remoteproc_core.c 39.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39
#include <linux/elf.h>
40
#include <linux/crc32.h>
41 42
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
43
#include <asm/byteorder.h>
44 45 46 47

#include "remoteproc_internal.h"

typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
48
				struct resource_table *table, int len);
49 50
typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
				 void *, int offset, int avail);
51

52 53 54
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

55 56 57 58 59 60 61 62 63
static const char * const rproc_crash_names[] = {
	[RPROC_MMUFAULT]	= "mmufault",
};

/* translate rproc_crash_type to string */
static const char *rproc_crash_to_string(enum rproc_crash_type type)
{
	if (type < ARRAY_SIZE(rproc_crash_names))
		return rproc_crash_names[type];
64
	return "unknown";
65 66
}

67 68 69 70 71 72 73 74 75
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
76
		unsigned long iova, int flags, void *token)
77
{
78 79
	struct rproc *rproc = token;

80 81
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

82 83
	rproc_report_crash(rproc, RPROC_MMUFAULT);

84 85
	/*
	 * Let the iommu core know we're not really handling this fault;
86
	 * we just used it as a recovery trigger.
87 88 89 90 91 92 93
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
94
	struct device *dev = rproc->dev.parent;
95 96 97 98 99 100 101 102 103 104 105 106 107 108
	int ret;

	/*
	 * We currently use iommu_present() to decide if an IOMMU
	 * setup is needed.
	 *
	 * This works for simple cases, but will easily fail with
	 * platforms that do have an IOMMU, but not for this specific
	 * rproc.
	 *
	 * This will be easily solved by introducing hw capabilities
	 * that will be set by the remoteproc driver.
	 */
	if (!iommu_present(dev->bus)) {
109 110
		dev_dbg(dev, "iommu not found\n");
		return 0;
111 112 113 114 115 116 117 118
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

119
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
139
	struct device *dev = rproc->dev.parent;
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);

	return;
}

/*
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
 * device addresses (which are hardcoded in the firmware).
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
 * This function is an internal helper with which we can go over the allocated
 * carveouts and translate specific device address to kernel virtual addresses
 * so we can access the referenced memory.
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
 * here the output of the DMA API, which should be more correct.
 */
167
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

	return ptr;
}
190
EXPORT_SYMBOL(rproc_da_to_va);
191

192
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
193
{
194
	struct rproc *rproc = rvdev->rproc;
195
	struct device *dev = &rproc->dev;
196
	struct rproc_vring *rvring = &rvdev->vring[i];
197
	struct fw_rsc_vdev *rsc;
198 199 200
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
201

202
	/* actual size of vring (in bytes) */
203
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
204 205 206 207 208

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
	 */
209
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
210
	if (!va) {
211
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
212 213 214
		return -EINVAL;
	}

215 216 217 218 219
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: support predefined notifyids (via resource table)
	 */
T
Tejun Heo 已提交
220
	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
221
	if (ret < 0) {
T
Tejun Heo 已提交
222
		dev_err(dev, "idr_alloc failed: %d\n", ret);
223
		dma_free_coherent(dev->parent, size, va, dma);
224 225
		return ret;
	}
T
Tejun Heo 已提交
226
	notifyid = ret;
227

228 229
	dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
				(unsigned long long)dma, size, notifyid);
230

231 232 233
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
234

235 236 237 238 239 240 241 242 243
	/*
	 * Let the rproc know the notifyid and da of this vring.
	 * Not all platforms use dma_alloc_coherent to automatically
	 * set up the iommu. In this case the device address (da) will
	 * hold the physical address and not the device address.
	 */
	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
	rsc->vring[i].da = dma;
	rsc->vring[i].notifyid = notifyid;
244 245 246
	return 0;
}

247 248
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
249 250
{
	struct rproc *rproc = rvdev->rproc;
251
	struct device *dev = &rproc->dev;
252 253
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
254

255 256
	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
				i, vring->da, vring->num, vring->align);
257

258 259 260 261 262
	/* make sure reserved bytes are zeroes */
	if (vring->reserved) {
		dev_err(dev, "vring rsc has non zero reserved bytes\n");
		return -EINVAL;
	}
263

264 265 266 267 268
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
						vring->num, vring->align);
		return -EINVAL;
269
	}
270 271 272 273 274 275 276 277 278 279 280 281

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;
282 283
	int idx = rvring->rvdev->vring - rvring;
	struct fw_rsc_vdev *rsc;
284

285
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
286
	idr_remove(&rproc->notifyids, rvring->notifyid);
287

