remoteproc_core.c 36.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39 40 41
#include <linux/elf.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
42
#include <asm/byteorder.h>
43 44 45 46

#include "remoteproc_internal.h"

typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
47 48
				struct resource_table *table, int len);
typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
49

50 51 52
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

53 54 55 56 57 58 59 60 61 62 63 64
static const char * const rproc_crash_names[] = {
	[RPROC_MMUFAULT]	= "mmufault",
};

/* translate rproc_crash_type to string */
static const char *rproc_crash_to_string(enum rproc_crash_type type)
{
	if (type < ARRAY_SIZE(rproc_crash_names))
		return rproc_crash_names[type];
	return "unkown";
}

65 66 67 68 69 70 71 72 73
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
74
		unsigned long iova, int flags, void *token)
75
{
76 77
	struct rproc *rproc = token;

78 79
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

80 81
	rproc_report_crash(rproc, RPROC_MMUFAULT);

82 83
	/*
	 * Let the iommu core know we're not really handling this fault;
84
	 * we just used it as a recovery trigger.
85 86 87 88 89 90 91
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
92
	struct device *dev = rproc->dev.parent;
93 94 95 96 97 98 99 100 101 102 103 104 105 106
	int ret;

	/*
	 * We currently use iommu_present() to decide if an IOMMU
	 * setup is needed.
	 *
	 * This works for simple cases, but will easily fail with
	 * platforms that do have an IOMMU, but not for this specific
	 * rproc.
	 *
	 * This will be easily solved by introducing hw capabilities
	 * that will be set by the remoteproc driver.
	 */
	if (!iommu_present(dev->bus)) {
107 108
		dev_dbg(dev, "iommu not found\n");
		return 0;
109 110 111 112 113 114 115 116
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

117
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
137
	struct device *dev = rproc->dev.parent;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);

	return;
}

/*
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
 * device addresses (which are hardcoded in the firmware).
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
 * This function is an internal helper with which we can go over the allocated
 * carveouts and translate specific device address to kernel virtual addresses
 * so we can access the referenced memory.
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
 * here the output of the DMA API, which should be more correct.
 */
165
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

	return ptr;
}
188
EXPORT_SYMBOL(rproc_da_to_va);
189

190
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
191
{
192
	struct rproc *rproc = rvdev->rproc;
193
	struct device *dev = &rproc->dev;
194
	struct rproc_vring *rvring = &rvdev->vring[i];
195 196 197
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
198

199
	/* actual size of vring (in bytes) */
200
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
201 202 203 204

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
205
	 * TODO: let the rproc know the da of this vring
206
	 */
207
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
208
	if (!va) {
209
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
210 211 212
		return -EINVAL;
	}

213 214 215 216 217 218
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: let the rproc know the notifyid of this vring
	 * TODO: support predefined notifyids (via resource table)
	 */
T
Tejun Heo 已提交
219
	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
220
	if (ret < 0) {
T
Tejun Heo 已提交
221
		dev_err(dev, "idr_alloc failed: %d\n", ret);
222
		dma_free_coherent(dev->parent, size, va, dma);
223 224
		return ret;
	}
T
Tejun Heo 已提交
225
	notifyid = ret;
226

227 228 229
	/* Store largest notifyid */
	rproc->max_notifyid = max(rproc->max_notifyid, notifyid);

230 231
	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
				(unsigned long long)dma, size, notifyid);
232

233 234 235
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
236 237 238 239

	return 0;
}

240 241
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
242 243
{
	struct rproc *rproc = rvdev->rproc;
244
	struct device *dev = &rproc->dev;
245 246
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
247

248 249
	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
				i, vring->da, vring->num, vring->align);
250

251 252 253 254 255
	/* make sure reserved bytes are zeroes */
	if (vring->reserved) {
		dev_err(dev, "vring rsc has non zero reserved bytes\n");
		return -EINVAL;
	}
256

