1498 1499 1500
	    (hdmi->vic == 21) || (hdmi->vic == 22) ||
	    (hdmi->vic == 2) || (hdmi->vic == 3) ||
	    (hdmi->vic == 17) || (hdmi->vic == 18))
S
Sachin Kamat 已提交
1501
		hdmi->hdmi_data.colorimetry = HDMI_COLORIMETRY_ITU_601;
1502
	else
S
Sachin Kamat 已提交
1503
		hdmi->hdmi_data.colorimetry = HDMI_COLORIMETRY_ITU_709;
1504

1505
	hdmi->hdmi_data.video_mode.mpixelrepetitionoutput = 0;
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	hdmi->hdmi_data.video_mode.mpixelrepetitioninput = 0;

	/* TODO: Get input format from IPU (via FB driver interface) */
	hdmi->hdmi_data.enc_in_format = RGB;

	hdmi->hdmi_data.enc_out_format = RGB;

	hdmi->hdmi_data.enc_color_depth = 8;
	hdmi->hdmi_data.pix_repet_factor = 0;
	hdmi->hdmi_data.hdcp_enable = 0;
	hdmi->hdmi_data.video_mode.mdataenablepolarity = true;

	/* HDMI Initialization Step B.1 */
	hdmi_av_composer(hdmi, mode);

	/* HDMI Initializateion Step B.2 */
1522
	ret = hdmi->phy.ops->init(hdmi, hdmi->phy.data, &hdmi->previous_mode);
1523 1524
	if (ret)
		return ret;
1525
	hdmi->phy.enabled = true;
1526 1527

	/* HDMI Initialization Step B.3 */
1528
	dw_hdmi_enable_video_path(hdmi);
1529

1530 1531
	if (hdmi->sink_has_audio) {
		dev_dbg(hdmi->dev, "sink has audio support\n");
1532 1533 1534 1535

		/* HDMI Initialization Step E - Configure audio */
		hdmi_clk_regenerator_update_pixel_clock(hdmi);
		hdmi_enable_audio_clk(hdmi);
1536 1537 1538 1539 1540
	}

	/* not for DVI mode */
	if (hdmi->sink_is_hdmi) {
		dev_dbg(hdmi->dev, "%s HDMI mode\n", __func__);
1541 1542

		/* HDMI Initialization Step F - Configure AVI InfoFrame */
1543
		hdmi_config_AVI(hdmi, mode);
1544
		hdmi_config_vendor_specific_infoframe(hdmi, mode);
1545 1546
	} else {
		dev_dbg(hdmi->dev, "%s DVI mode\n", __func__);
1547 1548 1549 1550 1551 1552 1553
	}

	hdmi_video_packetize(hdmi);
	hdmi_video_csc(hdmi);
	hdmi_video_sample(hdmi);
	hdmi_tx_hdcp_config(hdmi);

1554
	dw_hdmi_clear_overflow(hdmi);
1555
	if (hdmi->cable_plugin && hdmi->sink_is_hdmi)
1556 1557 1558 1559 1560
		hdmi_enable_overflow_interrupts(hdmi);

	return 0;
}

1561
static void dw_hdmi_setup_i2c(struct dw_hdmi *hdmi)
1562 1563 1564 1565 1566 1567 1568 1569 1570
{
	hdmi_writeb(hdmi, HDMI_PHY_I2CM_INT_ADDR_DONE_POL,
		    HDMI_PHY_I2CM_INT_ADDR);

	hdmi_writeb(hdmi, HDMI_PHY_I2CM_CTLINT_ADDR_NAC_POL |
		    HDMI_PHY_I2CM_CTLINT_ADDR_ARBITRATION_POL,
		    HDMI_PHY_I2CM_CTLINT_ADDR);
}

1571
static void initialize_hdmi_ih_mutes(struct dw_hdmi *hdmi)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
{
	u8 ih_mute;

	/*
	 * Boot up defaults are:
	 * HDMI_IH_MUTE   = 0x03 (disabled)
	 * HDMI_IH_MUTE_* = 0x00 (enabled)
	 *
	 * Disable top level interrupt bits in HDMI block
	 */
	ih_mute = hdmi_readb(hdmi, HDMI_IH_MUTE) |
		  HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		  HDMI_IH_MUTE_MUTE_ALL_INTERRUPT;

	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);

