remoteproc_core.c 42.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39
#include <linux/elf.h>
40
#include <linux/crc32.h>
41 42
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
43
#include <asm/byteorder.h>
44 45 46

#include "remoteproc_internal.h"

47 48 49
static DEFINE_MUTEX(rproc_list_mutex);
static LIST_HEAD(rproc_list);

50
typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51
				struct resource_table *table, int len);
52 53
typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
				 void *, int offset, int avail);
54

55 56 57
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

58 59
static const char * const rproc_crash_names[] = {
	[RPROC_MMUFAULT]	= "mmufault",
60 61
	[RPROC_WATCHDOG]	= "watchdog",
	[RPROC_FATAL_ERROR]	= "fatal error",
62 63 64 65 66 67 68
};

/* translate rproc_crash_type to string */
static const char *rproc_crash_to_string(enum rproc_crash_type type)
{
	if (type < ARRAY_SIZE(rproc_crash_names))
		return rproc_crash_names[type];
69
	return "unknown";
70 71
}

72 73 74 75 76 77 78 79 80
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81
			     unsigned long iova, int flags, void *token)
82
{
83 84
	struct rproc *rproc = token;

85 86
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

87 88
	rproc_report_crash(rproc, RPROC_MMUFAULT);

89 90
	/*
	 * Let the iommu core know we're not really handling this fault;
91
	 * we just used it as a recovery trigger.
92 93 94 95 96 97 98
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
99
	struct device *dev = rproc->dev.parent;
100 101
	int ret;

102 103
	if (!rproc->has_iommu) {
		dev_dbg(dev, "iommu not present\n");
104
		return 0;
105 106 107 108 109 110 111 112
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

113
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
133
	struct device *dev = rproc->dev.parent;
134 135 136 137 138 139 140 141

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);
}

142 143 144 145 146 147
/**
 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 * @rproc: handle of a remote processor
 * @da: remoteproc device address to translate
 * @len: length of the memory region @da is pointing to
 *
148 149
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
150 151 152
 * device addresses (which are hardcoded in the firmware). They may also have
 * dedicated memory regions internal to the processors, and use them either
 * exclusively or alongside carveouts.
153 154 155 156 157
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
158 159 160 161 162 163 164
 * This function is a helper function with which we can go over the allocated
 * carveouts and translate specific device addresses to kernel virtual addresses
 * so we can access the referenced memory. This function also allows to perform
 * translations on the internal remoteproc memory regions through a platform
 * implementation specific da_to_va ops, if present.
 *
 * The function returns a valid kernel address on success or NULL on failure.
165 166 167
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
168 169
 * here the output of the DMA API for the carveouts, which should be more
 * correct.
170
 */
171
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
172 173 174 175
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

176 177 178 179 180 181
	if (rproc->ops->da_to_va) {
		ptr = rproc->ops->da_to_va(rproc, da, len);
		if (ptr)
			goto out;
	}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

198
out:
199 200
	return ptr;
}
201
EXPORT_SYMBOL(rproc_da_to_va);
202

203
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
204
{
205
	struct rproc *rproc = rvdev->rproc;
206
	struct device *dev = &rproc->dev;
207
	struct rproc_vring *rvring = &rvdev->vring[i];
208
	struct fw_rsc_vdev *rsc;
209 210 211
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
212

213
	/* actual size of vring (in bytes) */
214
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
215 216 217 218 219

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
	 */
220
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221
	if (!va) {
222
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 224 225
		return -EINVAL;
	}

226 227 228 229 230
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: support predefined notifyids (via resource table)
	 */
T
Tejun Heo 已提交
231
	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232
	if (ret < 0) {
T
Tejun Heo 已提交
233
		dev_err(dev, "idr_alloc failed: %d\n", ret);
234
		dma_free_coherent(dev->parent, size, va, dma);
235 236
		return ret;
	}
T
Tejun Heo 已提交
237
	notifyid = ret;
238

239
	dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
240
		i, va, &dma, size, notifyid);
241

242 243 244
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
245

246 247 248 249 250 251 252 253 254
	/*
	 * Let the rproc know the notifyid and da of this vring.
	 * Not all platforms use dma_alloc_coherent to automatically
	 * set up the iommu. In this case the device address (da) will
	 * hold the physical address and not the device address.
	 */
	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
	rsc->vring[i].da = dma;
	rsc->vring[i].notifyid = notifyid;
255 256 257
	return 0;
}

