remoteproc_core.c 43.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39 40 41 42
#include <linux/klist.h>
#include <linux/elf.h>
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
43
#include <asm/byteorder.h>
44 45 46 47 48 49 50 51 52 53 54 55

#include "remoteproc_internal.h"

static void klist_rproc_get(struct klist_node *n);
static void klist_rproc_put(struct klist_node *n);

/*
 * klist of the available remote processors.
 *
 * We need this in order to support name-based lookups (needed by the
 * rproc_get_by_name()).
 *
56 57
 * That said, we don't use rproc_get_by_name() at this point.
 * The use cases that do require its existence should be
58 59 60 61 62 63 64 65 66
 * scrutinized, and hopefully migrated to rproc_boot() using device-based
 * binding.
 *
 * If/when this materializes, we could drop the klist (and the by_name
 * API).
 */
static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);

typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
67 68
				struct resource_table *table, int len);
typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
69

70 71 72
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

73 74 75 76 77 78 79 80 81 82 83 84
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 *
 * Currently this is mostly a stub, but it will be later used to trigger
 * the recovery of the remote processor.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85
		unsigned long iova, int flags, void *token)
86 87 88 89 90 91 92 93 94 95 96 97 98
{
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

	/*
	 * Let the iommu core know we're not really handling this fault;
	 * we just plan to use this as a recovery trigger.
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
99
	struct device *dev = rproc->dev.parent;
100 101 102 103 104 105 106 107 108 109 110 111 112 113
	int ret;

	/*
	 * We currently use iommu_present() to decide if an IOMMU
	 * setup is needed.
	 *
	 * This works for simple cases, but will easily fail with
	 * platforms that do have an IOMMU, but not for this specific
	 * rproc.
	 *
	 * This will be easily solved by introducing hw capabilities
	 * that will be set by the remoteproc driver.
	 */
	if (!iommu_present(dev->bus)) {
114 115
		dev_dbg(dev, "iommu not found\n");
		return 0;
116 117 118 119 120 121 122 123
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

124
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
144
	struct device *dev = rproc->dev.parent;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);

	return;
}

/*
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
 * device addresses (which are hardcoded in the firmware).
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
 * This function is an internal helper with which we can go over the allocated
 * carveouts and translate specific device address to kernel virtual addresses
 * so we can access the referenced memory.
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
 * here the output of the DMA API, which should be more correct.
 */
static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

	return ptr;
}

/**
 * rproc_load_segments() - load firmware segments to memory
 * @rproc: remote processor which will be booted using these fw segments
 * @elf_data: the content of the ELF firmware image
200
 * @len: firmware size (in bytes)
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
 *
 * This function loads the firmware segments to memory, where the remote
 * processor expects them.
 *
 * Some remote processors will expect their code and data to be placed
 * in specific device addresses, and can't have them dynamically assigned.
 *
 * We currently support only those kind of remote processors, and expect
 * the program header's paddr member to contain those addresses. We then go
 * through the physically contiguous "carveout" memory regions which we
 * allocated (and mapped) earlier on behalf of the remote processor,
 * and "translate" device address to kernel addresses, so we can copy the
 * segments where they are expected.
 *
 * Currently we only support remote processors that required carveout
 * allocations and got them mapped onto their iommus. Some processors
 * might be different: they might not have iommus, and would prefer to
 * directly allocate memory for every segment/resource. This is not yet
 * supported, though.
 */
221 222
static int
rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
223
{
224
	struct device *dev = &rproc->dev;
225 226 227 228 229 230 231 232 233 234 235 236
	struct elf32_hdr *ehdr;
	struct elf32_phdr *phdr;
	int i, ret = 0;

	ehdr = (struct elf32_hdr *)elf_data;
	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);

	/* go through the available ELF segments */
	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
		u32 da = phdr->p_paddr;
		u32 memsz = phdr->p_memsz;
		u32 filesz = phdr->p_filesz;
237
		u32 offset = phdr->p_offset;
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
		void *ptr;

		if (phdr->p_type != PT_LOAD)
			continue;

