remoteproc_core.c 33.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39 40 41
#include <linux/elf.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
42
#include <asm/byteorder.h>
43 44 45 46

#include "remoteproc_internal.h"

typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
47 48
				struct resource_table *table, int len);
typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
49

50 51 52
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 *
 * Currently this is mostly a stub, but it will be later used to trigger
 * the recovery of the remote processor.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
65
		unsigned long iova, int flags, void *token)
66 67 68 69 70 71 72 73 74 75 76 77 78
{
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

	/*
	 * Let the iommu core know we're not really handling this fault;
	 * we just plan to use this as a recovery trigger.
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
79
	struct device *dev = rproc->dev.parent;
80 81 82 83 84 85 86 87 88 89 90 91 92 93
	int ret;

	/*
	 * We currently use iommu_present() to decide if an IOMMU
	 * setup is needed.
	 *
	 * This works for simple cases, but will easily fail with
	 * platforms that do have an IOMMU, but not for this specific
	 * rproc.
	 *
	 * This will be easily solved by introducing hw capabilities
	 * that will be set by the remoteproc driver.
	 */
	if (!iommu_present(dev->bus)) {
94 95
		dev_dbg(dev, "iommu not found\n");
		return 0;
96 97 98 99 100 101 102 103
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

104
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
124
	struct device *dev = rproc->dev.parent;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);

	return;
}

/*
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
 * device addresses (which are hardcoded in the firmware).
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
 * This function is an internal helper with which we can go over the allocated
 * carveouts and translate specific device address to kernel virtual addresses
 * so we can access the referenced memory.
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
 * here the output of the DMA API, which should be more correct.
 */
152
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

	return ptr;
}

176
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
177
{
178
	struct rproc *rproc = rvdev->rproc;
179
	struct device *dev = &rproc->dev;
180
	struct rproc_vring *rvring = &rvdev->vring[i];
181 182 183
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
184

185
	/* actual size of vring (in bytes) */
186
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
187 188 189 190 191 192 193 194 195

	if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
		dev_err(dev, "idr_pre_get failed\n");
		return -ENOMEM;
	}

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
196
	 * TODO: let the rproc know the da of this vring
197
	 */
198
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
199
	if (!va) {
200
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
201 202 203
		return -EINVAL;
	}

204 205 206 207 208 209 210
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: let the rproc know the notifyid of this vring
	 * TODO: support predefined notifyids (via resource table)
	 */
	ret = idr_get_new(&rproc->notifyids, rvring, &notifyid);
211 212
	if (ret) {
		dev_err(dev, "idr_get_new failed: %d\n", ret);
213
		dma_free_coherent(dev->parent, size, va, dma);
214 215
		return ret;
	}
216

217 218 219
	dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
					dma, size, notifyid);

220 221 222
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
223 224 225 226

	return 0;
}

227 228
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
229 230
{
	struct rproc *rproc = rvdev->rproc;
231
	struct device *dev = &rproc->dev;
232 233
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
234

235 236 237 238 239 240 241 242
	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
				i, vring->da, vring->num, vring->align);

	/* make sure reserved bytes are zeroes */
	if (vring->reserved) {
		dev_err(dev, "vring rsc has non zero reserved bytes\n");
		return -EINVAL;
	}
243

244 245 246 247 248
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
						vring->num, vring->align);
		return -EINVAL;
249
	}
250 251 252 253 254 255 256 257 258 259 260 261 262

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;

263
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
264
	idr_remove(&rproc->notifyids, rvring->notifyid);
265 266
}

267
/**
268
 * rproc_handle_vdev() - handle a vdev fw resource
269 270
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
271
 * @avail: size of available data (for sanity checking the image)
272
 *
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
291 292 293
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
294 295
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
								int avail)
296
{
297
	struct device *dev = &rproc->dev;
298 299
	struct rproc_vdev *rvdev;
	int i, ret;
300

301 302 303
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
304
		dev_err(dev, "vdev rsc is truncated\n");
305 306 307
		return -EINVAL;
	}

308 309 310
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
311 312 313
		return -EINVAL;
	}

314 315 316
	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

317 318
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
319
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
320 321 322
		return -EINVAL;
	}

323 324 325
	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
	if (!rvdev)
		return -ENOMEM;
326

327
	rvdev->rproc = rproc;
328

329
	/* parse the vrings */
330
	for (i = 0; i < rsc->num_of_vrings; i++) {
331
		ret = rproc_parse_vring(rvdev, rsc, i);
332
		if (ret)
333
			goto free_rvdev;
334
	}
335

336 337
	/* remember the device features */
	rvdev->dfeatures = rsc->dfeatures;
338

339
	list_add_tail(&rvdev->node, &rproc->rvdevs);
340

341 342 343
	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
344
		goto free_rvdev;
345 346

	return 0;
347

348
free_rvdev:
349 350
	kfree(rvdev);
	return ret;
351 352 353 354 355 356
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
357
 * @avail: size of available data (for sanity checking the image)
358 359 360 361 362 363 364 365 366 367 368
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
369 370
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
								int avail)
371 372
{
	struct rproc_mem_entry *trace;
373
	struct device *dev = &rproc->dev;
374 375 376
	void *ptr;
	char name[15];