258 259
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
260 261
{
	struct rproc *rproc = rvdev->rproc;
262
	struct device *dev = &rproc->dev;
263 264
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
265

266
	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
267
		i, vring->da, vring->num, vring->align);
268

269 270 271
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
272
			vring->num, vring->align);
273
		return -EINVAL;
274
	}
275 276 277 278 279 280 281 282 283 284 285 286

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;
287 288
	int idx = rvring->rvdev->vring - rvring;
	struct fw_rsc_vdev *rsc;
289

290
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
291
	idr_remove(&rproc->notifyids, rvring->notifyid);
292

293 294 295 296
	/* reset resource entry info */
	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
	rsc->vring[idx].da = 0;
	rsc->vring[idx].notifyid = -1;
297 298
}

299
/**
300
 * rproc_handle_vdev() - handle a vdev fw resource
301 302
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
303
 * @avail: size of available data (for sanity checking the image)
304
 *
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
323 324 325
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
326
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
327
			     int offset, int avail)
328
{
329
	struct device *dev = &rproc->dev;
330 331
	struct rproc_vdev *rvdev;
	int i, ret;
332

333 334 335
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
336
		dev_err(dev, "vdev rsc is truncated\n");
337 338 339
		return -EINVAL;
	}

340 341 342
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
343 344 345
		return -EINVAL;
	}

346
	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
347 348
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

349 350
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
351
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
352 353 354
		return -EINVAL;
	}

355
	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
356 357
	if (!rvdev)
		return -ENOMEM;
358

359 360
	kref_init(&rvdev->refcount);

361
	rvdev->rproc = rproc;
362

363
	/* parse the vrings */
364
	for (i = 0; i < rsc->num_of_vrings; i++) {
365
		ret = rproc_parse_vring(rvdev, rsc, i);
366
		if (ret)
367
			goto free_rvdev;
368
	}
369

370 371
	/* remember the resource offset*/
	rvdev->rsc_offset = offset;
372

373
	list_add_tail(&rvdev->node, &rproc->rvdevs);
374

375 376 377
	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
378
		goto remove_rvdev;
379 380

	return 0;
381

382 383
remove_rvdev:
	list_del(&rvdev->node);
384
free_rvdev:
385 386
	kfree(rvdev);
	return ret;
387 388
}

389 390 391 392 393 394 395 396
void rproc_vdev_release(struct kref *ref)
{
	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);

	list_del(&rvdev->node);
	kfree(rvdev);
}

397 398 399 400
/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
401
 * @avail: size of available data (for sanity checking the image)
402 403 404 405 406 407 408 409 410 411 412
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
413
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
414
			      int offset, int avail)
415 416
{
	struct rproc_mem_entry *trace;
417
	struct device *dev = &rproc->dev;
418 419 420
	void *ptr;
	char name[15];

421
	if (sizeof(*rsc) > avail) {
422
		dev_err(dev, "trace rsc is truncated\n");
423 424 425 426 427 428 429 430 431
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

432 433 434 435 436 437 438 439
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
440
	if (!trace)
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		return -ENOMEM;

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

462 463
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
		name, ptr, rsc->da, rsc->len);
464 465 466 467 468 469 470 471

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
472
 * @avail: size of available data (for sanity checking the image)
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
493
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
494
			       int offset, int avail)
495 496
{
	struct rproc_mem_entry *mapping;
497
	struct device *dev = &rproc->dev;
498 499 500 501 502 503
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

504
	if (sizeof(*rsc) > avail) {
505
		dev_err(dev, "devmem rsc is truncated\n");
506 507 508 509 510
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
511
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
512 513 514
		return -EINVAL;
	}

515
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
516
	if (!mapping)
517 518 519 520
		return -ENOMEM;

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
521
		dev_err(dev, "failed to map devmem: %d\n", ret);
522 523 524 525 526 527 528 529 530 531 532 533 534 535
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

536
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
537
		rsc->pa, rsc->da, rsc->len);
538 539 540 541 542 543 544 545 546 547 548 549