		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
					phdr->p_type, da, memsz, filesz);

		if (filesz > memsz) {
			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
							filesz, memsz);
			ret = -EINVAL;
			break;
		}

253 254 255 256 257 258 259
		if (offset + filesz > len) {
			dev_err(dev, "truncated fw: need 0x%x avail 0x%x\n",
					offset + filesz, len);
			ret = -EINVAL;
			break;
		}

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
		/* grab the kernel address for this device address */
		ptr = rproc_da_to_va(rproc, da, memsz);
		if (!ptr) {
			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
			ret = -EINVAL;
			break;
		}

		/* put the segment where the remote processor expects it */
		if (phdr->p_filesz)
			memcpy(ptr, elf_data + phdr->p_offset, filesz);

		/*
		 * Zero out remaining memory for this segment.
		 *
		 * This isn't strictly required since dma_alloc_coherent already
		 * did this for us. albeit harmless, we may consider removing
		 * this.
		 */
		if (memsz > filesz)
			memset(ptr + filesz, 0, memsz - filesz);
	}

	return ret;
}

286
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
287
{
288
	struct rproc *rproc = rvdev->rproc;
289
	struct device *dev = &rproc->dev;
290
	struct rproc_vring *rvring = &rvdev->vring[i];
291 292 293
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
294

295
	/* actual size of vring (in bytes) */
296
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
297 298 299 300 301 302 303 304 305

	if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
		dev_err(dev, "idr_pre_get failed\n");
		return -ENOMEM;
	}

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
306
	 * TODO: let the rproc know the da of this vring
307
	 */
308
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
309
	if (!va) {
310
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
311 312 313
		return -EINVAL;
	}

314 315 316 317 318 319 320
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: let the rproc know the notifyid of this vring
	 * TODO: support predefined notifyids (via resource table)
	 */
	ret = idr_get_new(&rproc->notifyids, rvring, &notifyid);
321 322
	if (ret) {
		dev_err(dev, "idr_get_new failed: %d\n", ret);
323
		dma_free_coherent(dev->parent, size, va, dma);
324 325
		return ret;
	}
326

327 328 329
	dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
					dma, size, notifyid);

330 331 332
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
333 334 335 336

	return 0;
}

337 338
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
339 340
{
	struct rproc *rproc = rvdev->rproc;
341
	struct device *dev = &rproc->dev;
342 343
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
344

345 346 347 348 349 350 351 352
	dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
				i, vring->da, vring->num, vring->align);

	/* make sure reserved bytes are zeroes */
	if (vring->reserved) {
		dev_err(dev, "vring rsc has non zero reserved bytes\n");
		return -EINVAL;
	}
353

354 355 356 357 358
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
						vring->num, vring->align);
		return -EINVAL;
359
	}
360 361 362 363 364 365 366 367 368 369 370 371 372

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;

373
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
374
	idr_remove(&rproc->notifyids, rvring->notifyid);
375 376
}

377
/**
378
 * rproc_handle_vdev() - handle a vdev fw resource
379 380
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
381
 * @avail: size of available data (for sanity checking the image)
382
 *
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
401 402 403
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
404 405
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
								int avail)
406
{
407
	struct device *dev = &rproc->dev;
408 409
	struct rproc_vdev *rvdev;
	int i, ret;
410

411 412 413
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
414
		dev_err(dev, "vdev rsc is truncated\n");
415 416 417
		return -EINVAL;
	}

418 419 420
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
421 422 423
		return -EINVAL;
	}

424 425 426
	dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

427 428
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
429
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
430 431 432
		return -EINVAL;
	}

433 434 435
	rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
	if (!rvdev)
		return -ENOMEM;
436

437
	rvdev->rproc = rproc;
438

439
	/* parse the vrings */
440
	for (i = 0; i < rsc->num_of_vrings; i++) {
441
		ret = rproc_parse_vring(rvdev, rsc, i);
442
		if (ret)
443
			goto free_rvdev;
444
	}
445