	/* by default mask all interrupts */
	hdmi_writeb(hdmi, 0xff, HDMI_VP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK1);
	hdmi_writeb(hdmi, 0xff, HDMI_FC_MASK2);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_MASK0);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_INT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_PHY_I2CM_CTLINT_ADDR);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_SPDIFINT);
	hdmi_writeb(hdmi, 0xff, HDMI_AUD_HBR_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_GP_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_A_APIINTMSK);
	hdmi_writeb(hdmi, 0xff, HDMI_CEC_MASK);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_INT);
	hdmi_writeb(hdmi, 0xff, HDMI_I2CM_CTLINT);

	/* Disable interrupts in the IH_MUTE_* registers */
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT1);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_FC_STAT2);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AS_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_PHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CM_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_CEC_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_VP_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_I2CMPHY_STAT0);
	hdmi_writeb(hdmi, 0xff, HDMI_IH_MUTE_AHBDMAAUD_STAT0);

	/* Enable top level interrupt bits in HDMI block */
	ih_mute &= ~(HDMI_IH_MUTE_MUTE_WAKEUP_INTERRUPT |
		    HDMI_IH_MUTE_MUTE_ALL_INTERRUPT);
	hdmi_writeb(hdmi, ih_mute, HDMI_IH_MUTE);
}

1623
static void dw_hdmi_poweron(struct dw_hdmi *hdmi)
1624
{
1625
	hdmi->bridge_is_on = true;
1626
	dw_hdmi_setup(hdmi, &hdmi->previous_mode);
1627 1628
}

1629
static void dw_hdmi_poweroff(struct dw_hdmi *hdmi)
1630
{
1631 1632 1633 1634 1635
	if (hdmi->phy.enabled) {
		hdmi->phy.ops->disable(hdmi, hdmi->phy.data);
		hdmi->phy.enabled = false;
	}

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	hdmi->bridge_is_on = false;
}

static void dw_hdmi_update_power(struct dw_hdmi *hdmi)
{
	int force = hdmi->force;

	if (hdmi->disabled) {
		force = DRM_FORCE_OFF;
	} else if (force == DRM_FORCE_UNSPECIFIED) {
1646
		if (hdmi->rxsense)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
			force = DRM_FORCE_ON;
		else
			force = DRM_FORCE_OFF;
	}

	if (force == DRM_FORCE_OFF) {
		if (hdmi->bridge_is_on)
			dw_hdmi_poweroff(hdmi);
	} else {
		if (!hdmi->bridge_is_on)
			dw_hdmi_poweron(hdmi);
	}
1659 1660
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
/*
 * Adjust the detection of RXSENSE according to whether we have a forced
 * connection mode enabled, or whether we have been disabled.  There is
 * no point processing RXSENSE interrupts if we have a forced connection
 * state, or DRM has us disabled.
 *
 * We also disable rxsense interrupts when we think we're disconnected
 * to avoid floating TDMS signals giving false rxsense interrupts.
 *
 * Note: we still need to listen for HPD interrupts even when DRM has us
 * disabled so that we can detect a connect event.
 */
static void dw_hdmi_update_phy_mask(struct dw_hdmi *hdmi)
{
	u8 old_mask = hdmi->phy_mask;

	if (hdmi->force || hdmi->disabled || !hdmi->rxsense)
		hdmi->phy_mask |= HDMI_PHY_RX_SENSE;
	else
		hdmi->phy_mask &= ~HDMI_PHY_RX_SENSE;

	if (old_mask != hdmi->phy_mask)
		hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);
}

1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static void dw_hdmi_phy_setup_hpd(struct dw_hdmi *hdmi)
{
	/*
	 * Configure the PHY RX SENSE and HPD interrupts polarities and clear
	 * any pending interrupt.
	 */
	hdmi_writeb(hdmi, HDMI_PHY_HPD | HDMI_PHY_RX_SENSE, HDMI_PHY_POL0);
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);

	/* Enable cable hot plug irq. */
	hdmi_writeb(hdmi, hdmi->phy_mask, HDMI_PHY_MASK0);

	/* Clear and unmute interrupts. */
	hdmi_writeb(hdmi, HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE,
		    HDMI_IH_PHY_STAT0);
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
}

1706 1707
static enum drm_connector_status
dw_hdmi_connector_detect(struct drm_connector *connector, bool force)
1708
{
1709
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1710
					     connector);
1711