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
550
 * @avail: size of available data (for image validation)
551 552 553 554 555 556 557 558 559 560 561 562 563
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
564
static int rproc_handle_carveout(struct rproc *rproc,
565 566
				 struct fw_rsc_carveout *rsc,
				 int offset, int avail)
567 568
{
	struct rproc_mem_entry *carveout, *mapping;
569
	struct device *dev = &rproc->dev;
570 571 572 573
	dma_addr_t dma;
	void *va;
	int ret;

574
	if (sizeof(*rsc) > avail) {
575
		dev_err(dev, "carveout rsc is truncated\n");
576 577 578 579 580 581 582 583 584
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

585
	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
586
		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
587

588
	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
589
	if (!carveout)
590
		return -ENOMEM;
591

592
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
593
	if (!va) {
594 595
		dev_err(dev->parent,
			"failed to allocate dma memory: len 0x%x\n", rsc->len);
596 597 598 599
		ret = -ENOMEM;
		goto free_carv;
	}

600 601
	dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
		va, &dma, rsc->len);
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
621 622 623 624 625 626
		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
		if (!mapping) {
			ret = -ENOMEM;
			goto dma_free;
		}

627
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
628
				rsc->flags);
629 630
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
631
			goto free_mapping;
632 633 634 635 636 637 638 639 640 641 642 643 644
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

645 646
		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
			rsc->da, &dma);
647 648
	}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	/*
	 * Some remote processors might need to know the pa
	 * even though they are behind an IOMMU. E.g., OMAP4's
	 * remote M3 processor needs this so it can control
	 * on-chip hardware accelerators that are not behind
	 * the IOMMU, and therefor must know the pa.
	 *
	 * Generally we don't want to expose physical addresses
	 * if we don't have to (remote processors are generally
	 * _not_ trusted), so we might want to do this only for
	 * remote processor that _must_ have this (e.g. OMAP4's
	 * dual M3 subsystem).
	 *
	 * Non-IOMMU processors might also want to have this info.
	 * In this case, the device address and the physical address
	 * are the same.
	 */
	rsc->pa = dma;

668 669 670 671 672 673 674 675 676
	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

677 678
free_mapping:
	kfree(mapping);
679
dma_free:
680
	dma_free_coherent(dev->parent, rsc->len, va, dma);
681 682 683 684 685
free_carv:
	kfree(carveout);
	return ret;
}

686
static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
687
			      int offset, int avail)
688 689 690 691 692 693 694
{
	/* Summarize the number of notification IDs */
	rproc->max_notifyid += rsc->num_of_vrings;

	return 0;
}

695 696 697 698
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
699
static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
700 701 702
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
703
	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
704 705
};

706 707 708 709
static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
};

710
/* handle firmware resource entries before booting the remote processor */
711
static int rproc_handle_resources(struct rproc *rproc, int len,
712
				  rproc_handle_resource_t handlers[RSC_LAST])
713
{
714
	struct device *dev = &rproc->dev;
715
	rproc_handle_resource_t handler;
716 717
	int ret = 0, i;

718 719 720
	for (i = 0; i < rproc->table_ptr->num; i++) {
		int offset = rproc->table_ptr->offset[i];
		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
721 722 723 724 725 726 727 728
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
729

730
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
731

732 733
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
734
			continue;
735 736
		}

737
		handler = handlers[hdr->type];
738 739 740
		if (!handler)
			continue;

741
		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
742
		if (ret)
743
			break;
744
	}
745 746 747 748

	return ret;
}

B
Bjorn Andersson 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static int rproc_probe_subdevices(struct rproc *rproc)
{
	struct rproc_subdev *subdev;
	int ret;

	list_for_each_entry(subdev, &rproc->subdevs, node) {
		ret = subdev->probe(subdev);
		if (ret)
			goto unroll_registration;
	}

	return 0;

unroll_registration:
	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node)
		subdev->remove(subdev);

	return ret;
}

static void rproc_remove_subdevices(struct rproc *rproc)
{
	struct rproc_subdev *subdev;

	list_for_each_entry(subdev, &rproc->subdevs, node)
		subdev->remove(subdev);
}

777 778 779 780 781
/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
782
 * is called whenever @rproc either shuts down or fails to boot.
783 784 785 786
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
787
	struct rproc_vdev *rvdev, *rvtmp;
788
	struct device *dev = &rproc->dev;
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
805
			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
806
				unmapped);
807 808 809 810 811
		}

		list_del(&entry->node);
		kfree(entry);
	}
812 813 814

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
815 816
		dma_free_coherent(dev->parent, entry->len, entry->va,
				  entry->dma);
817 818 819
		list_del(&entry->node);
		kfree(entry);
	}
820 821 822 823