257 258 259 260 261
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
						vring->num, vring->align);
		return -EINVAL;
262
	}
263 264 265 266 267 268 269 270

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

271 272 273 274 275 276 277
static int rproc_max_notifyid(int id, void *p, void *data)
{
	int *maxid = data;
	*maxid = max(*maxid, id);
	return 0;
}

278 279 280 281
void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;
282
	int maxid = 0;
283

284
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
285
	idr_remove(&rproc->notifyids, rvring->notifyid);
286 287 288 289

	/* Find the largest remaining notifyid */
	idr_for_each(&rproc->notifyids, rproc_max_notifyid, &maxid);
	rproc->max_notifyid = maxid;
290 291
}

292
/**
293
 * rproc_handle_vdev() - handle a vdev fw resource
294 295
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
296
 * @avail: size of available data (for sanity checking the image)
297
 *
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
316 317 318
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
319 320
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
								int avail)
321
{
322
	struct device *dev = &rproc->dev;
323 324
	struct rproc_vdev *rvdev;
	int i, ret;
325

326 327 328
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
329
		dev_err(dev, "vdev rsc is truncated\n");
330 331 332
		return -EINVAL;
	}

333 334 335
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
336 337 338
		return -EINVAL;
	}

339 340 341
	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

342 343
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
344
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
345 346 347
		return -EINVAL;
	}

348 349 350
	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
	if (!rvdev)
		return -ENOMEM;
351

352
	rvdev->rproc = rproc;
353

354
	/* parse the vrings */
355
	for (i = 0; i < rsc->num_of_vrings; i++) {
356
		ret = rproc_parse_vring(rvdev, rsc, i);
357
		if (ret)
358
			goto free_rvdev;
359
	}
360

361 362
	/* remember the device features */
	rvdev->dfeatures = rsc->dfeatures;
363

364
	list_add_tail(&rvdev->node, &rproc->rvdevs);
365

366 367 368
	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
369
		goto free_rvdev;
370 371

	return 0;
372

373
free_rvdev:
374 375
	kfree(rvdev);
	return ret;
376 377 378 379 380 381
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
382
 * @avail: size of available data (for sanity checking the image)
383 384 385 386 387 388 389 390 391 392 393
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
394 395
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
								int avail)
396 397
{
	struct rproc_mem_entry *trace;
398
	struct device *dev = &rproc->dev;
399 400 401
	void *ptr;
	char name[15];

402
	if (sizeof(*rsc) > avail) {
403
		dev_err(dev, "trace rsc is truncated\n");
404 405 406 407 408 409 410 411 412
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
	if (!trace) {
		dev_err(dev, "kzalloc trace failed\n");
		return -ENOMEM;
	}

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

445
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
446 447 448 449 450 451 452 453 454
						rsc->da, rsc->len);

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
455
 * @avail: size of available data (for sanity checking the image)
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
476 477
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
								int avail)
478 479
{
	struct rproc_mem_entry *mapping;
480
	struct device *dev = &rproc->dev;
481 482 483 484 485 486
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

487
	if (sizeof(*rsc) > avail) {
488
		dev_err(dev, "devmem rsc is truncated\n");
489 490 491 492 493
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
494
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
495 496 497
		return -EINVAL;
	}

498 499
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
500
		dev_err(dev, "kzalloc mapping failed\n");
501 502 503 504 505
		return -ENOMEM;
	}

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
506
		dev_err(dev, "failed to map devmem: %d\n", ret);
507 508 509 510 511 512 513 514 515 516 517 518 519 520
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

521
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
522 523 524 525 526 527 528 529 530 531 532 533 534
					rsc->pa, rsc->da, rsc->len);

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
535
 * @avail: size of available data (for image validation)
536 537 538 539 540 541 542 543 544 545 546 547 548
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
549 550
static int rproc_handle_carveout(struct rproc *rproc,
				struct fw_rsc_carveout *rsc, int avail)
551 552
{
	struct rproc_mem_entry *carveout, *mapping;
553
	struct device *dev = &rproc->dev;
554 555 556 557
	dma_addr_t dma;
	void *va;
	int ret;

