remoteproc_core.c 41.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39
#include <linux/elf.h>
40
#include <linux/crc32.h>
41 42
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
43
#include <asm/byteorder.h>
44 45 46

#include "remoteproc_internal.h"

47 48 49
static DEFINE_MUTEX(rproc_list_mutex);
static LIST_HEAD(rproc_list);

50
typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51
				struct resource_table *table, int len);
52 53
typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
				 void *, int offset, int avail);
54

55 56 57
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

58 59
static const char * const rproc_crash_names[] = {
	[RPROC_MMUFAULT]	= "mmufault",
60 61
	[RPROC_WATCHDOG]	= "watchdog",
	[RPROC_FATAL_ERROR]	= "fatal error",
62 63 64 65 66 67 68
};

/* translate rproc_crash_type to string */
static const char *rproc_crash_to_string(enum rproc_crash_type type)
{
	if (type < ARRAY_SIZE(rproc_crash_names))
		return rproc_crash_names[type];
69
	return "unknown";
70 71
}

72 73 74 75 76 77 78 79 80
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81
			     unsigned long iova, int flags, void *token)
82
{
83 84
	struct rproc *rproc = token;

85 86
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

87 88
	rproc_report_crash(rproc, RPROC_MMUFAULT);

89 90
	/*
	 * Let the iommu core know we're not really handling this fault;
91
	 * we just used it as a recovery trigger.
92 93 94 95 96 97 98
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
99
	struct device *dev = rproc->dev.parent;
100 101
	int ret;

102 103
	if (!rproc->has_iommu) {
		dev_dbg(dev, "iommu not present\n");
104
		return 0;
105 106 107 108 109 110 111 112
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

113
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
133
	struct device *dev = rproc->dev.parent;
134 135 136 137 138 139 140 141

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);
}

142 143 144 145 146 147
/**
 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 * @rproc: handle of a remote processor
 * @da: remoteproc device address to translate
 * @len: length of the memory region @da is pointing to
 *
148 149
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
150 151 152
 * device addresses (which are hardcoded in the firmware). They may also have
 * dedicated memory regions internal to the processors, and use them either
 * exclusively or alongside carveouts.
153 154 155 156 157
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
158 159 160 161 162 163 164
 * This function is a helper function with which we can go over the allocated
 * carveouts and translate specific device addresses to kernel virtual addresses
 * so we can access the referenced memory. This function also allows to perform
 * translations on the internal remoteproc memory regions through a platform
 * implementation specific da_to_va ops, if present.
 *
 * The function returns a valid kernel address on success or NULL on failure.
165 166 167
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
168 169
 * here the output of the DMA API for the carveouts, which should be more
 * correct.
170
 */
171
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
172 173 174 175
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

176 177 178 179 180 181
	if (rproc->ops->da_to_va) {
		ptr = rproc->ops->da_to_va(rproc, da, len);
		if (ptr)
			goto out;
	}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

198
out:
199 200
	return ptr;
}
201
EXPORT_SYMBOL(rproc_da_to_va);
202

203
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
204
{
205
	struct rproc *rproc = rvdev->rproc;
206
	struct device *dev = &rproc->dev;
207
	struct rproc_vring *rvring = &rvdev->vring[i];
208
	struct fw_rsc_vdev *rsc;
209 210 211
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
212

213
	/* actual size of vring (in bytes) */
214
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
215 216 217 218 219

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
	 */
220
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221
	if (!va) {
222
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 224 225
		return -EINVAL;
	}

226 227 228 229 230
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: support predefined notifyids (via resource table)
	 */
T
Tejun Heo 已提交
231
	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232
	if (ret < 0) {
T
Tejun Heo 已提交
233
		dev_err(dev, "idr_alloc failed: %d\n", ret);
234
		dma_free_coherent(dev->parent, size, va, dma);
235 236
		return ret;
	}
T
Tejun Heo 已提交
237
	notifyid = ret;
238

239
	dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
240
		i, va, &dma, size, notifyid);
241

242 243 244
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
245

246 247 248 249 250 251 252 253 254
	/*
	 * Let the rproc know the notifyid and da of this vring.
	 * Not all platforms use dma_alloc_coherent to automatically
	 * set up the iommu. In this case the device address (da) will
	 * hold the physical address and not the device address.
	 */
	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
	rsc->vring[i].da = dma;
	rsc->vring[i].notifyid = notifyid;
255 256 257
	return 0;
}

