random.c 49.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
5
 *
6
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * Exported interfaces ---- output
 * ===============================
 *
48
 * There are four exported interfaces; two for use within the kernel,
schspa's avatar
schspa 已提交
49
 * and two for use from userspace.
L
Linus Torvalds 已提交
50
 *
51 52
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
53
 *
54
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
55 56 57 58 59 60 61 62 63 64 65 66
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
67 68 69 70 71
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
72
 *	void get_random_bytes(void *buf, int nbytes);
73 74 75 76 77 78 79
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
80 81 82 83
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
138 139 140 141 142 143
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
144
 *	void add_device_randomness(const void *buf, unsigned int size);
145
 *	void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
146
 *                                unsigned int value);
147
 *	void add_interrupt_randomness(int irq);
148
 *	void add_disk_randomness(struct gendisk *disk);
149 150 151
 *	void add_hwgenerator_randomness(const char *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
152
 *
153 154 155 156 157 158 159 160
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
161 162 163
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
164 165 166
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
167 168 169 170 171 172
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
173 174 175 176 177
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
178 179 180 181 182 183 184 185
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
244 245
 *	mknod /dev/random c 1 8
 *	mknod /dev/urandom c 1 9
L
Linus Torvalds 已提交
246 247
 */

Y
Yangtao Li 已提交
248 249
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
263
#include <linux/mm.h>
264
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
265
#include <linux/spinlock.h>
266
#include <linux/kthread.h>
L
Linus Torvalds 已提交
267
#include <linux/percpu.h>
268
#include <linux/ptrace.h>
269
#include <linux/workqueue.h>
270
#include <linux/irq.h>
271
#include <linux/ratelimit.h>
272 273
#include <linux/syscalls.h>
#include <linux/completion.h>
274
#include <linux/uuid.h>
275
#include <crypto/chacha.h>
276
#include <crypto/blake2s.h>
277

L
Linus Torvalds 已提交
278
#include <asm/processor.h>
279
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
280
#include <asm/irq.h>
281
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
282 283
#include <asm/io.h>

284 285 286
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

287 288
/* #define ADD_INTERRUPT_BENCH */

289
enum {
290
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
291
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
L
Linus Torvalds 已提交
292 293 294 295 296
};

/*
 * Static global variables
 */
297
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
298
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
299

300 301 302
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

303
struct crng_state {
304 305 306
	u32 state[16];
	unsigned long init_time;
	spinlock_t lock;
307 308
};

309
static struct crng_state primary_crng = {
310
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
311 312 313 314
	.state[0] = CHACHA_CONSTANT_EXPA,
	.state[1] = CHACHA_CONSTANT_ND_3,
	.state[2] = CHACHA_CONSTANT_2_BY,
	.state[3] = CHACHA_CONSTANT_TE_K,
315 316 317 318 319 320 321 322 323 324 325
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
326
#define crng_ready() (likely(crng_init > 1))
327
static int crng_init_cnt = 0;
328
#define CRNG_INIT_CNT_THRESH (2 * CHACHA_KEY_SIZE)
329 330
static void extract_crng(u8 out[CHACHA_BLOCK_SIZE]);
static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used);
331
static void process_random_ready_list(void);
332
static void _get_random_bytes(void *buf, int nbytes);
333

334 335 336 337 338 339 340 341 342 343
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
344 345 346 347 348 349 350
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

351
static struct {
352
	struct blake2s_state hash;
353
	spinlock_t lock;
354
	int entropy_count;
355
} input_pool = {
356 357 358 359
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
360
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
361 362
};

363
static void extract_entropy(void *buf, size_t nbytes);
364

365
static void crng_reseed(void);
366

L
Linus Torvalds 已提交
367
/*
368
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
369
 * update the entropy estimate.  The caller should call
370
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
371
 */
372
static void _mix_pool_bytes(const void *in, int nbytes)
L
Linus Torvalds 已提交
373
{
374
	blake2s_update(&input_pool.hash, in, nbytes);
L
Linus Torvalds 已提交
375 376
}

377
static void __mix_pool_bytes(const void *in, int nbytes)
378
{
379 380
	trace_mix_pool_bytes_nolock(nbytes, _RET_IP_);
	_mix_pool_bytes(in, nbytes);
381 382
}

383
static void mix_pool_bytes(const void *in, int nbytes)
L
Linus Torvalds 已提交
384
{
385 386
	unsigned long flags;

387 388 389 390
	trace_mix_pool_bytes(nbytes, _RET_IP_);
	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
L
Linus Torvalds 已提交
391 392
}