1712 1713 1714
	mutex_lock(&hdmi->mutex);
	hdmi->force = DRM_FORCE_UNSPECIFIED;
	dw_hdmi_update_power(hdmi);
1715
	dw_hdmi_update_phy_mask(hdmi);
1716 1717
	mutex_unlock(&hdmi->mutex);

1718
	return hdmi->phy.ops->read_hpd(hdmi, hdmi->phy.data);
1719 1720
}

1721
static int dw_hdmi_connector_get_modes(struct drm_connector *connector)
1722
{
1723
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
1724 1725
					     connector);
	struct edid *edid;
1726
	int ret = 0;
1727 1728 1729 1730 1731 1732 1733 1734 1735

	if (!hdmi->ddc)
		return 0;

	edid = drm_get_edid(connector, hdmi->ddc);
	if (edid) {
		dev_dbg(hdmi->dev, "got edid: width[%d] x height[%d]\n",
			edid->width_cm, edid->height_cm);

1736
		hdmi->sink_is_hdmi = drm_detect_hdmi_monitor(edid);
1737
		hdmi->sink_has_audio = drm_detect_monitor_audio(edid);
1738 1739
		drm_mode_connector_update_edid_property(connector, edid);
		ret = drm_add_edid_modes(connector, edid);
1740 1741
		/* Store the ELD */
		drm_edid_to_eld(connector, edid);
1742 1743 1744 1745 1746
		kfree(edid);
	} else {
		dev_dbg(hdmi->dev, "failed to get edid\n");
	}

1747
	return ret;
1748 1749
}

1750 1751 1752 1753 1754 1755 1756 1757
static enum drm_mode_status
dw_hdmi_connector_mode_valid(struct drm_connector *connector,
			     struct drm_display_mode *mode)
{
	struct dw_hdmi *hdmi = container_of(connector,
					   struct dw_hdmi, connector);
	enum drm_mode_status mode_status = MODE_OK;

1758 1759 1760 1761
	/* We don't support double-clocked modes */
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_BAD;

1762 1763 1764 1765 1766 1767
	if (hdmi->plat_data->mode_valid)
		mode_status = hdmi->plat_data->mode_valid(connector, mode);

	return mode_status;
}

1768 1769 1770 1771 1772 1773 1774 1775
static void dw_hdmi_connector_force(struct drm_connector *connector)
{
	struct dw_hdmi *hdmi = container_of(connector, struct dw_hdmi,
					     connector);

	mutex_lock(&hdmi->mutex);
	hdmi->force = connector->force;
	dw_hdmi_update_power(hdmi);
1776
	dw_hdmi_update_phy_mask(hdmi);
1777 1778 1779
	mutex_unlock(&hdmi->mutex);
}

1780
static const struct drm_connector_funcs dw_hdmi_connector_funcs = {
1781 1782 1783
	.dpms = drm_atomic_helper_connector_dpms,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.detect = dw_hdmi_connector_detect,
1784
	.destroy = drm_connector_cleanup,
1785 1786 1787 1788 1789 1790
	.force = dw_hdmi_connector_force,
	.reset = drm_atomic_helper_connector_reset,
	.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};

1791
static const struct drm_connector_helper_funcs dw_hdmi_connector_helper_funcs = {
1792
	.get_modes = dw_hdmi_connector_get_modes,
1793
	.mode_valid = dw_hdmi_connector_mode_valid,
1794
	.best_encoder = drm_atomic_helper_best_encoder,
1795 1796
};

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static int dw_hdmi_bridge_attach(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;
	struct drm_encoder *encoder = bridge->encoder;
	struct drm_connector *connector = &hdmi->connector;

	connector->interlace_allowed = 1;
	connector->polled = DRM_CONNECTOR_POLL_HPD;

	drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs);

	drm_connector_init(bridge->dev, connector, &dw_hdmi_connector_funcs,
			   DRM_MODE_CONNECTOR_HDMIA);

	drm_mode_connector_attach_encoder(connector, encoder);

	return 0;
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static void dw_hdmi_bridge_mode_set(struct drm_bridge *bridge,
				    struct drm_display_mode *orig_mode,
				    struct drm_display_mode *mode)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);

	/* Store the display mode for plugin/DKMS poweron events */
	memcpy(&hdmi->previous_mode, mode, sizeof(hdmi->previous_mode));