	/* clean up remote vdev entries */
	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
		rproc_remove_virtio_dev(rvdev);
824 825 826 827 828 829 830
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
831
	struct device *dev = &rproc->dev;
832
	const char *name = rproc->firmware;
833
	struct resource_table *table, *loaded_table;
834
	int ret, tablesz;
835 836 837 838 839

	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

840
	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
841 842 843 844 845 846 847 848 849 850 851

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

852
	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
853
	ret = -EINVAL;
854

855
	/* look for the resource table */
856
	table = rproc_find_rsc_table(rproc, fw, &tablesz);
857 858
	if (!table) {
		dev_err(dev, "Failed to find resource table\n");
859
		goto clean_up;
860
	}
861

862 863 864 865 866 867 868 869
	/*
	 * Create a copy of the resource table. When a virtio device starts
	 * and calls vring_new_virtqueue() the address of the allocated vring
	 * will be stored in the cached_table. Before the device is started,
	 * cached_table will be copied into device memory.
	 */
	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
	if (!rproc->cached_table)
870
		goto clean_up;
871 872

	rproc->table_ptr = rproc->cached_table;
873

874 875 876
	/* reset max_notifyid */
	rproc->max_notifyid = -1;

877 878 879 880 881 882 883
	/* look for virtio devices and register them */
	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);
	if (ret) {
		dev_err(dev, "Failed to handle vdev resources: %d\n", ret);
		goto clean_up;
	}

884
	/* handle fw resources which are required to boot rproc */
885
	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
886 887
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
888
		goto clean_up_resources;
889 890 891
	}

	/* load the ELF segments to memory */
892
	ret = rproc_load_segments(rproc, fw);
893 894
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
895
		goto clean_up_resources;
896 897
	}

898 899 900 901
	/*
	 * The starting device has been given the rproc->cached_table as the
	 * resource table. The address of the vring along with the other
	 * allocated resources (carveouts etc) is stored in cached_table.
902 903 904
	 * In order to pass this information to the remote device we must copy
	 * this information to device memory. We also update the table_ptr so
	 * that any subsequent changes will be applied to the loaded version.
905 906
	 */
	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
907
	if (loaded_table) {
908
		memcpy(loaded_table, rproc->cached_table, tablesz);
909 910
		rproc->table_ptr = loaded_table;
	}
911

912 913 914 915
	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
916
		goto clean_up_resources;
917 918
	}

B
Bjorn Andersson 已提交
919 920 921 922 923 924 925 926
	/* probe any subdevices for the remote processor */
	ret = rproc_probe_subdevices(rproc);
	if (ret) {
		dev_err(dev, "failed to probe subdevices for %s: %d\n",
			rproc->name, ret);
		goto stop_rproc;
	}

927 928 929 930 931 932
	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

B
Bjorn Andersson 已提交
933 934
stop_rproc:
	rproc->ops->stop(rproc);
935 936
clean_up_resources:
	rproc_resource_cleanup(rproc);
937
clean_up:
938 939 940 941
	kfree(rproc->cached_table);
	rproc->cached_table = NULL;
	rproc->table_ptr = NULL;

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
957

958 959 960 961
	/* if rproc is marked always-on, request it to boot */
	if (rproc->auto_boot)
		rproc_boot_nowait(rproc);

962
	release_firmware(fw);
963
	/* allow rproc_del() contexts, if any, to proceed */
964 965 966
	complete_all(&rproc->firmware_loading_complete);
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
static int rproc_add_virtio_devices(struct rproc *rproc)
{
	int ret;

	/* rproc_del() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
	 * the firmware (e.g. whether to register a virtio device,
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
				      rproc->firmware, &rproc->dev, GFP_KERNEL,
				      rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
	}

	return ret;
}

/**
 * rproc_trigger_recovery() - recover a remoteproc
 * @rproc: the remote processor
 *
997
 * The recovery is done by resetting all the virtio devices, that way all the
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
 * rpmsg drivers will be reseted along with the remote processor making the
 * remoteproc functional again.
 *
 * This function can sleep, so it cannot be called from atomic context.
 */
int rproc_trigger_recovery(struct rproc *rproc)
{
	dev_err(&rproc->dev, "recovering %s\n", rproc->name);

	init_completion(&rproc->crash_comp);