258 259
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
260 261
{
	struct rproc *rproc = rvdev->rproc;
262
	struct device *dev = &rproc->dev;
263 264
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
265

266
	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
267
		i, vring->da, vring->num, vring->align);
268

269 270 271 272 273
	/* make sure reserved bytes are zeroes */
	if (vring->reserved) {
		dev_err(dev, "vring rsc has non zero reserved bytes\n");
		return -EINVAL;
	}
274

275 276 277
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
278
			vring->num, vring->align);
279
		return -EINVAL;
280
	}
281 282 283 284 285 286 287 288 289 290 291 292

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;
293 294
	int idx = rvring->rvdev->vring - rvring;
	struct fw_rsc_vdev *rsc;
295

296
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
297
	idr_remove(&rproc->notifyids, rvring->notifyid);
298

299 300 301 302
	/* reset resource entry info */
	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
	rsc->vring[idx].da = 0;
	rsc->vring[idx].notifyid = -1;
303 304
}

305
/**
306
 * rproc_handle_vdev() - handle a vdev fw resource
307 308
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
309
 * @avail: size of available data (for sanity checking the image)
310
 *
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
329 330 331
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
332
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
333
			     int offset, int avail)
334
{
335
	struct device *dev = &rproc->dev;
336 337
	struct rproc_vdev *rvdev;
	int i, ret;
338

339 340 341
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
342
		dev_err(dev, "vdev rsc is truncated\n");
343 344 345
		return -EINVAL;
	}

346 347 348
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
349 350 351
		return -EINVAL;
	}

352
	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
353 354
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

355 356
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
357
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
358 359 360
		return -EINVAL;
	}

361
	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
362 363
	if (!rvdev)
		return -ENOMEM;
364

365
	rvdev->rproc = rproc;
366

367
	/* parse the vrings */
368
	for (i = 0; i < rsc->num_of_vrings; i++) {
369
		ret = rproc_parse_vring(rvdev, rsc, i);
370
		if (ret)
371
			goto free_rvdev;
372
	}
373

374 375
	/* remember the resource offset*/
	rvdev->rsc_offset = offset;
376

377
	list_add_tail(&rvdev->node, &rproc->rvdevs);
378

379 380 381
	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
382
		goto remove_rvdev;
383 384

	return 0;
385

386 387
remove_rvdev:
	list_del(&rvdev->node);
388
free_rvdev:
389 390
	kfree(rvdev);
	return ret;
391 392 393 394 395 396
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
397
 * @avail: size of available data (for sanity checking the image)
398 399 400 401 402 403 404 405 406 407 408
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
409
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
410
			      int offset, int avail)
411 412
{
	struct rproc_mem_entry *trace;
413
	struct device *dev = &rproc->dev;
414 415 416
	void *ptr;
	char name[15];

417
	if (sizeof(*rsc) > avail) {
418
		dev_err(dev, "trace rsc is truncated\n");
419 420 421 422 423 424 425 426 427
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

428 429 430 431 432 433 434 435
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
436
	if (!trace)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
		return -ENOMEM;

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

458 459
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
		name, ptr, rsc->da, rsc->len);
460 461 462 463 464 465 466 467

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
468
 * @avail: size of available data (for sanity checking the image)
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
489
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
490
			       int offset, int avail)
491 492
{
	struct rproc_mem_entry *mapping;
493
	struct device *dev = &rproc->dev;
494 495 496 497 498 499
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

500
	if (sizeof(*rsc) > avail) {
501
		dev_err(dev, "devmem rsc is truncated\n");
502 503 504 505 506
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
507
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
508 509 510
		return -EINVAL;
	}

511
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
512
	if (!mapping)
513 514 515 516
		return -ENOMEM;

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
517
		dev_err(dev, "failed to map devmem: %d\n", ret);
518 519 520 521 522 523 524 525 526 527 528 529 530 531
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

532
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
533
		rsc->pa, rsc->da, rsc->len);
534 535 536 537 538 539 540 541 542 543 544 545

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
546
 * @avail: size of available data (for image validation)
547 548 549 550 551 552 553 554 555 556 557 558 559
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
560
static int rproc_handle_carveout(struct rproc *rproc,
561 562
				 struct fw_rsc_carveout *rsc,
				 int offset, int avail)
563 564
{
	struct rproc_mem_entry *carveout, *mapping;
565
	struct device *dev = &rproc->dev;
566 567 568 569
	dma_addr_t dma;
	void *va;
	int ret;