	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_disable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = true;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

static void dw_hdmi_bridge_enable(struct drm_bridge *bridge)
{
	struct dw_hdmi *hdmi = bridge->driver_private;

	mutex_lock(&hdmi->mutex);
	hdmi->disabled = false;
	dw_hdmi_update_power(hdmi);
	dw_hdmi_update_phy_mask(hdmi);
	mutex_unlock(&hdmi->mutex);
}

1852
static const struct drm_bridge_funcs dw_hdmi_bridge_funcs = {
1853
	.attach = dw_hdmi_bridge_attach,
1854 1855 1856
	.enable = dw_hdmi_bridge_enable,
	.disable = dw_hdmi_bridge_disable,
	.mode_set = dw_hdmi_bridge_mode_set,
1857 1858
};

1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
static irqreturn_t dw_hdmi_i2c_irq(struct dw_hdmi *hdmi)
{
	struct dw_hdmi_i2c *i2c = hdmi->i2c;
	unsigned int stat;

	stat = hdmi_readb(hdmi, HDMI_IH_I2CM_STAT0);
	if (!stat)
		return IRQ_NONE;

	hdmi_writeb(hdmi, stat, HDMI_IH_I2CM_STAT0);

	i2c->stat = stat;

	complete(&i2c->cmp);

	return IRQ_HANDLED;
}

1877
static irqreturn_t dw_hdmi_hardirq(int irq, void *dev_id)
1878
{
1879
	struct dw_hdmi *hdmi = dev_id;
1880
	u8 intr_stat;
1881 1882 1883 1884
	irqreturn_t ret = IRQ_NONE;

	if (hdmi->i2c)
		ret = dw_hdmi_i2c_irq(hdmi);
1885 1886

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
1887
	if (intr_stat) {
1888
		hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);
1889 1890
		return IRQ_WAKE_THREAD;
	}
1891

1892
	return ret;
1893 1894
}

1895
static irqreturn_t dw_hdmi_irq(int irq, void *dev_id)
1896
{
1897
	struct dw_hdmi *hdmi = dev_id;
1898
	u8 intr_stat, phy_int_pol, phy_pol_mask, phy_stat;
1899 1900 1901

	intr_stat = hdmi_readb(hdmi, HDMI_IH_PHY_STAT0);
	phy_int_pol = hdmi_readb(hdmi, HDMI_PHY_POL0);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	phy_stat = hdmi_readb(hdmi, HDMI_PHY_STAT0);

	phy_pol_mask = 0;
	if (intr_stat & HDMI_IH_PHY_STAT0_HPD)
		phy_pol_mask |= HDMI_PHY_HPD;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE0)
		phy_pol_mask |= HDMI_PHY_RX_SENSE0;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE1)
		phy_pol_mask |= HDMI_PHY_RX_SENSE1;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE2)
		phy_pol_mask |= HDMI_PHY_RX_SENSE2;
	if (intr_stat & HDMI_IH_PHY_STAT0_RX_SENSE3)
		phy_pol_mask |= HDMI_PHY_RX_SENSE3;

	if (phy_pol_mask)
		hdmi_modb(hdmi, ~phy_int_pol, phy_pol_mask, HDMI_PHY_POL0);
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927
	/*
	 * RX sense tells us whether the TDMS transmitters are detecting
	 * load - in other words, there's something listening on the
	 * other end of the link.  Use this to decide whether we should
	 * power on the phy as HPD may be toggled by the sink to merely
	 * ask the source to re-read the EDID.
	 */
	if (intr_stat &
	    (HDMI_IH_PHY_STAT0_RX_SENSE | HDMI_IH_PHY_STAT0_HPD)) {
1928
		mutex_lock(&hdmi->mutex);
1929
		if (!hdmi->force) {
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
			/*
			 * If the RX sense status indicates we're disconnected,
			 * clear the software rxsense status.
			 */
			if (!(phy_stat & HDMI_PHY_RX_SENSE))
				hdmi->rxsense = false;