288 289 290 291
	/* reset resource entry info */
	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
	rsc->vring[idx].da = 0;
	rsc->vring[idx].notifyid = -1;
292 293
}

294
/**
295
 * rproc_handle_vdev() - handle a vdev fw resource
296 297
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
298
 * @avail: size of available data (for sanity checking the image)
299
 *
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
318 319 320
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
321
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
322
							int offset, int avail)
323
{
324
	struct device *dev = &rproc->dev;
325 326
	struct rproc_vdev *rvdev;
	int i, ret;
327

328 329 330
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
331
		dev_err(dev, "vdev rsc is truncated\n");
332 333 334
		return -EINVAL;
	}

335 336 337
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
338 339 340
		return -EINVAL;
	}

341 342 343
	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

344 345
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
346
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
347 348 349
		return -EINVAL;
	}

350 351 352
	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
	if (!rvdev)
		return -ENOMEM;
353

354
	rvdev->rproc = rproc;
355

356
	/* parse the vrings */
357
	for (i = 0; i < rsc->num_of_vrings; i++) {
358
		ret = rproc_parse_vring(rvdev, rsc, i);
359
		if (ret)
360
			goto free_rvdev;
361
	}
362

363 364
	/* remember the resource offset*/
	rvdev->rsc_offset = offset;
365

366
	list_add_tail(&rvdev->node, &rproc->rvdevs);
367

368 369 370
	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
371
		goto remove_rvdev;
372 373

	return 0;
374

375 376
remove_rvdev:
	list_del(&rvdev->node);
377
free_rvdev:
378 379
	kfree(rvdev);
	return ret;
380 381 382 383 384 385
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
386
 * @avail: size of available data (for sanity checking the image)
387 388 389 390 391 392 393 394 395 396 397
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
398
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
399
							int offset, int avail)
400 401
{
	struct rproc_mem_entry *trace;
402
	struct device *dev = &rproc->dev;
403 404 405
	void *ptr;
	char name[15];

406
	if (sizeof(*rsc) > avail) {
407
		dev_err(dev, "trace rsc is truncated\n");
408 409 410 411 412 413 414 415 416
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
	if (!trace) {
		dev_err(dev, "kzalloc trace failed\n");
		return -ENOMEM;
	}

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

449
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
450 451 452 453 454 455 456 457 458
						rsc->da, rsc->len);

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
459
 * @avail: size of available data (for sanity checking the image)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
480
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
481
							int offset, int avail)
482 483
{
	struct rproc_mem_entry *mapping;
484
	struct device *dev = &rproc->dev;
485 486 487 488 489 490
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

491
	if (sizeof(*rsc) > avail) {
492
		dev_err(dev, "devmem rsc is truncated\n");
493 494 495 496 497
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
498
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
499 500 501
		return -EINVAL;
	}

502 503
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
504
		dev_err(dev, "kzalloc mapping failed\n");
505 506 507 508 509
		return -ENOMEM;
	}

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
510
		dev_err(dev, "failed to map devmem: %d\n", ret);
511 512 513 514 515 516 517 518 519 520 521 522 523 524
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

525
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
526 527 528 529 530 531 532 533 534 535 536 537 538
					rsc->pa, rsc->da, rsc->len);

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
539
 * @avail: size of available data (for image validation)
540 541 542 543 544 545 546 547 548 549 550 551 552
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
553
static int rproc_handle_carveout(struct rproc *rproc,
554 555 556
						struct fw_rsc_carveout *rsc,
						int offset, int avail)

557 558
{
	struct rproc_mem_entry *carveout, *mapping;
559
	struct device *dev = &rproc->dev;
560 561 562 563
	dma_addr_t dma;
	void *va;
	int ret;

564
	if (sizeof(*rsc) > avail) {
565
		dev_err(dev, "carveout rsc is truncated\n");
566 567 568 569 570 571 572 573 574 575 576 577
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
			rsc->da, rsc->pa, rsc->len, rsc->flags);

578 579 580
	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
	if (!carveout) {
		dev_err(dev, "kzalloc carveout failed\n");
581
		return -ENOMEM;
582 583
	}

584
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
585
	if (!va) {
586
		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
587 588 589 590
		ret = -ENOMEM;
		goto free_carv;
	}

591 592
	dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
					(unsigned long long)dma, rsc->len);
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
612 613 614 615 616 617 618
		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
		if (!mapping) {
			dev_err(dev, "kzalloc mapping failed\n");
			ret = -ENOMEM;
			goto dma_free;
		}

619 620 621 622
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
								rsc->flags);
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
623
			goto free_mapping;
624 625 626 627 628 629 630 631 632 633 634 635 636
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