446 447
	/* remember the device features */
	rvdev->dfeatures = rsc->dfeatures;
448

449
	list_add_tail(&rvdev->node, &rproc->rvdevs);
450

451 452 453
	/* it is now safe to add the virtio device */
	ret = rproc_add_virtio_dev(rvdev, rsc->id);
	if (ret)
454
		goto free_rvdev;
455 456

	return 0;
457

458
free_rvdev:
459 460
	kfree(rvdev);
	return ret;
461 462 463 464 465 466
}

/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
467
 * @avail: size of available data (for sanity checking the image)
468 469 470 471 472 473 474 475 476 477 478
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
479 480
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
								int avail)
481 482
{
	struct rproc_mem_entry *trace;
483
	struct device *dev = &rproc->dev;
484 485 486
	void *ptr;
	char name[15];

487
	if (sizeof(*rsc) > avail) {
488
		dev_err(dev, "trace rsc is truncated\n");
489 490 491 492 493 494 495 496 497
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
	if (!trace) {
		dev_err(dev, "kzalloc trace failed\n");
		return -ENOMEM;
	}

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

530
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
531 532 533 534 535 536 537 538 539
						rsc->da, rsc->len);

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
540
 * @avail: size of available data (for sanity checking the image)
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
561 562
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
								int avail)
563 564
{
	struct rproc_mem_entry *mapping;
565
	struct device *dev = &rproc->dev;
566 567 568 569 570 571
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

572
	if (sizeof(*rsc) > avail) {
573
		dev_err(dev, "devmem rsc is truncated\n");
574 575 576 577 578
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
579
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
580 581 582
		return -EINVAL;
	}

583 584
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
585
		dev_err(dev, "kzalloc mapping failed\n");
586 587 588 589 590
		return -ENOMEM;
	}

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
591
		dev_err(dev, "failed to map devmem: %d\n", ret);
592 593 594 595 596 597 598 599 600 601 602 603 604 605
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

606
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
607 608 609 610 611 612 613 614 615 616 617 618 619
					rsc->pa, rsc->da, rsc->len);

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
620
 * @avail: size of available data (for image validation)
621 622 623 624 625 626 627 628 629 630 631 632 633
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
634 635
static int rproc_handle_carveout(struct rproc *rproc,
				struct fw_rsc_carveout *rsc, int avail)
636 637
{
	struct rproc_mem_entry *carveout, *mapping;
638
	struct device *dev = &rproc->dev;
639 640 641 642
	dma_addr_t dma;
	void *va;
	int ret;

643
	if (sizeof(*rsc) > avail) {
644
		dev_err(dev, "carveout rsc is truncated\n");
645 646 647 648 649 650 651 652 653 654 655 656
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

	dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
			rsc->da, rsc->pa, rsc->len, rsc->flags);

657 658 659 660 661 662 663 664 665 666 667 668 669
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
	if (!mapping) {
		dev_err(dev, "kzalloc mapping failed\n");
		return -ENOMEM;
	}

	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
	if (!carveout) {
		dev_err(dev, "kzalloc carveout failed\n");
		ret = -ENOMEM;
		goto free_mapping;
	}

670
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
671
	if (!va) {
672
		dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
		ret = -ENOMEM;
		goto free_carv;
	}

	dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
								rsc->flags);
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
			goto dma_free;
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

715
		dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

		/*
		 * Some remote processors might need to know the pa
		 * even though they are behind an IOMMU. E.g., OMAP4's
		 * remote M3 processor needs this so it can control
		 * on-chip hardware accelerators that are not behind
		 * the IOMMU, and therefor must know the pa.
		 *
		 * Generally we don't want to expose physical addresses
		 * if we don't have to (remote processors are generally
		 * _not_ trusted), so we might want to do this only for
		 * remote processor that _must_ have this (e.g. OMAP4's
		 * dual M3 subsystem).
		 */
		rsc->pa = dma;
	}