1009 1010 1011 1012
	/* shut down the remote */
	/* TODO: make sure this works with rproc->power > 1 */
	rproc_shutdown(rproc);

1013 1014 1015
	/* wait until there is no more rproc users */
	wait_for_completion(&rproc->crash_comp);

1016
	/*
1017
	 * boot the remote processor up again
1018
	 */
1019
	rproc_boot(rproc);
1020 1021

	return 0;
1022 1023
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
/**
 * rproc_crash_handler_work() - handle a crash
 *
 * This function needs to handle everything related to a crash, like cpu
 * registers and stack dump, information to help to debug the fatal error, etc.
 */
static void rproc_crash_handler_work(struct work_struct *work)
{
	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
	struct device *dev = &rproc->dev;

	dev_dbg(dev, "enter %s\n", __func__);

	mutex_lock(&rproc->lock);

	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
		/* handle only the first crash detected */
		mutex_unlock(&rproc->lock);
		return;
	}

	rproc->state = RPROC_CRASHED;
	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
		rproc->name);

	mutex_unlock(&rproc->lock);

1051 1052
	if (!rproc->recovery_disabled)
		rproc_trigger_recovery(rproc);
1053 1054
}

1055
/**
1056
 * __rproc_boot() - boot a remote processor
1057
 * @rproc: handle of a remote processor
1058
 * @wait: wait for rproc registration completion
1059 1060 1061 1062 1063 1064 1065 1066
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
1067
static int __rproc_boot(struct rproc *rproc, bool wait)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

1078
	dev = &rproc->dev;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

1101 1102 1103 1104
	/* if rproc virtio is not yet configured, wait */
	if (wait)
		wait_for_completion(&rproc->firmware_loading_complete);

1105 1106 1107 1108 1109
	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
1110
	if (ret)
1111 1112 1113 1114 1115
		atomic_dec(&rproc->power);
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
1116 1117 1118 1119 1120 1121 1122 1123 1124

/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 */
int rproc_boot(struct rproc *rproc)
{
	return __rproc_boot(rproc, true);
}
1125 1126
EXPORT_SYMBOL(rproc_boot);

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
/**
 * rproc_boot_nowait() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Same as rproc_boot() but don't wait for rproc registration completion
 */
int rproc_boot_nowait(struct rproc *rproc)
{
	return __rproc_boot(rproc, false);
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 */
void rproc_shutdown(struct rproc *rproc)
{
1159
	struct device *dev = &rproc->dev;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

B
Bjorn Andersson 已提交
1172 1173 1174
	/* remove any subdevices for the remote processor */
	rproc_remove_subdevices(rproc);

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

1188 1189 1190 1191
	/* Free the copy of the resource table */
	kfree(rproc->cached_table);
	rproc->cached_table = NULL;
	rproc->table_ptr = NULL;
1192

1193 1194 1195 1196
	/* if in crash state, unlock crash handler */
	if (rproc->state == RPROC_CRASHED)
		complete_all(&rproc->crash_comp);

1197 1198 1199 1200 1201 1202 1203 1204 1205
	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
}
EXPORT_SYMBOL(rproc_shutdown);

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/**
 * rproc_get_by_phandle() - find a remote processor by phandle
 * @phandle: phandle to the rproc
 *
 * Finds an rproc handle using the remote processor's phandle, and then
 * return a handle to the rproc.
 *
 * This function increments the remote processor's refcount, so always
 * use rproc_put() to decrement it back once rproc isn't needed anymore.
 *
 * Returns the rproc handle on success, and NULL on failure.
 */
1218
#ifdef CONFIG_OF
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
struct rproc *rproc_get_by_phandle(phandle phandle)
{
	struct rproc *rproc = NULL, *r;
	struct device_node *np;

	np = of_find_node_by_phandle(phandle);
	if (!np)
		return NULL;