637 638
		dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
					rsc->da, (unsigned long long)dma);
639 640
	}

641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	/*
	 * Some remote processors might need to know the pa
	 * even though they are behind an IOMMU. E.g., OMAP4's
	 * remote M3 processor needs this so it can control
	 * on-chip hardware accelerators that are not behind
	 * the IOMMU, and therefor must know the pa.
	 *
	 * Generally we don't want to expose physical addresses
	 * if we don't have to (remote processors are generally
	 * _not_ trusted), so we might want to do this only for
	 * remote processor that _must_ have this (e.g. OMAP4's
	 * dual M3 subsystem).
	 *
	 * Non-IOMMU processors might also want to have this info.
	 * In this case, the device address and the physical address
	 * are the same.
	 */
	rsc->pa = dma;

660 661 662 663 664 665 666 667 668
	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

669 670
free_mapping:
	kfree(mapping);
671
dma_free:
672
	dma_free_coherent(dev->parent, rsc->len, va, dma);
673 674 675 676 677
free_carv:
	kfree(carveout);
	return ret;
}

678
static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
679
			      int offset, int avail)
680 681 682 683 684 685 686
{
	/* Summarize the number of notification IDs */
	rproc->max_notifyid += rsc->num_of_vrings;

	return 0;
}

687 688 689 690
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
691
static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
692 693 694
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
695
	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
696 697
};

698 699 700 701
static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
};

702 703 704 705
static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
};

706
/* handle firmware resource entries before booting the remote processor */
707
static int rproc_handle_resources(struct rproc *rproc, int len,
708
				  rproc_handle_resource_t handlers[RSC_LAST])
709
{
710
	struct device *dev = &rproc->dev;
711
	rproc_handle_resource_t handler;
712 713
	int ret = 0, i;

714 715 716
	for (i = 0; i < rproc->table_ptr->num; i++) {
		int offset = rproc->table_ptr->offset[i];
		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
717 718 719 720 721 722 723 724
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
725

726
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
727

728 729
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
730
			continue;
731 732
		}

733
		handler = handlers[hdr->type];
734 735 736
		if (!handler)
			continue;

737
		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
738
		if (ret)
739
			break;
740
	}
741 742 743 744 745 746 747 748 749

	return ret;
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
750
 * is called whenever @rproc either shuts down or fails to boot.
751 752 753 754
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
755
	struct device *dev = &rproc->dev;
756 757 758 759 760 761 762 763 764 765 766

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
767
		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
768 769 770 771 772 773 774 775 776 777 778
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
779
			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
780 781 782 783 784 785 786 787 788 789 790 791 792
								unmapped);
		}

		list_del(&entry->node);
		kfree(entry);
	}
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
793
	struct device *dev = &rproc->dev;
794
	const char *name = rproc->firmware;
795
	struct resource_table *table, *loaded_table;
796
	int ret, tablesz;
797

798 799 800
	if (!rproc->table_ptr)
		return -ENOMEM;

801 802 803 804
	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

805
	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
806 807 808 809 810 811 812 813 814 815 816

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

817
	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
818

819
	/* look for the resource table */
820
	table = rproc_find_rsc_table(rproc, fw, &tablesz);
821 822
	if (!table) {
		ret = -EINVAL;
823
		goto clean_up;
824
	}
825

826 827 828 829 830 831 832
	/* Verify that resource table in loaded fw is unchanged */
	if (rproc->table_csum != crc32(0, table, tablesz)) {
		dev_err(dev, "resource checksum failed, fw changed?\n");
		ret = -EINVAL;
		goto clean_up;
	}

833
	/* handle fw resources which are required to boot rproc */
834
	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
835 836 837 838 839 840
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
841
	ret = rproc_load_segments(rproc, fw);
842 843 844 845 846
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

847 848 849 850 851 852 853 854 855 856 857 858 859
	/*
	 * The starting device has been given the rproc->cached_table as the
	 * resource table. The address of the vring along with the other
	 * allocated resources (carveouts etc) is stored in cached_table.
	 * In order to pass this information to the remote device we must
	 * copy this information to device memory.
	 */
	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
	if (!loaded_table)
		goto clean_up;

	memcpy(loaded_table, rproc->cached_table, tablesz);

860 861 862 863 864 865 866
	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

867 868 869 870 871 872 873
	/*
	 * Update table_ptr so that all subsequent vring allocations and
	 * virtio fields manipulation update the actual loaded resource table
	 * in device memory.
	 */
	rproc->table_ptr = loaded_table;

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
897 898
	struct resource_table *table;
	int ret, tablesz;
899 900 901 902