393
struct fast_pool {
394 395 396 397
	u32 pool[4];
	unsigned long last;
	u16 reg_idx;
	u8 count;
398 399 400 401 402 403 404
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
405
static void fast_mix(struct fast_pool *f)
406
{
407 408
	u32 a = f->pool[0],	b = f->pool[1];
	u32 c = f->pool[2],	d = f->pool[3];
409 410

	a += b;			c += d;
G
George Spelvin 已提交
411
	b = rol32(b, 6);	d = rol32(d, 27);
412 413 414
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
415
	b = rol32(b, 16);	d = rol32(d, 14);
416 417 418
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
419
	b = rol32(b, 6);	d = rol32(d, 27);
420 421 422
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
423
	b = rol32(b, 16);	d = rol32(d, 14);
424 425 426 427
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
428
	f->count++;
429 430
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

447
static void credit_entropy_bits(int nbits)
L
Linus Torvalds 已提交
448
{
449
	int entropy_count, orig;
450

451
	if (nbits <= 0)
452 453
		return;

454 455
	nbits = min(nbits, POOL_BITS);

456 457 458 459
	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min(POOL_BITS, orig + nbits);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);
L
Linus Torvalds 已提交
460

461
	trace_credit_entropy_bits(nbits, entropy_count, _RET_IP_);
462

463
	if (crng_init < 2 && entropy_count >= POOL_MIN_BITS)
464
		crng_reseed();
L
Linus Torvalds 已提交
465 466
}

467 468 469 470 471 472
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

473
#define CRNG_RESEED_INTERVAL (300 * HZ)
474 475 476

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

477 478
static void invalidate_batched_entropy(void);

479 480
/*
 * crng_fast_load() can be called by code in the interrupt service
481 482
 * path.  So we can't afford to dilly-dally. Returns the number of
 * bytes processed from cp.
483
 */
484
static size_t crng_fast_load(const u8 *cp, size_t len)
485 486
{
	unsigned long flags;
487
	u8 *p;
488
	size_t ret = 0;
489 490 491

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
492
	if (crng_init != 0) {
493 494 495
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
496
	p = (u8 *)&primary_crng.state[4];
497
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
498
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
499
		cp++; crng_init_cnt++; len--; ret++;
500 501
	}
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
502
		invalidate_batched_entropy();
503 504
		crng_init = 1;
	}
505 506 507
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	if (crng_init == 1)
		pr_notice("fast init done\n");
508
	return ret;
509 510
}

511 512 513 514 515 516 517 518 519 520 521 522 523 524
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
525
static int crng_slow_load(const u8 *cp, size_t len)
526
{
527 528 529 530 531 532
	unsigned long flags;
	static u8 lfsr = 1;
	u8 tmp;
	unsigned int i, max = CHACHA_KEY_SIZE;
	const u8 *src_buf = cp;
	u8 *dest_buf = (u8 *)&primary_crng.state[4];
533 534 535 536 537 538 539 540 541 542

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

543
	for (i = 0; i < max; i++) {
544 545 546 547
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
548 549
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
550 551 552 553 554 555
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

556
static void crng_reseed(void)
557
{
558
	unsigned long flags;
559
	int i, entropy_count;
560
	union {
561 562
		u8 block[CHACHA_BLOCK_SIZE];
		u32 key[8];
563 564
	} buf;

565 566 567 568 569 570 571 572 573 574
	do {
		entropy_count = READ_ONCE(input_pool.entropy_count);
		if (entropy_count < POOL_MIN_BITS)
			return;
	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
	extract_entropy(buf.key, sizeof(buf.key));
	wake_up_interruptible(&random_write_wait);
	kill_fasync(&fasync, SIGIO, POLL_OUT);

	spin_lock_irqsave(&primary_crng.lock, flags);
575
	for (i = 0; i < 8; i++)
576
		primary_crng.state[i + 4] ^= buf.key[i];
577
	memzero_explicit(&buf, sizeof(buf));
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	WRITE_ONCE(primary_crng.init_time, jiffies);
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	if (crng_init < 2) {
		invalidate_batched_entropy();
		crng_init = 2;
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
	}
598 599
}

600
static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
601
{
602
	unsigned long flags, init_time;
603 604

	if (crng_ready()) {
605 606 607
		init_time = READ_ONCE(primary_crng.init_time);
		if (time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
			crng_reseed();
608
	}
609 610 611 612 613
	spin_lock_irqsave(&primary_crng.lock, flags);
	chacha20_block(&primary_crng.state[0], out);
	if (primary_crng.state[12] == 0)
		primary_crng.state[13]++;
	spin_unlock_irqrestore(&primary_crng.lock, flags);
614 615
}

616 617 618 619
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
620
static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
621
{
622 623 624
	unsigned long flags;
	u32 *s, *d;
	int i;
625