	mutex_lock(&rproc_list_mutex);
	list_for_each_entry(r, &rproc_list, node) {
		if (r->dev.parent && r->dev.parent->of_node == np) {
1231 1232 1233 1234 1235 1236
			/* prevent underlying implementation from being removed */
			if (!try_module_get(r->dev.parent->driver->owner)) {
				dev_err(&r->dev, "can't get owner\n");
				break;
			}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
			rproc = r;
			get_device(&rproc->dev);
			break;
		}
	}
	mutex_unlock(&rproc_list_mutex);

	of_node_put(np);

	return rproc;
}
1248 1249 1250 1251 1252 1253
#else
struct rproc *rproc_get_by_phandle(phandle phandle)
{
	return NULL;
}
#endif
1254 1255
EXPORT_SYMBOL(rproc_get_by_phandle);

1256
/**
1257
 * rproc_add() - register a remote processor
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1273
 * of registering this remote processor, additional virtio drivers might be
1274 1275
 * probed.
 */
1276
int rproc_add(struct rproc *rproc)
1277
{
1278
	struct device *dev = &rproc->dev;
1279
	int ret;
1280

1281 1282 1283
	ret = device_add(dev);
	if (ret < 0)
		return ret;
1284

1285
	dev_info(dev, "%s is available\n", rproc->name);
1286

1287 1288 1289
	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

1290 1291
	/* create debugfs entries */
	rproc_create_debug_dir(rproc);
1292 1293 1294
	ret = rproc_add_virtio_devices(rproc);
	if (ret < 0)
		return ret;
1295

1296 1297 1298 1299 1300 1301
	/* expose to rproc_get_by_phandle users */
	mutex_lock(&rproc_list_mutex);
	list_add(&rproc->node, &rproc_list);
	mutex_unlock(&rproc_list_mutex);

	return 0;
1302
}
1303
EXPORT_SYMBOL(rproc_add);
1304

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1318 1319 1320 1321
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1322 1323 1324 1325 1326
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

1327
	kfree(rproc->firmware);
1328 1329 1330 1331 1332 1333 1334
	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};
1335 1336 1337 1338 1339 1340

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
1341
 * @firmware: name of firmware file to load, can be NULL
1342 1343 1344
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
1345
 * it yet. if @firmware is NULL, a default name is used.
1346 1347 1348 1349 1350
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
1351
 * implementations should then call rproc_add() to complete
1352 1353 1354 1355 1356
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1357
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1358 1359
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
1360 1361
			  const struct rproc_ops *ops,
			  const char *firmware, int len)
1362 1363
{
	struct rproc *rproc;
1364
	char *p, *template = "rproc-%s-fw";
1365
	int name_len;
1366 1367 1368 1369

	if (!dev || !name || !ops)
		return NULL;

1370
	if (!firmware) {
1371 1372
		/*
		 * If the caller didn't pass in a firmware name then
1373
		 * construct a default name.
1374 1375
		 */
		name_len = strlen(name) + strlen(template) - 2 + 1;
1376 1377 1378
		p = kmalloc(name_len, GFP_KERNEL);
		if (!p)
			return NULL;
1379 1380
		snprintf(p, name_len, template, name);
	} else {
1381 1382 1383 1384 1385 1386 1387 1388 1389
		p = kstrdup(firmware, GFP_KERNEL);
		if (!p)
			return NULL;
	}

	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
	if (!rproc) {
		kfree(p);
		return NULL;
1390 1391 1392
	}

	rproc->firmware = p;
1393 1394 1395
	rproc->name = name;
	rproc->ops = ops;
	rproc->priv = &rproc[1];
1396
	rproc->auto_boot = true;
1397

1398 1399 1400
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;
1401
	rproc->dev.class = &rproc_class;
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1413 1414
	atomic_set(&rproc->power, 0);

1415 1416
	/* Set ELF as the default fw_ops handler */
	rproc->fw_ops = &rproc_elf_fw_ops;
1417 1418 1419

	mutex_init(&rproc->lock);

1420 1421
	idr_init(&rproc->notifyids);

1422 1423 1424
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1425
	INIT_LIST_HEAD(&rproc->rvdevs);
B
Bjorn Andersson 已提交
1426
	INIT_LIST_HEAD(&rproc->subdevs);
1427

1428
	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1429
	init_completion(&rproc->crash_comp);
1430