570
	if (sizeof(*rsc) > avail) {
571
		dev_err(dev, "carveout rsc is truncated\n");
572 573 574 575 576 577 578 579 580
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

581
	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
582
		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
583

584
	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
585
	if (!carveout)
586
		return -ENOMEM;
587

588
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
589
	if (!va) {
590 591
		dev_err(dev->parent,
			"failed to allocate dma memory: len 0x%x\n", rsc->len);
592 593 594 595
		ret = -ENOMEM;
		goto free_carv;
	}

596 597
	dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
		va, &dma, rsc->len);
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
617 618 619 620 621 622
		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
		if (!mapping) {
			ret = -ENOMEM;
			goto dma_free;
		}

623
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
624
				rsc->flags);
625 626
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
627
			goto free_mapping;
628 629 630 631 632 633 634 635 636 637 638 639 640
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

641 642
		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
			rsc->da, &dma);
643 644
	}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	/*
	 * Some remote processors might need to know the pa
	 * even though they are behind an IOMMU. E.g., OMAP4's
	 * remote M3 processor needs this so it can control
	 * on-chip hardware accelerators that are not behind
	 * the IOMMU, and therefor must know the pa.
	 *
	 * Generally we don't want to expose physical addresses
	 * if we don't have to (remote processors are generally
	 * _not_ trusted), so we might want to do this only for
	 * remote processor that _must_ have this (e.g. OMAP4's
	 * dual M3 subsystem).
	 *
	 * Non-IOMMU processors might also want to have this info.
	 * In this case, the device address and the physical address
	 * are the same.
	 */
	rsc->pa = dma;

664 665 666 667 668 669 670 671 672
	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

673 674
free_mapping:
	kfree(mapping);
675
dma_free:
676
	dma_free_coherent(dev->parent, rsc->len, va, dma);
677 678 679 680 681
free_carv:
	kfree(carveout);
	return ret;
}

682
static int rproc_count_vrings(struct rproc *rproc, struct fw_rsc_vdev *rsc,
683
			      int offset, int avail)
684 685 686 687 688 689 690
{
	/* Summarize the number of notification IDs */
	rproc->max_notifyid += rsc->num_of_vrings;

	return 0;
}

691 692 693 694
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
695
static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
696 697 698
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
699
	[RSC_VDEV] = NULL, /* VDEVs were handled upon registration */
700 701
};

702 703 704 705
static rproc_handle_resource_t rproc_vdev_handler[RSC_LAST] = {
	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
};

706 707 708 709
static rproc_handle_resource_t rproc_count_vrings_handler[RSC_LAST] = {
	[RSC_VDEV] = (rproc_handle_resource_t)rproc_count_vrings,
};

710
/* handle firmware resource entries before booting the remote processor */
711
static int rproc_handle_resources(struct rproc *rproc, int len,
712
				  rproc_handle_resource_t handlers[RSC_LAST])
713
{
714
	struct device *dev = &rproc->dev;
715
	rproc_handle_resource_t handler;
716 717
	int ret = 0, i;

718 719 720
	for (i = 0; i < rproc->table_ptr->num; i++) {
		int offset = rproc->table_ptr->offset[i];
		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
721 722 723 724 725 726 727 728
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
729

730
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
731

732 733
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
734
			continue;
735 736
		}

737
		handler = handlers[hdr->type];
738 739 740
		if (!handler)
			continue;

741
		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
742
		if (ret)
743
			break;
744
	}
745 746 747 748 749 750 751 752 753

	return ret;
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
754
 * is called whenever @rproc either shuts down or fails to boot.
755 756 757 758
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
759
	struct device *dev = &rproc->dev;
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
776
			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
777
				unmapped);
778 779 780 781 782
		}

		list_del(&entry->node);
		kfree(entry);
	}
783 784 785

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
786 787
		dma_free_coherent(dev->parent, entry->len, entry->va,
				  entry->dma);
788 789 790
		list_del(&entry->node);
		kfree(entry);
	}
791 792 793 794 795 796 797
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
798
	struct device *dev = &rproc->dev;
799
	const char *name = rproc->firmware;
800
	struct resource_table *table, *loaded_table;
801
	int ret, tablesz;
802

803 804 805
	if (!rproc->table_ptr)
		return -ENOMEM;

806 807 808 809
	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

810
	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
811 812 813 814 815 816 817 818 819 820 821

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

822
	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
823
	ret = -EINVAL;
824

825
	/* look for the resource table */
826
	table = rproc_find_rsc_table(rproc, fw, &tablesz);
827 828
	if (!table) {
		dev_err(dev, "Failed to find resource table\n");
829
		goto clean_up;
830
	}
831