			/*
			 * Only set the software rxsense status when both
			 * rxsense and hpd indicates we're connected.
			 * This avoids what seems to be bad behaviour in
			 * at least iMX6S versions of the phy.
			 */
			if (phy_stat & HDMI_PHY_HPD)
				hdmi->rxsense = true;

			dw_hdmi_update_power(hdmi);
			dw_hdmi_update_phy_mask(hdmi);
1948
		}
1949
		mutex_unlock(&hdmi->mutex);
1950 1951 1952 1953 1954
	}

	if (intr_stat & HDMI_IH_PHY_STAT0_HPD) {
		dev_dbg(hdmi->dev, "EVENT=%s\n",
			phy_int_pol & HDMI_PHY_HPD ? "plugin" : "plugout");
1955 1956
		if (hdmi->bridge.dev)
			drm_helper_hpd_irq_event(hdmi->bridge.dev);
1957 1958 1959
	}

	hdmi_writeb(hdmi, intr_stat, HDMI_IH_PHY_STAT0);
1960 1961
	hdmi_writeb(hdmi, ~(HDMI_IH_PHY_STAT0_HPD | HDMI_IH_PHY_STAT0_RX_SENSE),
		    HDMI_IH_MUTE_PHY_STAT0);
1962 1963 1964 1965

	return IRQ_HANDLED;
}

1966 1967 1968 1969
static const struct dw_hdmi_phy_data dw_hdmi_phys[] = {
	{
		.type = DW_HDMI_PHY_DWC_HDMI_TX_PHY,
		.name = "DWC HDMI TX PHY",
1970
		.gen = 1,
1971 1972 1973
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY_HEAC,
		.name = "DWC MHL PHY + HEAC PHY",
1974
		.gen = 2,
1975
		.has_svsret = true,
1976
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
1977 1978 1979
	}, {
		.type = DW_HDMI_PHY_DWC_MHL_PHY,
		.name = "DWC MHL PHY",
1980
		.gen = 2,
1981
		.has_svsret = true,
1982
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
1983 1984 1985
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY_HEAC,
		.name = "DWC HDMI 3D TX PHY + HEAC PHY",
1986
		.gen = 2,
1987
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
1988 1989 1990
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI_3D_TX_PHY,
		.name = "DWC HDMI 3D TX PHY",
1991
		.gen = 2,
1992
		.configure = hdmi_phy_configure_dwc_hdmi_3d_tx,
1993 1994 1995
	}, {
		.type = DW_HDMI_PHY_DWC_HDMI20_TX_PHY,
		.name = "DWC HDMI 2.0 TX PHY",
1996
		.gen = 2,
1997
		.has_svsret = true,
1998 1999 2000
	}, {
		.type = DW_HDMI_PHY_VENDOR_PHY,
		.name = "Vendor PHY",
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	}
};

static int dw_hdmi_detect_phy(struct dw_hdmi *hdmi)
{
	unsigned int i;
	u8 phy_type;

	phy_type = hdmi_readb(hdmi, HDMI_CONFIG2_ID);

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	if (phy_type == DW_HDMI_PHY_VENDOR_PHY) {
		/* Vendor PHYs require support from the glue layer. */
		if (!hdmi->plat_data->phy_ops || !hdmi->plat_data->phy_name) {
			dev_err(hdmi->dev,
				"Vendor HDMI PHY not supported by glue layer\n");
			return -ENODEV;
		}

		hdmi->phy.ops = hdmi->plat_data->phy_ops;
		hdmi->phy.data = hdmi->plat_data->phy_data;
		hdmi->phy.name = hdmi->plat_data->phy_name;
		return 0;
	}

	/* Synopsys PHYs are handled internally. */
2026 2027
	for (i = 0; i < ARRAY_SIZE(dw_hdmi_phys); ++i) {
		if (dw_hdmi_phys[i].type == phy_type) {
2028 2029 2030
			hdmi->phy.ops = &dw_hdmi_synopsys_phy_ops;
			hdmi->phy.name = dw_hdmi_phys[i].name;
			hdmi->phy.data = (void *)&dw_hdmi_phys[i];
2031 2032 2033 2034 2035 2036 2037 2038

			if (!dw_hdmi_phys[i].configure &&
			    !hdmi->plat_data->configure_phy) {
				dev_err(hdmi->dev, "%s requires platform support\n",
					hdmi->phy.name);
				return -ENODEV;
			}

2039 2040 2041 2042
			return 0;
		}
	}

2043
	dev_err(hdmi->dev, "Unsupported HDMI PHY type (%02x)\n", phy_type);
2044 2045 2046
	return -ENODEV;
}