377
	if (sizeof(*rsc) > avail) {
378
		dev_err(dev, "trace rsc is truncated\n");
379 380 381 382 383 384 385 386 387
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
	if (!trace) {
		dev_err(dev, "kzalloc trace failed\n");
		return -ENOMEM;
	}

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

420
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
421 422 423 424 425 426 427 428 429
						rsc->da, rsc->len);

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
430
 * @avail: size of available data (for sanity checking the image)
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
451 452
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
								int avail)
453 454
{
	struct rproc_mem_entry *mapping;
455
	struct device *dev = &rproc->dev;
456 457 458 459 460 461
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

462
	if (sizeof(*rsc) > avail) {
463
		dev_err(dev, "devmem rsc is truncated\n");
464 465 466 467 468
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
469
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
470 471 472
		return -EINVAL;
	}

473 474
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
475
		dev_err(dev, "kzalloc mapping failed\n");
476 477 478 479 480
		return -ENOMEM;
	}

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
481
		dev_err(dev, "failed to map devmem: %d\n", ret);
482 483 484 485 486 487 488 489 490 491 492 493 494 495
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

496
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
497 498 499 500 501 502 503 504 505 506 507 508 509
					rsc->pa, rsc->da, rsc->len);

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
510
 * @avail: size of available data (for image validation)
511 512 513 514 515 516 517 518 519 520 521 522 523
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
524 525
static int rproc_handle_carveout(struct rproc *rproc,
				struct fw_rsc_carveout *rsc, int avail)
526 527
{
	struct rproc_mem_entry *carveout, *mapping;
528
	struct device *dev = &rproc->dev;
529 530 531 532
	dma_addr_t dma;
	void *va;
	int ret;

533
	if (sizeof(*rsc) > avail) {
534
		dev_err(dev, "carveout rsc is truncated\n");
535 536 537 538 539 540 541 542 543 544 545 546
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
			rsc->da, rsc->pa, rsc->len, rsc->flags);

547 548 549 550 551 552 553 554 555 556 557 558 559
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
		dev_err(dev, "kzalloc mapping failed\n");
		return -ENOMEM;
	}

	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
	if (!carveout) {
		dev_err(dev, "kzalloc carveout failed\n");
		ret = -ENOMEM;
		goto free_mapping;
	}

560
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
561
	if (!va) {
562
		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		ret = -ENOMEM;
		goto free_carv;
	}

	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
								rsc->flags);
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
			goto dma_free;
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

605
		dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
606 607
	}

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
	/*
	 * Some remote processors might need to know the pa
	 * even though they are behind an IOMMU. E.g., OMAP4's
	 * remote M3 processor needs this so it can control
	 * on-chip hardware accelerators that are not behind
	 * the IOMMU, and therefor must know the pa.
	 *
	 * Generally we don't want to expose physical addresses
	 * if we don't have to (remote processors are generally
	 * _not_ trusted), so we might want to do this only for
	 * remote processor that _must_ have this (e.g. OMAP4's
	 * dual M3 subsystem).
	 *
	 * Non-IOMMU processors might also want to have this info.
	 * In this case, the device address and the physical address
	 * are the same.
	 */
	rsc->pa = dma;

627 628 629 630 631 632 633 634 635 636
	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

dma_free:
637
	dma_free_coherent(dev->parent, rsc->len, va, dma);
638 639 640 641 642 643 644
free_carv:
	kfree(carveout);
free_mapping:
	kfree(mapping);
	return ret;
}

645 646 647 648 649
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
static rproc_handle_resource_t rproc_handle_rsc[] = {
650 651 652
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
653
	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
654 655
};

656 657
/* handle firmware resource entries before booting the remote processor */
static int
658
rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
659
{
660
	struct device *dev = &rproc->dev;
661
	rproc_handle_resource_t handler;
662 663 664 665 666 667 668 669 670 671 672 673 674
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
675

676
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
677

678 679
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
680
			continue;
681 682
		}

683
		handler = rproc_handle_rsc[hdr->type];
684 685 686
		if (!handler)
			continue;

687
		ret = handler(rproc, rsc, avail);
688 689 690 691 692 693 694 695 696
		if (ret)
			break;
	}

	return ret;
}

/* handle firmware resource entries while registering the remote processor */
static int
697
rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
698
{
699
	struct device *dev = &rproc->dev;
700 701 702 703 704 705
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
706
		struct fw_rsc_vdev *vrsc;
707

708 709 710 711 712 713 714 715
		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}

		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);

716 717 718 719 720 721 722
		if (hdr->type != RSC_VDEV)
			continue;

		vrsc = (struct fw_rsc_vdev *)hdr->data;

		ret = rproc_handle_vdev(rproc, vrsc, avail);
		if (ret)
723
			break;
724
	}
725 726 727 728 729 730 731 732 733

	return ret;
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
734
 * is called whenever @rproc either shuts down or fails to boot.
735 736 737 738
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
739
	struct device *dev = &rproc->dev;
740 741 742 743 744 745 746 747 748 749 750