	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

dma_free:
743
	dma_free_coherent(dev->parent, rsc->len, va, dma);
744 745 746 747 748 749 750
free_carv:
	kfree(carveout);
free_mapping:
	kfree(mapping);
	return ret;
}

751 752 753 754 755
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
static rproc_handle_resource_t rproc_handle_rsc[] = {
756 757 758
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
759
	[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
760 761
};

762 763
/* handle firmware resource entries before booting the remote processor */
static int
764
rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
765
{
766
	struct device *dev = &rproc->dev;
767
	rproc_handle_resource_t handler;
768 769 770 771 772 773 774 775 776 777 778 779 780
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
781

782
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
783

784 785
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
786
			continue;
787 788
		}

789
		handler = rproc_handle_rsc[hdr->type];
790 791 792
		if (!handler)
			continue;

793
		ret = handler(rproc, rsc, avail);
794 795 796 797 798 799 800 801 802
		if (ret)
			break;
	}

	return ret;
}

/* handle firmware resource entries while registering the remote processor */
static int
803
rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
804
{
805
	struct device *dev = &rproc->dev;
806 807 808 809 810 811
	int ret = 0, i;

	for (i = 0; i < table->num; i++) {
		int offset = table->offset[i];
		struct fw_rsc_hdr *hdr = (void *)table + offset;
		int avail = len - offset - sizeof(*hdr);
812
		struct fw_rsc_vdev *vrsc;
813

814 815 816 817 818 819 820 821
		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}

		dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);

822 823 824 825 826 827 828
		if (hdr->type != RSC_VDEV)
			continue;

		vrsc = (struct fw_rsc_vdev *)hdr->data;

		ret = rproc_handle_vdev(rproc, vrsc, avail);
		if (ret)
829
			break;
830
	}
831 832 833 834 835

	return ret;
}

/**
836
 * rproc_find_rsc_table() - find the resource table
837 838
 * @rproc: the rproc handle
 * @elf_data: the content of the ELF firmware image
839
 * @len: firmware size (in bytes)
840
 * @tablesz: place holder for providing back the table size
841 842
 *
 * This function finds the resource table inside the remote processor's
843 844 845
 * firmware. It is used both upon the registration of @rproc (in order
 * to look for and register the supported virito devices), and when the
 * @rproc is booted.
846
 *
847 848 849
 * Returns the pointer to the resource table if it is found, and write its
 * size into @tablesz. If a valid table isn't found, NULL is returned
 * (and @tablesz isn't set).
850
 */
851 852 853
static struct resource_table *
rproc_find_rsc_table(struct rproc *rproc, const u8 *elf_data, size_t len,
							int *tablesz)
854 855 856 857
{
	struct elf32_hdr *ehdr;
	struct elf32_shdr *shdr;
	const char *name_table;
858
	struct device *dev = &rproc->dev;
859 860
	struct resource_table *table = NULL;
	int i;
861 862 863 864 865 866 867

	ehdr = (struct elf32_hdr *)elf_data;
	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
	name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;

	/* look for the resource table and handle it */
	for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
868 869
		int size = shdr->sh_size;
		int offset = shdr->sh_offset;
870

871 872
		if (strcmp(name_table + shdr->sh_name, ".resource_table"))
			continue;
873

874
		table = (struct resource_table *)(elf_data + offset);
875

876 877 878
		/* make sure we have the entire table */
		if (offset + size > len) {
			dev_err(dev, "resource table truncated\n");
879
			return NULL;
880 881 882 883 884
		}

		/* make sure table has at least the header */
		if (sizeof(struct resource_table) > size) {
			dev_err(dev, "header-less resource table\n");
885
			return NULL;
886
		}
887 888 889 890

		/* we don't support any version beyond the first */
		if (table->ver != 1) {
			dev_err(dev, "unsupported fw ver: %d\n", table->ver);
891
			return NULL;
892 893 894 895 896
		}