558
	if (sizeof(*rsc) > avail) {
559
		dev_err(dev, "carveout rsc is truncated\n");
560 561 562 563 564 565 566 567 568 569 570 571
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
			rsc->da, rsc->pa, rsc->len, rsc->flags);

572 573 574
	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
	if (!carveout) {
		dev_err(dev, "kzalloc carveout failed\n");
575
		return -ENOMEM;
576 577
	}

578
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
579
	if (!va) {
580
		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
581 582 583 584
		ret = -ENOMEM;
		goto free_carv;
	}

585 586
	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
					(unsigned long long)dma, rsc->len);
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
606 607 608 609 610 611 612
		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
		if (!mapping) {
			dev_err(dev, "kzalloc mapping failed\n");
			ret = -ENOMEM;
			goto dma_free;
		}

613 614 615 616
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
								rsc->flags);
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
617
			goto free_mapping;
618 619 620 621 622 623 624 625 626 627 628 629 630
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

631 632
		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
					rsc->da, (unsigned long long)dma);
633 634
	}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	/*
	 * Some remote processors might need to know the pa
	 * even though they are behind an IOMMU. E.g., OMAP4's
	 * remote M3 processor needs this so it can control
	 * on-chip hardware accelerators that are not behind
	 * the IOMMU, and therefor must know the pa.
	 *
	 * Generally we don't want to expose physical addresses
	 * if we don't have to (remote processors are generally
	 * _not_ trusted), so we might want to do this only for
	 * remote processor that _must_ have this (e.g. OMAP4's
	 * dual M3 subsystem).
	 *
	 * Non-IOMMU processors might also want to have this info.
	 * In this case, the device address and the physical address
	 * are the same.
	 */
	rsc->pa = dma;

654 655 656 657 658 659 660 661 662
	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

663 664
free_mapping:
	kfree(mapping);
665
dma_free:
666
	dma_free_coherent(dev->parent, rsc->len, va, dma);
667 668 669 670 671
free_carv:
	kfree(carveout);
	return ret;
}

672 673 674 675 676
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
static rproc_handle_resource_t rproc_handle_rsc[] = {
677 678 679
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
680
	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
681 682
};

683 684
/* handle firmware resource entries before booting the remote processor */
static int
685
rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
686
{
687
	struct device *dev = &rproc->dev;
688
	rproc_handle_resource_t handler;
689 690 691 692 693 694 695 696 697 698 699 700 701
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
702

703
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
704

705 706
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
707
			continue;
708 709
		}

710
		handler = rproc_handle_rsc[hdr->type];
711 712 713
		if (!handler)
			continue;

714
		ret = handler(rproc, rsc, avail);
715 716 717 718 719 720 721 722 723
		if (ret)
			break;
	}

	return ret;
}

/* handle firmware resource entries while registering the remote processor */
static int
724
rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
725
{
726
	struct device *dev = &rproc->dev;
727 728 729 730 731 732
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
733
		struct fw_rsc_vdev *vrsc;
734

735 736 737 738 739 740 741 742
		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}

		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);

743 744 745 746 747 748 749
		if (hdr->type != RSC_VDEV)
			continue;

		vrsc = (struct fw_rsc_vdev *)hdr->data;

		ret = rproc_handle_vdev(rproc, vrsc, avail);
		if (ret)
750
			break;
751
	}
752 753 754 755 756 757 758 759 760

	return ret;
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
761
 * is called whenever @rproc either shuts down or fails to boot.
762 763 764 765
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
766
	struct device *dev = &rproc->dev;
767 768 769 770 771 772 773 774 775 776 777