832 833 834 835 836 837
	/* Verify that resource table in loaded fw is unchanged */
	if (rproc->table_csum != crc32(0, table, tablesz)) {
		dev_err(dev, "resource checksum failed, fw changed?\n");
		goto clean_up;
	}

838
	/* handle fw resources which are required to boot rproc */
839
	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
840 841 842 843 844 845
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
846
	ret = rproc_load_segments(rproc, fw);
847 848 849 850 851
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

852 853 854 855 856 857 858 859
	/*
	 * The starting device has been given the rproc->cached_table as the
	 * resource table. The address of the vring along with the other
	 * allocated resources (carveouts etc) is stored in cached_table.
	 * In order to pass this information to the remote device we must
	 * copy this information to device memory.
	 */
	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
860 861
	if (loaded_table)
		memcpy(loaded_table, rproc->cached_table, tablesz);
862

863 864 865 866 867 868 869
	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

870 871 872 873 874 875 876
	/*
	 * Update table_ptr so that all subsequent vring allocations and
	 * virtio fields manipulation update the actual loaded resource table
	 * in device memory.
	 */
	rproc->table_ptr = loaded_table;

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
900 901
	struct resource_table *table;
	int ret, tablesz;
902 903 904 905

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

906
	/* look for the resource table */
907
	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
908 909 910
	if (!table)
		goto out;

911 912 913 914 915 916
	rproc->table_csum = crc32(0, table, tablesz);

	/*
	 * Create a copy of the resource table. When a virtio device starts
	 * and calls vring_new_virtqueue() the address of the allocated vring
	 * will be stored in the cached_table. Before the device is started,
917
	 * cached_table will be copied into device memory.
918
	 */
919
	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
920 921 922 923 924
	if (!rproc->cached_table)
		goto out;

	rproc->table_ptr = rproc->cached_table;

925 926
	/* count the number of notify-ids */
	rproc->max_notifyid = -1;
927 928
	ret = rproc_handle_resources(rproc, tablesz,
				     rproc_count_vrings_handler);
929
	if (ret)
930 931
		goto out;

932 933 934
	/* look for virtio devices and register them */
	ret = rproc_handle_resources(rproc, tablesz, rproc_vdev_handler);

935
out:
936
	release_firmware(fw);
937
	/* allow rproc_del() contexts, if any, to proceed */
938 939 940
	complete_all(&rproc->firmware_loading_complete);
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static int rproc_add_virtio_devices(struct rproc *rproc)
{
	int ret;

	/* rproc_del() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
	 * the firmware (e.g. whether to register a virtio device,
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
				      rproc->firmware, &rproc->dev, GFP_KERNEL,
				      rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
	}

	return ret;
}

/**
 * rproc_trigger_recovery() - recover a remoteproc
 * @rproc: the remote processor
 *
971
 * The recovery is done by resetting all the virtio devices, that way all the
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
 * rpmsg drivers will be reseted along with the remote processor making the
 * remoteproc functional again.
 *
 * This function can sleep, so it cannot be called from atomic context.
 */
int rproc_trigger_recovery(struct rproc *rproc)
{
	struct rproc_vdev *rvdev, *rvtmp;

	dev_err(&rproc->dev, "recovering %s\n", rproc->name);

	init_completion(&rproc->crash_comp);

	/* clean up remote vdev entries */
	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
		rproc_remove_virtio_dev(rvdev);

	/* wait until there is no more rproc users */
	wait_for_completion(&rproc->crash_comp);

992 993 994
	/* Free the copy of the resource table */
	kfree(rproc->cached_table);

995 996 997
	return rproc_add_virtio_devices(rproc);
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
/**
 * rproc_crash_handler_work() - handle a crash
 *
 * This function needs to handle everything related to a crash, like cpu
 * registers and stack dump, information to help to debug the fatal error, etc.
 */
static void rproc_crash_handler_work(struct work_struct *work)
{
	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
	struct device *dev = &rproc->dev;

	dev_dbg(dev, "enter %s\n", __func__);

	mutex_lock(&rproc->lock);

	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
		/* handle only the first crash detected */
		mutex_unlock(&rproc->lock);
		return;
	}

	rproc->state = RPROC_CRASHED;
	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
		rproc->name);

	mutex_unlock(&rproc->lock);

1025 1026
	if (!rproc->recovery_disabled)
		rproc_trigger_recovery(rproc);
1027 1028
}