		/* make sure reserved bytes are zeroes */
		if (table->reserved[0] || table->reserved[1]) {
			dev_err(dev, "non zero reserved bytes\n");
897
			return NULL;
898 899 900 901 902 903
		}

		/* make sure the offsets array isn't truncated */
		if (table->num * sizeof(table->offset[0]) +
				sizeof(struct resource_table) > size) {
			dev_err(dev, "resource table incomplete\n");
904
			return NULL;
905 906
		}

907
		*tablesz = shdr->sh_size;
908
		break;
909 910
	}

911
	return table;
912 913 914 915 916 917 918
}

/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
919
 * is called whenever @rproc either shuts down or fails to boot.
920 921 922 923
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
924
	struct device *dev = &rproc->dev;
925 926 927 928 929 930 931 932 933 934 935

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
936
		dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
			dev_err(dev, "failed to unmap %u/%u\n", entry->len,
								unmapped);
		}

		list_del(&entry->node);
		kfree(entry);
	}
}

/* make sure this fw image is sane */
static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
{
	const char *name = rproc->firmware;
961
	struct device *dev = &rproc->dev;
962
	struct elf32_hdr *ehdr;
963
	char class;
964 965 966 967 968 969 970 971 972 973 974 975 976

	if (!fw) {
		dev_err(dev, "failed to load %s\n", name);
		return -EINVAL;
	}

	if (fw->size < sizeof(struct elf32_hdr)) {
		dev_err(dev, "Image is too small\n");
		return -EINVAL;
	}

	ehdr = (struct elf32_hdr *)fw->data;

977 978 979 980 981 982 983
	/* We only support ELF32 at this point */
	class = ehdr->e_ident[EI_CLASS];
	if (class != ELFCLASS32) {
		dev_err(dev, "Unsupported class: %d\n", class);
		return -EINVAL;
	}

984 985 986 987 988 989 990 991 992 993
	/* We assume the firmware has the same endianess as the host */
# ifdef __LITTLE_ENDIAN
	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
# else /* BIG ENDIAN */
	if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
# endif
		dev_err(dev, "Unsupported firmware endianess\n");
		return -EINVAL;
	}

994 995 996 997 998
	if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
		dev_err(dev, "Image is too small\n");
		return -EINVAL;
	}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
		dev_err(dev, "Image is corrupted (bad magic)\n");
		return -EINVAL;
	}

	if (ehdr->e_phnum == 0) {
		dev_err(dev, "No loadable segments\n");
		return -EINVAL;
	}

	if (ehdr->e_phoff > fw->size) {
		dev_err(dev, "Firmware size is too small\n");
		return -EINVAL;
	}

	return 0;
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
1022
	struct device *dev = &rproc->dev;
1023 1024
	const char *name = rproc->firmware;
	struct elf32_hdr *ehdr;
1025 1026
	struct resource_table *table;
	int ret, tablesz;
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

	ehdr = (struct elf32_hdr *)fw->data;

	dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

	/*
	 * The ELF entry point is the rproc's boot addr (though this is not
	 * a configurable property of all remote processors: some will always
	 * boot at a specific hardcoded address).
	 */
	rproc->bootaddr = ehdr->e_entry;

1053 1054 1055 1056 1057
	/* look for the resource table */
	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
	if (!table)
		goto clean_up;

1058
	/* handle fw resources which are required to boot rproc */
1059
	ret = rproc_handle_boot_rsc(rproc, table, tablesz);
1060 1061 1062 1063 1064 1065
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
		goto clean_up;
	}

	/* load the ELF segments to memory */
1066
	ret = rproc_load_segments(rproc, fw->data, fw->size);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
		goto clean_up;
	}

	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
		goto clean_up;
	}

	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

clean_up:
	rproc_resource_cleanup(rproc);
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
1102 1103
	struct resource_table *table;
	int ret, tablesz;
1104 1105 1106 1107

	if (rproc_fw_sanity_check(rproc, fw) < 0)
		goto out;

1108 1109 1110 1111 1112 1113 1114 1115
	/* look for the resource table */
	table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
	if (!table)
		goto out;