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
751
		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
			dev_err(dev, "failed to unmap %u/%u\n", entry->len,
								unmapped);
		}

		list_del(&entry->node);
		kfree(entry);
	}
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
777
	struct device *dev = &rproc->dev;
778
	const char *name = rproc->firmware;
779 780
	struct resource_table *table;
	int ret, tablesz;
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

	dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

798
	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
799

800
	/* look for the resource table */
801
	table = rproc_find_rsc_table(rproc, fw, &tablesz);
802 803 804
	if (!table)
		goto clean_up;

805
	/* handle fw resources which are required to boot rproc */
806
	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
807 808 809 810 811 812
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
813
	ret = rproc_load_segments(rproc, fw);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
849 850
	struct resource_table *table;
	int ret, tablesz;
851 852 853 854

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

855
	/* look for the resource table */
856
	table = rproc_find_rsc_table(rproc, fw,  &tablesz);
857 858 859 860 861 862
	if (!table)
		goto out;

	/* look for virtio devices and register them */
	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
	if (ret)
863 864 865
		goto out;

out:
866
	release_firmware(fw);
867
	/* allow rproc_del() contexts, if any, to proceed */
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
	complete_all(&rproc->firmware_loading_complete);
}

/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
int rproc_boot(struct rproc *rproc)
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

893
	dev = &rproc->dev;
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
909
	if (!try_module_get(dev->parent->driver->owner)) {
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
936
		module_put(dev->parent->driver->owner);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
EXPORT_SYMBOL(rproc_boot);

/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 */
void rproc_shutdown(struct rproc *rproc)
{
966
	struct device *dev = &rproc->dev;
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
999
		module_put(dev->parent->driver->owner);
1000 1001 1002 1003
}
EXPORT_SYMBOL(rproc_shutdown);

/**
1004
 * rproc_add() - register a remote processor
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1020
 * of registering this remote processor, additional virtio drivers might be
1021 1022
 * probed.
 */
1023
int rproc_add(struct rproc *rproc)
1024
{
1025
	struct device *dev = &rproc->dev;
1026 1027
	int ret = 0;

1028 1029 1030 1031 1032
	ret = device_add(dev);
	if (ret < 0)
		return ret;

	dev_info(dev, "%s is available\n", rproc->name);
1033

1034 1035 1036
	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

1037 1038 1039
	/* create debugfs entries */
	rproc_create_debug_dir(rproc);

1040
	/* rproc_del() calls must wait until async loader completes */
1041 1042 1043 1044
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
1045
	 * the firmware (e.g. whether to register a virtio device,
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
					rproc->firmware, dev, GFP_KERNEL,
					rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
	}

	return ret;
}
1061
EXPORT_SYMBOL(rproc_add);
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1076 1077 1078 1079
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	idr_remove_all(&rproc->notifyids);
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
 * @firmware: name of firmware file to load
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
 * it yet.
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
1109
 * implementations should then call rproc_add() to complete
1110 1111 1112 1113 1114
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1115
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
				const struct rproc_ops *ops,
				const char *firmware, int len)
{
	struct rproc *rproc;

	if (!dev || !name || !ops)
		return NULL;

	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
	if (!rproc) {
		dev_err(dev, "%s: kzalloc failed\n", __func__);
		return NULL;
	}

	rproc->name = name;
	rproc->ops = ops;
	rproc->firmware = firmware;
	rproc->priv = &rproc[1];

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1151 1152 1153 1154
	atomic_set(&rproc->power, 0);

	mutex_init(&rproc->lock);

1155 1156
	idr_init(&rproc->notifyids);

1157 1158 1159
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1160
	INIT_LIST_HEAD(&rproc->rvdevs);
1161 1162 1163 1164 1165 1166 1167 1168

	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1169
 * rproc_put() - unroll rproc_alloc()
1170 1171
 * @rproc: the remote processor handle
 *
1172
 * This function decrements the rproc dev refcount.
1173
 *
1174 1175
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1176
 */
1177
void rproc_put(struct rproc *rproc)
1178
{
1179
	put_device(&rproc->dev);
1180
}
1181
EXPORT_SYMBOL(rproc_put);
1182 1183

/**
1184
 * rproc_del() - unregister a remote processor
1185 1186 1187 1188
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
1189
 * _only_ be called if a previous invocation of rproc_add()
1190 1191
 * has completed successfully.
 *
1192
 * After rproc_del() returns, @rproc isn't freed yet, because
1193
 * of the outstanding reference created by rproc_alloc. To decrement that
1194
 * one last refcount, one still needs to call rproc_put().
1195 1196 1197
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
1198
int rproc_del(struct rproc *rproc)
1199
{
1200
	struct rproc_vdev *rvdev, *tmp;
1201

1202 1203 1204 1205 1206 1207
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1208
	/* clean up remote vdev entries */
1209
	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1210
		rproc_remove_virtio_dev(rvdev);
1211

1212 1213
	device_del(&rproc->dev);

1214 1215
	return 0;
}
1216
EXPORT_SYMBOL(rproc_del);
1217 1218 1219 1220

static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
1221

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");