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
778
		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
779 780 781 782 783 784 785 786 787 788 789
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
790
			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
791 792 793 794 795 796 797 798 799 800 801 802 803
								unmapped);
		}

		list_del(&entry->node);
		kfree(entry);
	}
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
804
	struct device *dev = &rproc->dev;
805
	const char *name = rproc->firmware;
806 807
	struct resource_table *table;
	int ret, tablesz;
808 809 810 811 812

	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

813
	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
814 815 816 817 818 819 820 821 822 823 824

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

825
	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
826

827
	/* look for the resource table */
828
	table = rproc_find_rsc_table(rproc, fw, &tablesz);
829 830
	if (!table) {
		ret = -EINVAL;
831
		goto clean_up;
832
	}
833

834
	/* handle fw resources which are required to boot rproc */
835
	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
836 837 838 839 840 841
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
842
	ret = rproc_load_segments(rproc, fw);
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
878 879
	struct resource_table *table;
	int ret, tablesz;
880 881 882 883

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

884
	/* look for the resource table */
885
	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
886 887 888 889 890 891
	if (!table)
		goto out;

	/* look for virtio devices and register them */
	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
	if (ret)
892 893 894
		goto out;

out:
895
	release_firmware(fw);
896
	/* allow rproc_del() contexts, if any, to proceed */
897 898 899
	complete_all(&rproc->firmware_loading_complete);
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
static int rproc_add_virtio_devices(struct rproc *rproc)
{
	int ret;

	/* rproc_del() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
	 * the firmware (e.g. whether to register a virtio device,
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
				      rproc->firmware, &rproc->dev, GFP_KERNEL,
				      rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
	}

	return ret;
}

/**
 * rproc_trigger_recovery() - recover a remoteproc
 * @rproc: the remote processor
 *
 * The recovery is done by reseting all the virtio devices, that way all the
 * rpmsg drivers will be reseted along with the remote processor making the
 * remoteproc functional again.
 *
 * This function can sleep, so it cannot be called from atomic context.
 */
int rproc_trigger_recovery(struct rproc *rproc)
{
	struct rproc_vdev *rvdev, *rvtmp;

	dev_err(&rproc->dev, "recovering %s\n", rproc->name);

	init_completion(&rproc->crash_comp);

	/* clean up remote vdev entries */
	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
		rproc_remove_virtio_dev(rvdev);

	/* wait until there is no more rproc users */
	wait_for_completion(&rproc->crash_comp);

	return rproc_add_virtio_devices(rproc);
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
/**
 * rproc_crash_handler_work() - handle a crash
 *
 * This function needs to handle everything related to a crash, like cpu
 * registers and stack dump, information to help to debug the fatal error, etc.
 */
static void rproc_crash_handler_work(struct work_struct *work)
{
	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
	struct device *dev = &rproc->dev;

	dev_dbg(dev, "enter %s\n", __func__);

	mutex_lock(&rproc->lock);

	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
		/* handle only the first crash detected */
		mutex_unlock(&rproc->lock);
		return;
	}

	rproc->state = RPROC_CRASHED;
	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
		rproc->name);

	mutex_unlock(&rproc->lock);

981 982
	if (!rproc->recovery_disabled)
		rproc_trigger_recovery(rproc);
983 984
}

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
int rproc_boot(struct rproc *rproc)
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

1007
	dev = &rproc->dev;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
1023
	if (!try_module_get(dev->parent->driver->owner)) {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
1050
		module_put(dev->parent->driver->owner);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
EXPORT_SYMBOL(rproc_boot);

/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 */
void rproc_shutdown(struct rproc *rproc)
{
1080
	struct device *dev = &rproc->dev;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

1106 1107 1108 1109
	/* if in crash state, unlock crash handler */
	if (rproc->state == RPROC_CRASHED)
		complete_all(&rproc->crash_comp);

1110 1111 1112 1113 1114 1115 1116
	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
1117
		module_put(dev->parent->driver->owner);
1118 1119 1120 1121
}
EXPORT_SYMBOL(rproc_shutdown);