1029
/**
1030
 * __rproc_boot() - boot a remote processor
1031
 * @rproc: handle of a remote processor
1032
 * @wait: wait for rproc registration completion
1033 1034 1035 1036 1037 1038 1039 1040
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
1041
static int __rproc_boot(struct rproc *rproc, bool wait)
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

1052
	dev = &rproc->dev;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
1068
	if (!try_module_get(dev->parent->driver->owner)) {
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

1089 1090 1091 1092
	/* if rproc virtio is not yet configured, wait */
	if (wait)
		wait_for_completion(&rproc->firmware_loading_complete);

1093 1094 1095 1096 1097 1098
	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
1099
		module_put(dev->parent->driver->owner);
1100 1101 1102 1103 1104 1105
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
1106 1107 1108 1109 1110 1111 1112 1113 1114

/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 */
int rproc_boot(struct rproc *rproc)
{
	return __rproc_boot(rproc, true);
}
1115 1116
EXPORT_SYMBOL(rproc_boot);

1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
/**
 * rproc_boot_nowait() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Same as rproc_boot() but don't wait for rproc registration completion
 */
int rproc_boot_nowait(struct rproc *rproc)
{
	return __rproc_boot(rproc, false);
}

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 */
void rproc_shutdown(struct rproc *rproc)
{
1149
	struct device *dev = &rproc->dev;
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

1175 1176 1177
	/* Give the next start a clean resource table */
	rproc->table_ptr = rproc->cached_table;

1178 1179 1180 1181
	/* if in crash state, unlock crash handler */
	if (rproc->state == RPROC_CRASHED)
		complete_all(&rproc->crash_comp);

1182 1183 1184 1185 1186 1187 1188
	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
1189
		module_put(dev->parent->driver->owner);
1190 1191 1192
}
EXPORT_SYMBOL(rproc_shutdown);

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
/**
 * rproc_get_by_phandle() - find a remote processor by phandle
 * @phandle: phandle to the rproc
 *
 * Finds an rproc handle using the remote processor's phandle, and then
 * return a handle to the rproc.
 *
 * This function increments the remote processor's refcount, so always
 * use rproc_put() to decrement it back once rproc isn't needed anymore.
 *
 * Returns the rproc handle on success, and NULL on failure.
 */
1205
#ifdef CONFIG_OF
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
struct rproc *rproc_get_by_phandle(phandle phandle)
{
	struct rproc *rproc = NULL, *r;
	struct device_node *np;

	np = of_find_node_by_phandle(phandle);
	if (!np)
		return NULL;

	mutex_lock(&rproc_list_mutex);
	list_for_each_entry(r, &rproc_list, node) {
		if (r->dev.parent && r->dev.parent->of_node == np) {
			rproc = r;
			get_device(&rproc->dev);
			break;
		}
	}
	mutex_unlock(&rproc_list_mutex);

	of_node_put(np);

	return rproc;
}
1229 1230 1231 1232 1233 1234
#else
struct rproc *rproc_get_by_phandle(phandle phandle)
{
	return NULL;
}
#endif
1235 1236
EXPORT_SYMBOL(rproc_get_by_phandle);

1237
/**
1238
 * rproc_add() - register a remote processor
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1254
 * of registering this remote processor, additional virtio drivers might be
1255 1256
 * probed.
 */
1257
int rproc_add(struct rproc *rproc)
1258
{
1259
	struct device *dev = &rproc->dev;
1260
	int ret;
1261

1262 1263 1264
	ret = device_add(dev);
	if (ret < 0)
		return ret;
1265

1266
	dev_info(dev, "%s is available\n", rproc->name);
1267

1268 1269 1270
	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

1271 1272
	/* create debugfs entries */
	rproc_create_debug_dir(rproc);
1273 1274 1275
	ret = rproc_add_virtio_devices(rproc);
	if (ret < 0)
		return ret;
1276

1277 1278 1279 1280 1281 1282
	/* expose to rproc_get_by_phandle users */
	mutex_lock(&rproc_list_mutex);
	list_add(&rproc->node, &rproc_list);
	mutex_unlock(&rproc_list_mutex);

	return 0;
1283
}
1284
EXPORT_SYMBOL(rproc_add);
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1299 1300 1301 1302
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};
1315 1316 1317 1318 1319 1320