2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
static const struct regmap_config hdmi_regmap_8bit_config = {
	.reg_bits	= 32,
	.val_bits	= 8,
	.reg_stride	= 1,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR,
};

static const struct regmap_config hdmi_regmap_32bit_config = {
	.reg_bits	= 32,
	.val_bits	= 32,
	.reg_stride	= 4,
	.max_register	= HDMI_I2CM_FS_SCL_LCNT_0_ADDR << 2,
};

2061 2062 2063
static struct dw_hdmi *
__dw_hdmi_probe(struct platform_device *pdev,
		const struct dw_hdmi_plat_data *plat_data)
2064
{
2065
	struct device *dev = &pdev->dev;
2066
	struct device_node *np = dev->of_node;
2067
	struct platform_device_info pdevinfo;
2068
	struct device_node *ddc_node;
2069
	struct dw_hdmi *hdmi;
2070
	struct resource *iores = NULL;
2071
	int irq;
2072
	int ret;
2073
	u32 val = 1;
2074 2075
	u8 prod_id0;
	u8 prod_id1;
2076
	u8 config0;
2077
	u8 config3;
2078

2079
	hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL);
2080
	if (!hdmi)
2081
		return ERR_PTR(-ENOMEM);
2082

2083
	hdmi->plat_data = plat_data;
2084
	hdmi->dev = dev;
2085
	hdmi->sample_rate = 48000;
2086
	hdmi->disabled = true;
2087 2088
	hdmi->rxsense = true;
	hdmi->phy_mask = (u8)~(HDMI_PHY_HPD | HDMI_PHY_RX_SENSE);
2089

2090
	mutex_init(&hdmi->mutex);
2091
	mutex_init(&hdmi->audio_mutex);
2092
	spin_lock_init(&hdmi->audio_lock);
2093

2094
	ddc_node = of_parse_phandle(np, "ddc-i2c-bus", 0);
2095
	if (ddc_node) {
2096
		hdmi->ddc = of_get_i2c_adapter_by_node(ddc_node);
2097 2098
		of_node_put(ddc_node);
		if (!hdmi->ddc) {
2099
			dev_dbg(hdmi->dev, "failed to read ddc node\n");
2100
			return ERR_PTR(-EPROBE_DEFER);
2101
		}
2102 2103 2104 2105 2106

	} else {
		dev_dbg(hdmi->dev, "no ddc property found\n");
	}

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	if (!plat_data->regm) {
		const struct regmap_config *reg_config;

		of_property_read_u32(np, "reg-io-width", &val);
		switch (val) {
		case 4:
			reg_config = &hdmi_regmap_32bit_config;
			hdmi->reg_shift = 2;
			break;
		case 1:
			reg_config = &hdmi_regmap_8bit_config;
			break;
		default:
			dev_err(dev, "reg-io-width must be 1 or 4\n");
			return ERR_PTR(-EINVAL);
		}

		iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
		hdmi->regs = devm_ioremap_resource(dev, iores);
		if (IS_ERR(hdmi->regs)) {
			ret = PTR_ERR(hdmi->regs);
			goto err_res;
		}

		hdmi->regm = devm_regmap_init_mmio(dev, hdmi->regs, reg_config);
		if (IS_ERR(hdmi->regm)) {
			dev_err(dev, "Failed to configure regmap\n");
			ret = PTR_ERR(hdmi->regm);
			goto err_res;
		}
	} else {
		hdmi->regm = plat_data->regm;
2139
	}
2140 2141 2142 2143

	hdmi->isfr_clk = devm_clk_get(hdmi->dev, "isfr");
	if (IS_ERR(hdmi->isfr_clk)) {
		ret = PTR_ERR(hdmi->isfr_clk);
2144
		dev_err(hdmi->dev, "Unable to get HDMI isfr clk: %d\n", ret);
2145
		goto err_res;
2146 2147 2148 2149
	}

	ret = clk_prepare_enable(hdmi->isfr_clk);
	if (ret) {
2150
		dev_err(hdmi->dev, "Cannot enable HDMI isfr clock: %d\n", ret);
2151
		goto err_res;
2152 2153 2154 2155 2156
	}

	hdmi->iahb_clk = devm_clk_get(hdmi->dev, "iahb");
	if (IS_ERR(hdmi->iahb_clk)) {
		ret = PTR_ERR(hdmi->iahb_clk);
2157
		dev_err(hdmi->dev, "Unable to get HDMI iahb clk: %d\n", ret);
2158 2159 2160 2161 2162
		goto err_isfr;
	}

	ret = clk_prepare_enable(hdmi->iahb_clk);
	if (ret) {
2163
		dev_err(hdmi->dev, "Cannot enable HDMI iahb clock: %d\n", ret);
2164 2165 2166 2167
		goto err_isfr;
	}