/**
1122
 * rproc_add() - register a remote processor
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1138
 * of registering this remote processor, additional virtio drivers might be
1139 1140
 * probed.
 */
1141
int rproc_add(struct rproc *rproc)
1142
{
1143
	struct device *dev = &rproc->dev;
1144
	int ret;
1145

1146 1147 1148
	ret = device_add(dev);
	if (ret < 0)
		return ret;
1149

1150
	dev_info(dev, "%s is available\n", rproc->name);
1151

1152 1153 1154
	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

1155 1156 1157
	/* create debugfs entries */
	rproc_create_debug_dir(rproc);

1158
	return rproc_add_virtio_devices(rproc);
1159
}
1160
EXPORT_SYMBOL(rproc_add);
1161

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1175 1176 1177 1178
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
 * @firmware: name of firmware file to load
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
 * it yet.
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
1207
 * implementations should then call rproc_add() to complete
1208 1209 1210 1211 1212
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1213
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
				const struct rproc_ops *ops,
				const char *firmware, int len)
{
	struct rproc *rproc;

	if (!dev || !name || !ops)
		return NULL;

	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
	if (!rproc) {
		dev_err(dev, "%s: kzalloc failed\n", __func__);
		return NULL;
	}

	rproc->name = name;
	rproc->ops = ops;
	rproc->firmware = firmware;
	rproc->priv = &rproc[1];

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1249 1250
	atomic_set(&rproc->power, 0);

1251 1252
	/* Set ELF as the default fw_ops handler */
	rproc->fw_ops = &rproc_elf_fw_ops;
1253 1254 1255

	mutex_init(&rproc->lock);

1256 1257
	idr_init(&rproc->notifyids);

1258 1259 1260
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1261
	INIT_LIST_HEAD(&rproc->rvdevs);
1262

1263
	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1264
	init_completion(&rproc->crash_comp);
1265

1266 1267 1268 1269 1270 1271 1272
	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1273
 * rproc_put() - unroll rproc_alloc()
1274 1275
 * @rproc: the remote processor handle
 *
1276
 * This function decrements the rproc dev refcount.
1277
 *
1278 1279
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1280
 */
1281
void rproc_put(struct rproc *rproc)
1282
{
1283
	put_device(&rproc->dev);
1284
}
1285
EXPORT_SYMBOL(rproc_put);
1286 1287

/**
1288
 * rproc_del() - unregister a remote processor
1289 1290 1291 1292
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
1293
 * _only_ be called if a previous invocation of rproc_add()
1294 1295
 * has completed successfully.
 *
1296
 * After rproc_del() returns, @rproc isn't freed yet, because
1297
 * of the outstanding reference created by rproc_alloc. To decrement that
1298
 * one last refcount, one still needs to call rproc_put().
1299 1300 1301
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
1302
int rproc_del(struct rproc *rproc)
1303
{
1304
	struct rproc_vdev *rvdev, *tmp;
1305

1306 1307 1308 1309 1310 1311
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1312
	/* clean up remote vdev entries */
1313
	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1314
		rproc_remove_virtio_dev(rvdev);
1315

1316
	device_del(&rproc->dev);
1317 1318 1319

	return 0;
}
1320
EXPORT_SYMBOL(rproc_del);
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
/**
 * rproc_report_crash() - rproc crash reporter function
 * @rproc: remote processor
 * @type: crash type
 *
 * This function must be called every time a crash is detected by the low-level
 * drivers implementing a specific remoteproc. This should not be called from a
 * non-remoteproc driver.
 *
 * This function can be called from atomic/interrupt context.
 */
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
{
	if (!rproc) {
		pr_err("NULL rproc pointer\n");
		return;
	}

	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
		rproc->name, rproc_crash_to_string(type));

	/* create a new task to handle the error */
	schedule_work(&rproc->crash_handler);
}
EXPORT_SYMBOL(rproc_report_crash);

1348 1349 1350
static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
1351

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");