626
	used = round_up(used, sizeof(u32));
627
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
628 629 630
		extract_crng(tmp);
		used = 0;
	}
631
	spin_lock_irqsave(&primary_crng.lock, flags);
632
	s = (u32 *)&tmp[used];
633
	d = &primary_crng.state[4];
634
	for (i = 0; i < 8; i++)
635
		*d++ ^= *s++;
636
	spin_unlock_irqrestore(&primary_crng.lock, flags);
637 638
}

639 640
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
641
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
642
	u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
643 644 645 646 647 648 649 650 651 652 653 654 655
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
656
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
657 658 659 660 661 662 663 664 665
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
666
	crng_backtrack_protect(tmp, i);
667 668 669 670 671 672 673

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

L
Linus Torvalds 已提交
674 675 676 677 678 679 680 681 682
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
683
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
684 685
};

686 687
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

688
/*
689 690
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
691
 *
692 693 694
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
695 696 697
 */
void add_device_randomness(const void *buf, unsigned int size)
{
698
	unsigned long time = random_get_entropy() ^ jiffies;
699
	unsigned long flags;
700

701 702
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
703

704
	trace_add_device_randomness(size, _RET_IP_);
705
	spin_lock_irqsave(&input_pool.lock, flags);
706 707
	_mix_pool_bytes(buf, size);
	_mix_pool_bytes(&time, sizeof(time));
708
	spin_unlock_irqrestore(&input_pool.lock, flags);
709 710 711
}
EXPORT_SYMBOL(add_device_randomness);

712
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
713

L
Linus Torvalds 已提交
714 715 716 717 718 719 720 721 722 723 724 725 726 727
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
	struct {
		long jiffies;
728 729
		unsigned int cycles;
		unsigned int num;
L
Linus Torvalds 已提交
730 731 732 733
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
734
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
735
	sample.num = num;
736
	mix_pool_bytes(&sample, sizeof(sample));
L
Linus Torvalds 已提交
737 738 739 740 741 742

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
743 744
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
745

746 747
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
748

749 750
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
751 752 753 754 755 756 757 758 759 760 761

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
762

763 764 765
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
766
	 * and limit entropy estimate to 12 bits.
767
	 */
768
	credit_entropy_bits(min_t(int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
769 770
}

771
void add_input_randomness(unsigned int type, unsigned int code,
772
			  unsigned int value)
L
Linus Torvalds 已提交
773 774 775 776 777 778 779 780 781 782
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
783
	trace_add_input_randomness(input_pool.entropy_count);
L
Linus Torvalds 已提交
784
}
785
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
786

787 788
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

789 790 791
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

792 793
#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT - 1))
794 795 796

static void add_interrupt_bench(cycles_t start)
{
797
	long delta = random_get_entropy() - start;
798

799 800 801 802 803 804
	/* Use a weighted moving average */
	delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
	avg_cycles += delta;
	/* And average deviation */
	delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
	avg_deviation += delta;
805 806 807 808 809
}
#else
#define add_interrupt_bench(x)
#endif

810
static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
811
{
812
	u32 *ptr = (u32 *)regs;
813
	unsigned int idx;
814 815 816

	if (regs == NULL)
		return 0;
817
	idx = READ_ONCE(f->reg_idx);
818
	if (idx >= sizeof(struct pt_regs) / sizeof(u32))
819 820 821
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
822
	return *ptr;
823 824
}

825
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
826
{
827 828 829 830 831 832
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
	unsigned long now = jiffies;
	cycles_t cycles = random_get_entropy();
	u32 c_high, j_high;
	u64 ip;
833

834 835
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
836 837
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
838 839
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
840
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
841
	fast_pool->pool[2] ^= ip;
842 843
	fast_pool->pool[3] ^=
		(sizeof(ip) > 4) ? ip >> 32 : get_reg(fast_pool, regs);
844

845 846
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
847

T
Theodore Ts'o 已提交
848
	if (unlikely(crng_init == 0)) {
849
		if ((fast_pool->count >= 64) &&
850
		    crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
851 852 853 854 855 856
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

857
	if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
858 859
		return;

860
	if (!spin_trylock(&input_pool.lock))
861
		return;
862

863
	fast_pool->last = now;
864 865
	__mix_pool_bytes(&fast_pool->pool, sizeof(fast_pool->pool));
	spin_unlock(&input_pool.lock);
866

867
	fast_pool->count = 0;
868

869
	/* award one bit for the contents of the fast pool */
870
	credit_entropy_bits(1);
L
Linus Torvalds 已提交
871
}
872
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
873

874
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
875 876 877 878 879
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
880
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
881
	trace_add_disk_randomness(disk_devt(disk), input_pool.entropy_count);
L
Linus Torvalds 已提交
882
}
883
EXPORT_SYMBOL_GPL(add_disk_randomness);
884
#endif
L
Linus Torvalds 已提交
885 886 887 888 889 890 891