1431 1432 1433 1434 1435 1436 1437
	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
 * rproc_free() - unroll rproc_alloc()
 * @rproc: the remote processor handle
 *
 * This function decrements the rproc dev refcount.
 *
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
 */
void rproc_free(struct rproc *rproc)
{
	put_device(&rproc->dev);
}
EXPORT_SYMBOL(rproc_free);

/**
 * rproc_put() - release rproc reference
1454 1455
 * @rproc: the remote processor handle
 *
1456
 * This function decrements the rproc dev refcount.
1457
 *
1458 1459
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1460
 */
1461
void rproc_put(struct rproc *rproc)
1462
{
1463
	module_put(rproc->dev.parent->driver->owner);
1464
	put_device(&rproc->dev);
1465
}
1466
EXPORT_SYMBOL(rproc_put);
1467 1468

/**
1469
 * rproc_del() - unregister a remote processor
1470 1471 1472 1473
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
1474
 * _only_ be called if a previous invocation of rproc_add()
1475 1476
 * has completed successfully.
 *
1477
 * After rproc_del() returns, @rproc isn't freed yet, because
1478
 * of the outstanding reference created by rproc_alloc. To decrement that
1479
 * one last refcount, one still needs to call rproc_free().
1480 1481 1482
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
1483
int rproc_del(struct rproc *rproc)
1484
{
1485
	struct rproc_vdev *rvdev, *tmp;
1486

1487 1488 1489 1490 1491 1492
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1493 1494 1495 1496 1497
	/* if rproc is marked always-on, rproc_add() booted it */
	/* TODO: make sure this works with rproc->power > 1 */
	if (rproc->auto_boot)
		rproc_shutdown(rproc);

1498
	/* clean up remote vdev entries */
1499
	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1500
		rproc_remove_virtio_dev(rvdev);
1501

1502 1503 1504 1505 1506
	/* the rproc is downref'ed as soon as it's removed from the klist */
	mutex_lock(&rproc_list_mutex);
	list_del(&rproc->node);
	mutex_unlock(&rproc_list_mutex);

1507
	device_del(&rproc->dev);
1508 1509 1510

	return 0;
}
1511
EXPORT_SYMBOL(rproc_del);
1512

B
Bjorn Andersson 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
/**
 * rproc_add_subdev() - add a subdevice to a remoteproc
 * @rproc: rproc handle to add the subdevice to
 * @subdev: subdev handle to register
 * @probe: function to call when the rproc boots
 * @remove: function to call when the rproc shuts down
 */
void rproc_add_subdev(struct rproc *rproc,
		      struct rproc_subdev *subdev,
		      int (*probe)(struct rproc_subdev *subdev),
		      void (*remove)(struct rproc_subdev *subdev))
{
	subdev->probe = probe;
	subdev->remove = remove;

	list_add_tail(&subdev->node, &rproc->subdevs);
}
EXPORT_SYMBOL(rproc_add_subdev);

/**
 * rproc_remove_subdev() - remove a subdevice from a remoteproc
 * @rproc: rproc handle to remove the subdevice from
 * @subdev: subdev handle, previously registered with rproc_add_subdev()
 */
void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
{
	list_del(&subdev->node);
}
EXPORT_SYMBOL(rproc_remove_subdev);

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
/**
 * rproc_report_crash() - rproc crash reporter function
 * @rproc: remote processor
 * @type: crash type
 *
 * This function must be called every time a crash is detected by the low-level
 * drivers implementing a specific remoteproc. This should not be called from a
 * non-remoteproc driver.
 *
 * This function can be called from atomic/interrupt context.
 */
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
{
	if (!rproc) {
		pr_err("NULL rproc pointer\n");
		return;
	}

	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
		rproc->name, rproc_crash_to_string(type));

	/* create a new task to handle the error */
	schedule_work(&rproc->crash_handler);
}
EXPORT_SYMBOL(rproc_report_crash);

1569 1570
static int __init remoteproc_init(void)
{
1571
	rproc_init_sysfs();
1572
	rproc_init_debugfs();
1573

1574 1575 1576 1577 1578 1579
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
1580 1581
	ida_destroy(&rproc_dev_index);

1582
	rproc_exit_debugfs();
1583
	rproc_exit_sysfs();
1584 1585 1586 1587 1588
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");