	/* look for virtio devices and register them */
	ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
	if (ret)
1116 1117 1118
		goto out;

out:
1119
	release_firmware(fw);
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	/* allow rproc_unregister() contexts, if any, to proceed */
	complete_all(&rproc->firmware_loading_complete);
}

/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
int rproc_boot(struct rproc *rproc)
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

1146
	dev = &rproc->dev;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* loading a firmware is required */
	if (!rproc->firmware) {
		dev_err(dev, "%s: no firmware to load\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* prevent underlying implementation from being removed */
1162
	if (!try_module_get(dev->parent->driver->owner)) {
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		dev_err(dev, "%s: can't get owner\n", __func__);
		ret = -EINVAL;
		goto unlock_mutex;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
	if (ret) {
1189
		module_put(dev->parent->driver->owner);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
		atomic_dec(&rproc->power);
	}
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
EXPORT_SYMBOL(rproc_boot);

/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 * - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
 *   because rproc_shutdown() _does not_ decrement the refcount of @rproc.
 *   To decrement the refcount of @rproc, use rproc_put() (but _only_ if
 *   you acquired @rproc using rproc_get_by_name()).
 */
void rproc_shutdown(struct rproc *rproc)
{
1223
	struct device *dev = &rproc->dev;
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
	if (!ret)
1256
		module_put(dev->parent->driver->owner);
1257 1258 1259 1260 1261 1262 1263 1264
}
EXPORT_SYMBOL(rproc_shutdown);

/* will be called when an rproc is added to the rprocs klist */
static void klist_rproc_get(struct klist_node *n)
{
	struct rproc *rproc = container_of(n, struct rproc, node);

1265
	get_device(&rproc->dev);
1266 1267 1268 1269 1270 1271 1272
}

/* will be called when an rproc is removed from the rprocs klist */
static void klist_rproc_put(struct klist_node *n)
{
	struct rproc *rproc = container_of(n, struct rproc, node);

1273
	put_device(&rproc->dev);
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
}

static struct rproc *next_rproc(struct klist_iter *i)
{
	struct klist_node *n;

	n = klist_next(i);
	if (!n)
		return NULL;

	return container_of(n, struct rproc, node);
}

/**
 * rproc_get_by_name() - find a remote processor by name and boot it
 * @name: name of the remote processor
 *
 * Finds an rproc handle using the remote processor's name, and then
 * boot it. If it's already powered on, then just immediately return
 * (successfully).
 *
 * Returns the rproc handle on success, and NULL on failure.
 *
 * This function increments the remote processor's refcount, so always
 * use rproc_put() to decrement it back once rproc isn't needed anymore.
 *
 * Note: currently this function (and its counterpart rproc_put()) are not
1301
 * being used. We need to scrutinize the use cases
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
 * that still need them, and see if we can migrate them to use the non
 * name-based boot/shutdown interface.
 */
struct rproc *rproc_get_by_name(const char *name)
{
	struct rproc *rproc;
	struct klist_iter i;
	int ret;

	/* find the remote processor, and upref its refcount */
	klist_iter_init(&rprocs, &i);
	while ((rproc = next_rproc(&i)) != NULL)
		if (!strcmp(rproc->name, name)) {
1315
			get_device(&rproc->dev);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
			break;
		}
	klist_iter_exit(&i);

	/* can't find this rproc ? */
	if (!rproc) {
		pr_err("can't find remote processor %s\n", name);
		return NULL;
	}

	ret = rproc_boot(rproc);
	if (ret < 0) {
1328
		put_device(&rproc->dev);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		return NULL;
	}

	return rproc;
}
EXPORT_SYMBOL(rproc_get_by_name);

/**
 * rproc_put() - decrement the refcount of a remote processor, and shut it down
 * @rproc: the remote processor
 *
 * This function tries to shutdown @rproc, and it then decrements its
 * refcount.
 *
 * After this function returns, @rproc may _not_ be used anymore, and its
 * handle should be considered invalid.
 *
 * This function should be called _iff_ the @rproc handle was grabbed by
 * calling rproc_get_by_name().
 */
void rproc_put(struct rproc *rproc)
{
	/* try to power off the remote processor */
	rproc_shutdown(rproc);