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

903
	/* look for the resource table */
904
	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
905 906 907
	if (!table)
		goto out;

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	rproc->table_csum = crc32(0, table, tablesz);

	/*
	 * Create a copy of the resource table. When a virtio device starts
	 * and calls vring_new_virtqueue() the address of the allocated vring
	 * will be stored in the cached_table. Before the device is started,
	 * cached_table will be copied into devic memory.
	 */
	rproc->cached_table = kmalloc(tablesz, GFP_KERNEL);
	if (!rproc->cached_table)
		goto out;

	memcpy(rproc->cached_table, table, tablesz);
	rproc->table_ptr = rproc->cached_table;

923 924
	/* count the number of notify-ids */
	rproc->max_notifyid = -1;
925
	ret = rproc_handle_resources(rproc, tablesz, rproc_count_vrings_handler);
926
	if (ret)
927 928
		goto out;

929 930 931
	/* look for virtio devices and register them */
	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);

932
out:
933
	release_firmware(fw);
934
	/* allow rproc_del() contexts, if any, to proceed */
935 936 937
	complete_all(&rproc->firmware_loading_complete);
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
static int rproc_add_virtio_devices(struct rproc *rproc)
{
	int ret;

	/* rproc_del() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
	 * the firmware (e.g. whether to register a virtio device,
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
				      rproc->firmware, &rproc->dev, GFP_KERNEL,
				      rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
	}

	return ret;
}

/**
 * rproc_trigger_recovery() - recover a remoteproc
 * @rproc: the remote processor
 *
 * The recovery is done by reseting all the virtio devices, that way all the
 * rpmsg drivers will be reseted along with the remote processor making the
 * remoteproc functional again.
 *
 * This function can sleep, so it cannot be called from atomic context.
 */
int rproc_trigger_recovery(struct rproc *rproc)
{
	struct rproc_vdev *rvdev, *rvtmp;

	dev_err(&rproc->dev, "recovering %s\n", rproc->name);

	init_completion(&rproc->crash_comp);

	/* clean up remote vdev entries */
	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
		rproc_remove_virtio_dev(rvdev);

	/* wait until there is no more rproc users */
	wait_for_completion(&rproc->crash_comp);

989 990 991
	/* Free the copy of the resource table */
	kfree(rproc->cached_table);

992 993 994
	return rproc_add_virtio_devices(rproc);
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
/**
 * rproc_crash_handler_work() - handle a crash
 *
 * This function needs to handle everything related to a crash, like cpu
 * registers and stack dump, information to help to debug the fatal error, etc.
 */
static void rproc_crash_handler_work(struct work_struct *work)
{
	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
	struct device *dev = &rproc->dev;

	dev_dbg(dev, "enter %s\n", __func__);

	mutex_lock(&rproc->lock);

	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
		/* handle only the first crash detected */
		mutex_unlock(&rproc->lock);
		return;
	}

	rproc->state = RPROC_CRASHED;
	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
		rproc->name);

	mutex_unlock(&rproc->lock);

1022 1023
	if (!rproc->recovery_disabled)
		rproc_trigger_recovery(rproc);
1024 1025
}

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
int rproc_boot(struct rproc *rproc)
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

1048
	dev = &rproc->dev;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
1064
	if (!try_module_get(dev->parent->driver->owner)) {
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
1091
		module_put(dev->parent->driver->owner);
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
EXPORT_SYMBOL(rproc_boot);

/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 */
void rproc_shutdown(struct rproc *rproc)
{
1121
	struct device *dev = &rproc->dev;
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

1147 1148 1149
	/* Give the next start a clean resource table */
	rproc->table_ptr = rproc->cached_table;

1150 1151 1152 1153
	/* if in crash state, unlock crash handler */
	if (rproc->state == RPROC_CRASHED)
		complete_all(&rproc->crash_comp);

1154 1155 1156 1157 1158 1159 1160
	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
1161
		module_put(dev->parent->driver->owner);
1162 1163 1164 1165
}
EXPORT_SYMBOL(rproc_shutdown);

/**
1166
 * rproc_add() - register a remote processor
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1182
 * of registering this remote processor, additional virtio drivers might be
1183 1184
 * probed.
 */
1185
int rproc_add(struct rproc *rproc)
1186
{
1187
	struct device *dev = &rproc->dev;
1188
	int ret;
1189

1190 1191 1192
	ret = device_add(dev);
	if (ret < 0)
		return ret;
1193

1194
	dev_info(dev, "%s is available\n", rproc->name);
1195

1196 1197 1198
	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

1199 1200 1201
	/* create debugfs entries */
	rproc_create_debug_dir(rproc);