	/* Product and revision IDs */
2168 2169
	hdmi->version = (hdmi_readb(hdmi, HDMI_DESIGN_ID) << 8)
		      | (hdmi_readb(hdmi, HDMI_REVISION_ID) << 0);
2170 2171 2172 2173 2174 2175
	prod_id0 = hdmi_readb(hdmi, HDMI_PRODUCT_ID0);
	prod_id1 = hdmi_readb(hdmi, HDMI_PRODUCT_ID1);

	if (prod_id0 != HDMI_PRODUCT_ID0_HDMI_TX ||
	    (prod_id1 & ~HDMI_PRODUCT_ID1_HDCP) != HDMI_PRODUCT_ID1_HDMI_TX) {
		dev_err(dev, "Unsupported HDMI controller (%04x:%02x:%02x)\n",
2176
			hdmi->version, prod_id0, prod_id1);
2177 2178 2179 2180
		ret = -ENODEV;
		goto err_iahb;
	}

2181 2182 2183 2184 2185
	ret = dw_hdmi_detect_phy(hdmi);
	if (ret < 0)
		goto err_iahb;

	dev_info(dev, "Detected HDMI TX controller v%x.%03x %s HDCP (%s)\n",
2186
		 hdmi->version >> 12, hdmi->version & 0xfff,
2187
		 prod_id1 & HDMI_PRODUCT_ID1_HDCP ? "with" : "without",
2188
		 hdmi->phy.name);
2189 2190 2191

	initialize_hdmi_ih_mutes(hdmi);

2192
	irq = platform_get_irq(pdev, 0);
2193 2194
	if (irq < 0) {
		ret = irq;
2195
		goto err_iahb;
2196
	}
2197

2198 2199 2200 2201
	ret = devm_request_threaded_irq(dev, irq, dw_hdmi_hardirq,
					dw_hdmi_irq, IRQF_SHARED,
					dev_name(dev), hdmi);
	if (ret)
2202
		goto err_iahb;
2203

2204 2205 2206 2207 2208 2209
	/*
	 * To prevent overflows in HDMI_IH_FC_STAT2, set the clk regenerator
	 * N and cts values before enabling phy
	 */
	hdmi_init_clk_regenerator(hdmi);

2210 2211 2212 2213 2214 2215 2216
	/* If DDC bus is not specified, try to register HDMI I2C bus */
	if (!hdmi->ddc) {
		hdmi->ddc = dw_hdmi_i2c_adapter(hdmi);
		if (IS_ERR(hdmi->ddc))
			hdmi->ddc = NULL;
	}

2217 2218
	hdmi->bridge.driver_private = hdmi;
	hdmi->bridge.funcs = &dw_hdmi_bridge_funcs;
2219
#ifdef CONFIG_OF
2220
	hdmi->bridge.of_node = pdev->dev.of_node;
2221
#endif
2222

2223 2224
	dw_hdmi_setup_i2c(hdmi);
	dw_hdmi_phy_setup_hpd(hdmi);
2225

2226 2227 2228 2229
	memset(&pdevinfo, 0, sizeof(pdevinfo));
	pdevinfo.parent = dev;
	pdevinfo.id = PLATFORM_DEVID_AUTO;

2230
	config0 = hdmi_readb(hdmi, HDMI_CONFIG0_ID);
2231
	config3 = hdmi_readb(hdmi, HDMI_CONFIG3_ID);
2232

2233
	if (iores && config3 & HDMI_CONFIG3_AHBAUDDMA) {
2234 2235
		struct dw_hdmi_audio_data audio;