	/* downref rproc's refcount */
1355
	put_device(&rproc->dev);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
}
EXPORT_SYMBOL(rproc_put);

/**
 * rproc_register() - register a remote processor
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1376
 * of registering this remote processor, additional virtio drivers might be
1377 1378 1379 1380
 * probed.
 */
int rproc_register(struct rproc *rproc)
{
1381
	struct device *dev = &rproc->dev;
1382 1383
	int ret = 0;

1384 1385 1386 1387
	ret = device_add(dev);
	if (ret < 0)
		return ret;

1388 1389 1390
	/* expose to rproc_get_by_name users */
	klist_add_tail(&rproc->node, &rprocs);

1391
	dev_info(dev, "%s is available\n", rproc->name);
1392

1393 1394 1395
	dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
	dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");

1396 1397 1398 1399 1400 1401 1402 1403
	/* create debugfs entries */
	rproc_create_debug_dir(rproc);

	/* rproc_unregister() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
1404
	 * the firmware (e.g. whether to register a virtio device,
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
					rproc->firmware, dev, GFP_KERNEL,
					rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
		klist_remove(&rproc->node);
	}

	return ret;
}
EXPORT_SYMBOL(rproc_register);

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1436 1437 1438 1439
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	idr_remove_all(&rproc->notifyids);
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
 * @firmware: name of firmware file to load
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
 * it yet.
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
 * implementations should then call rproc_register() to complete
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1475
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
				const struct rproc_ops *ops,
				const char *firmware, int len)
{
	struct rproc *rproc;

	if (!dev || !name || !ops)
		return NULL;

	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
	if (!rproc) {
		dev_err(dev, "%s: kzalloc failed\n", __func__);
		return NULL;
	}

	rproc->name = name;
	rproc->ops = ops;
	rproc->firmware = firmware;
	rproc->priv = &rproc[1];

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1511 1512 1513 1514
	atomic_set(&rproc->power, 0);

	mutex_init(&rproc->lock);

1515 1516
	idr_init(&rproc->notifyids);

1517 1518 1519
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1520
	INIT_LIST_HEAD(&rproc->rvdevs);
1521 1522 1523 1524 1525 1526 1527 1528

	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1529
 * rproc_free() - unroll rproc_alloc()
1530 1531
 * @rproc: the remote processor handle
 *
1532
 * This function decrements the rproc dev refcount.
1533
 *
1534 1535
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1536 1537 1538
 */
void rproc_free(struct rproc *rproc)
{
1539
	put_device(&rproc->dev);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
}
EXPORT_SYMBOL(rproc_free);

/**
 * rproc_unregister() - unregister a remote processor
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
 * _only_ be called if a previous invocation of rproc_register()
 * has completed successfully.
 *
1552 1553 1554
 * After rproc_unregister() returns, @rproc isn't freed yet, because
 * of the outstanding reference created by rproc_alloc. To decrement that
 * one last refcount, one still needs to call rproc_free().
1555 1556 1557 1558 1559
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
int rproc_unregister(struct rproc *rproc)
{
1560
	struct rproc_vdev *rvdev, *tmp;
1561

1562 1563 1564 1565 1566 1567
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1568
	/* clean up remote vdev entries */
1569
	list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1570
		rproc_remove_virtio_dev(rvdev);
1571

1572 1573
	/* the rproc is downref'ed as soon as it's removed from the klist */
	klist_del(&rproc->node);
1574

1575 1576
	device_del(&rproc->dev);

1577 1578 1579 1580 1581 1582 1583
	return 0;
}
EXPORT_SYMBOL(rproc_unregister);

static int __init remoteproc_init(void)
{
	rproc_init_debugfs();
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
	rproc_exit_debugfs();
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");