1202
	return rproc_add_virtio_devices(rproc);
1203
}
1204
EXPORT_SYMBOL(rproc_add);
1205

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1219 1220 1221 1222
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};
1235 1236 1237 1238 1239 1240

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
1241
 * @firmware: name of firmware file to load, can be NULL
1242 1243 1244
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
1245
 * it yet. if @firmware is NULL, a default name is used.
1246 1247 1248 1249 1250
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
1251
 * implementations should then call rproc_add() to complete
1252 1253 1254 1255 1256
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1257
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1258 1259 1260 1261 1262 1263
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
				const struct rproc_ops *ops,
				const char *firmware, int len)
{
	struct rproc *rproc;
1264 1265
	char *p, *template = "rproc-%s-fw";
	int name_len = 0;
1266 1267 1268 1269

	if (!dev || !name || !ops)
		return NULL;

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	if (!firmware)
		/*
		 * Make room for default firmware name (minus %s plus '\0').
		 * If the caller didn't pass in a firmware name then
		 * construct a default name.  We're already glomming 'len'
		 * bytes onto the end of the struct rproc allocation, so do
		 * a few more for the default firmware name (but only if
		 * the caller doesn't pass one).
		 */
		name_len = strlen(name) + strlen(template) - 2 + 1;

	rproc = kzalloc(sizeof(struct rproc) + len + name_len, GFP_KERNEL);
1282 1283 1284 1285 1286
	if (!rproc) {
		dev_err(dev, "%s: kzalloc failed\n", __func__);
		return NULL;
	}

1287 1288 1289 1290 1291 1292 1293 1294
	if (!firmware) {
		p = (char *)rproc + sizeof(struct rproc) + len;
		snprintf(p, name_len, template, name);
	} else {
		p = (char *)firmware;
	}

	rproc->firmware = p;
1295 1296 1297 1298
	rproc->name = name;
	rproc->ops = ops;
	rproc->priv = &rproc[1];

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1313 1314
	atomic_set(&rproc->power, 0);

1315 1316
	/* Set ELF as the default fw_ops handler */
	rproc->fw_ops = &rproc_elf_fw_ops;
1317 1318 1319

	mutex_init(&rproc->lock);

1320 1321
	idr_init(&rproc->notifyids);

1322 1323 1324
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1325
	INIT_LIST_HEAD(&rproc->rvdevs);
1326

1327
	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1328
	init_completion(&rproc->crash_comp);
1329

1330 1331 1332 1333 1334 1335 1336
	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1337
 * rproc_put() - unroll rproc_alloc()
1338 1339
 * @rproc: the remote processor handle
 *
1340
 * This function decrements the rproc dev refcount.
1341
 *
1342 1343
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1344
 */
1345
void rproc_put(struct rproc *rproc)
1346
{
1347
	put_device(&rproc->dev);
1348
}
1349
EXPORT_SYMBOL(rproc_put);
1350 1351

/**
1352
 * rproc_del() - unregister a remote processor
1353 1354 1355 1356
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
1357
 * _only_ be called if a previous invocation of rproc_add()
1358 1359
 * has completed successfully.
 *
1360
 * After rproc_del() returns, @rproc isn't freed yet, because
1361
 * of the outstanding reference created by rproc_alloc. To decrement that
1362
 * one last refcount, one still needs to call rproc_put().
1363 1364 1365
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
1366
int rproc_del(struct rproc *rproc)
1367
{
1368
	struct rproc_vdev *rvdev, *tmp;
1369

1370 1371 1372 1373 1374 1375
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1376
	/* clean up remote vdev entries */
1377
	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1378
		rproc_remove_virtio_dev(rvdev);
1379

1380 1381 1382
	/* Free the copy of the resource table */
	kfree(rproc->cached_table);

1383
	device_del(&rproc->dev);
1384 1385 1386

	return 0;
}
1387
EXPORT_SYMBOL(rproc_del);
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
/**
 * rproc_report_crash() - rproc crash reporter function
 * @rproc: remote processor
 * @type: crash type
 *
 * This function must be called every time a crash is detected by the low-level
 * drivers implementing a specific remoteproc. This should not be called from a
 * non-remoteproc driver.
 *
 * This function can be called from atomic/interrupt context.
 */
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
{
	if (!rproc) {
		pr_err("NULL rproc pointer\n");
		return;
	}

	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
		rproc->name, rproc_crash_to_string(type));

	/* create a new task to handle the error */
	schedule_work(&rproc->crash_handler);
}
EXPORT_SYMBOL(rproc_report_crash);

1415 1416 1417
static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");