2236 2237 2238 2239
		audio.phys = iores->start;
		audio.base = hdmi->regs;
		audio.irq = irq;
		audio.hdmi = hdmi;
2240
		audio.eld = hdmi->connector.eld;
2241 2242 2243 2244 2245 2246

		pdevinfo.name = "dw-hdmi-ahb-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	} else if (config0 & HDMI_CONFIG0_I2S) {
		struct dw_hdmi_i2s_audio_data audio;

		audio.hdmi	= hdmi;
		audio.write	= hdmi_writeb;
		audio.read	= hdmi_readb;

		pdevinfo.name = "dw-hdmi-i2s-audio";
		pdevinfo.data = &audio;
		pdevinfo.size_data = sizeof(audio);
		pdevinfo.dma_mask = DMA_BIT_MASK(32);
		hdmi->audio = platform_device_register_full(&pdevinfo);
2259 2260
	}

2261 2262 2263 2264
	/* Reset HDMI DDC I2C master controller and mute I2CM interrupts */
	if (hdmi->i2c)
		dw_hdmi_i2c_init(hdmi);

2265
	platform_set_drvdata(pdev, hdmi);
2266

2267
	return hdmi;
2268 2269

err_iahb:
2270 2271 2272 2273 2274
	if (hdmi->i2c) {
		i2c_del_adapter(&hdmi->i2c->adap);
		hdmi->ddc = NULL;
	}

2275 2276 2277
	clk_disable_unprepare(hdmi->iahb_clk);
err_isfr:
	clk_disable_unprepare(hdmi->isfr_clk);
2278 2279
err_res:
	i2c_put_adapter(hdmi->ddc);
2280

2281
	return ERR_PTR(ret);
2282 2283
}

2284
static void __dw_hdmi_remove(struct dw_hdmi *hdmi)
2285
{
2286 2287 2288
	if (hdmi->audio && !IS_ERR(hdmi->audio))
		platform_device_unregister(hdmi->audio);

2289 2290 2291
	/* Disable all interrupts */
	hdmi_writeb(hdmi, ~0, HDMI_IH_MUTE_PHY_STAT0);

2292 2293
	clk_disable_unprepare(hdmi->iahb_clk);
	clk_disable_unprepare(hdmi->isfr_clk);
2294 2295 2296 2297 2298

	if (hdmi->i2c)
		i2c_del_adapter(&hdmi->i2c->adap);
	else
		i2c_put_adapter(hdmi->ddc);
2299
}
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363

/* -----------------------------------------------------------------------------
 * Probe/remove API, used from platforms based on the DRM bridge API.
 */
int dw_hdmi_probe(struct platform_device *pdev,
		  const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;
	int ret;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

	ret = drm_bridge_add(&hdmi->bridge);
	if (ret < 0) {
		__dw_hdmi_remove(hdmi);
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_probe);

void dw_hdmi_remove(struct platform_device *pdev)
{
	struct dw_hdmi *hdmi = platform_get_drvdata(pdev);

	drm_bridge_remove(&hdmi->bridge);

	__dw_hdmi_remove(hdmi);
}
EXPORT_SYMBOL_GPL(dw_hdmi_remove);

/* -----------------------------------------------------------------------------
 * Bind/unbind API, used from platforms based on the component framework.
 */
int dw_hdmi_bind(struct platform_device *pdev, struct drm_encoder *encoder,
		 const struct dw_hdmi_plat_data *plat_data)
{
	struct dw_hdmi *hdmi;
	int ret;

	hdmi = __dw_hdmi_probe(pdev, plat_data);
	if (IS_ERR(hdmi))
		return PTR_ERR(hdmi);

	ret = drm_bridge_attach(encoder, &hdmi->bridge, NULL);
	if (ret) {
		dw_hdmi_remove(pdev);
		DRM_ERROR("Failed to initialize bridge with drm\n");
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dw_hdmi_bind);

void dw_hdmi_unbind(struct device *dev)
{
	struct dw_hdmi *hdmi = dev_get_drvdata(dev);

	__dw_hdmi_remove(hdmi);
}
2364
EXPORT_SYMBOL_GPL(dw_hdmi_unbind);
2365 2366

MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
2367 2368
MODULE_AUTHOR("Andy Yan <andy.yan@rock-chips.com>");
MODULE_AUTHOR("Yakir Yang <ykk@rock-chips.com>");
2369
MODULE_AUTHOR("Vladimir Zapolskiy <vladimir_zapolskiy@mentor.com>");
2370
MODULE_DESCRIPTION("DW HDMI transmitter driver");
2371
MODULE_LICENSE("GPL");
2372
MODULE_ALIAS("platform:dw-hdmi");