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
1321
 * @firmware: name of firmware file to load, can be NULL
1322 1323 1324
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
1325
 * it yet. if @firmware is NULL, a default name is used.
1326 1327 1328 1329 1330
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
1331
 * implementations should then call rproc_add() to complete
1332 1333 1334 1335 1336
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1337
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1338 1339
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
1340 1341
			  const struct rproc_ops *ops,
			  const char *firmware, int len)
1342 1343
{
	struct rproc *rproc;
1344 1345
	char *p, *template = "rproc-%s-fw";
	int name_len = 0;
1346 1347 1348 1349

	if (!dev || !name || !ops)
		return NULL;

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	if (!firmware)
		/*
		 * Make room for default firmware name (minus %s plus '\0').
		 * If the caller didn't pass in a firmware name then
		 * construct a default name.  We're already glomming 'len'
		 * bytes onto the end of the struct rproc allocation, so do
		 * a few more for the default firmware name (but only if
		 * the caller doesn't pass one).
		 */
		name_len = strlen(name) + strlen(template) - 2 + 1;

1361
	rproc = kzalloc(sizeof(*rproc) + len + name_len, GFP_KERNEL);
1362
	if (!rproc)
1363 1364
		return NULL;

1365 1366 1367 1368 1369 1370 1371 1372
	if (!firmware) {
		p = (char *)rproc + sizeof(struct rproc) + len;
		snprintf(p, name_len, template, name);
	} else {
		p = (char *)firmware;
	}

	rproc->firmware = p;
1373 1374 1375 1376
	rproc->name = name;
	rproc->ops = ops;
	rproc->priv = &rproc[1];

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1391 1392
	atomic_set(&rproc->power, 0);

1393 1394
	/* Set ELF as the default fw_ops handler */
	rproc->fw_ops = &rproc_elf_fw_ops;
1395 1396 1397

	mutex_init(&rproc->lock);

1398 1399
	idr_init(&rproc->notifyids);

1400 1401 1402
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1403
	INIT_LIST_HEAD(&rproc->rvdevs);
1404

1405
	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1406
	init_completion(&rproc->crash_comp);
1407

1408 1409 1410 1411 1412 1413 1414
	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1415
 * rproc_put() - unroll rproc_alloc()
1416 1417
 * @rproc: the remote processor handle
 *
1418
 * This function decrements the rproc dev refcount.
1419
 *
1420 1421
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1422
 */
1423
void rproc_put(struct rproc *rproc)
1424
{
1425
	put_device(&rproc->dev);
1426
}
1427
EXPORT_SYMBOL(rproc_put);
1428 1429

/**
1430
 * rproc_del() - unregister a remote processor
1431 1432 1433 1434
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
1435
 * _only_ be called if a previous invocation of rproc_add()
1436 1437
 * has completed successfully.
 *
1438
 * After rproc_del() returns, @rproc isn't freed yet, because
1439
 * of the outstanding reference created by rproc_alloc. To decrement that
1440
 * one last refcount, one still needs to call rproc_put().
1441 1442 1443
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
1444
int rproc_del(struct rproc *rproc)
1445
{
1446
	struct rproc_vdev *rvdev, *tmp;
1447

1448 1449 1450 1451 1452 1453
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1454
	/* clean up remote vdev entries */
1455
	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1456
		rproc_remove_virtio_dev(rvdev);
1457

1458 1459 1460
	/* Free the copy of the resource table */
	kfree(rproc->cached_table);

1461 1462 1463 1464 1465
	/* the rproc is downref'ed as soon as it's removed from the klist */
	mutex_lock(&rproc_list_mutex);
	list_del(&rproc->node);
	mutex_unlock(&rproc_list_mutex);

1466
	device_del(&rproc->dev);
1467 1468 1469

	return 0;
}
1470
EXPORT_SYMBOL(rproc_del);
1471

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/**
 * rproc_report_crash() - rproc crash reporter function
 * @rproc: remote processor
 * @type: crash type
 *
 * This function must be called every time a crash is detected by the low-level
 * drivers implementing a specific remoteproc. This should not be called from a
 * non-remoteproc driver.
 *
 * This function can be called from atomic/interrupt context.
 */
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
{
	if (!rproc) {
		pr_err("NULL rproc pointer\n");
		return;
	}

	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
		rproc->name, rproc_crash_to_string(type));

	/* create a new task to handle the error */
	schedule_work(&rproc->crash_handler);
}
EXPORT_SYMBOL(rproc_report_crash);

1498 1499 1500
static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
1501

1502 1503 1504 1505 1506 1507
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
1508 1509
	ida_destroy(&rproc_dev_index);

1510 1511 1512 1513 1514 1515
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");