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

G
Greg Price 已提交
892
/*
893 894
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
G
Greg Price 已提交
895
 */
896
static void extract_entropy(void *buf, size_t nbytes)
L
Linus Torvalds 已提交
897
{
898
	unsigned long flags;
899 900
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
901
		unsigned long rdseed[32 / sizeof(long)];
902 903 904 905
		size_t counter;
	} block;
	size_t i;

906
	trace_extract_entropy(nbytes, input_pool.entropy_count);
907

908 909 910 911
	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
912 913
	}

914
	spin_lock_irqsave(&input_pool.lock, flags);
915

916 917
	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);
L
Linus Torvalds 已提交
918

919
	/* next_key = HASHPRF(seed, RDSEED || 0) */
920 921 922
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
L
Linus Torvalds 已提交
923

924 925
	spin_unlock_irqrestore(&input_pool.lock, flags);
	memzero_explicit(next_key, sizeof(next_key));
926 927

	while (nbytes) {
928
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
929
		/* output = HASHPRF(seed, RDSEED || ++counter) */
930 931
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
932 933 934 935
		nbytes -= i;
		buf += i;
	}

936 937
	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
938 939
}

940
#define warn_unseeded_randomness(previous) \
941
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
942

943
static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
944 945 946 947 948 949 950
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

951
	if (print_once || crng_ready() ||
952 953 954 955 956 957
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
958
	if (__ratelimit(&unseeded_warning))
959 960
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
961 962
}

L
Linus Torvalds 已提交
963 964
/*
 * This function is the exported kernel interface.  It returns some
965
 * number of good random numbers, suitable for key generation, seeding
966 967
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
968 969 970 971
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
972
 */
973
static void _get_random_bytes(void *buf, int nbytes)
974
{
975
	u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
976

977
	trace_get_random_bytes(nbytes, _RET_IP_);
978

979
	while (nbytes >= CHACHA_BLOCK_SIZE) {
980
		extract_crng(buf);
981 982
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
983 984 985 986 987
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
988 989
		crng_backtrack_protect(tmp, nbytes);
	} else
990
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
991
	memzero_explicit(tmp, sizeof(tmp));
992
}
993 994 995 996 997 998 999 1000

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1001 1002
EXPORT_SYMBOL(get_random_bytes);

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1018
	credit_entropy_bits(1);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
1041
			mod_timer(&stack.timer, jiffies + 1);
1042
		mix_pool_bytes(&stack.now, sizeof(stack.now));
1043 1044 1045 1046 1047 1048
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1049
	mix_pool_bytes(&stack.now, sizeof(stack.now));
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1077 1078 1079
}
EXPORT_SYMBOL(wait_for_random_bytes);

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1109
	if (crng_ready())
1110 1111 1112 1113 1114 1115 1116
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1117
	if (crng_ready())
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1162 1163
 *
 * Return number of bytes filled in.
1164
 */
1165
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1166
{
1167
	int left = nbytes;
1168
	u8 *p = buf;
1169

1170 1171
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1172
		unsigned long v;
1173
		int chunk = min_t(int, left, sizeof(unsigned long));
1174

1175 1176
		if (!arch_get_random_long(&v))
			break;
1177

L
Luck, Tony 已提交
1178
		memcpy(p, &v, chunk);
1179
		p += chunk;
1180
		left -= chunk;
1181 1182
	}

1183
	return nbytes - left;
L
Linus Torvalds 已提交
1184
}
1185 1186
EXPORT_SYMBOL(get_random_bytes_arch);

1187 1188 1189 1190 1191 1192 1193
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

L
Linus Torvalds 已提交
1194
/*
1195 1196 1197 1198 1199 1200 1201 1202
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
L
Linus Torvalds 已提交
1203
 */
1204
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1205
{
1206
	int i;
1207
	ktime_t now = ktime_get_real();
1208
	bool arch_init = true;
1209
	unsigned long rv;
L
Linus Torvalds 已提交
1210

1211
	for (i = BLAKE2S_BLOCK_SIZE; i > 0; i -= sizeof(rv)) {
1212 1213 1214 1215 1216
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
1217
		mix_pool_bytes(&rv, sizeof(rv));
1218
	}
1219 1220 1221 1222
	mix_pool_bytes(&now, sizeof(now));
	mix_pool_bytes(utsname(), sizeof(*(utsname())));

	extract_entropy(&primary_crng.state[4], sizeof(u32) * 12);
1223 1224 1225 1226 1227 1228 1229
	if (arch_init && trust_cpu && crng_init < 2) {
		invalidate_batched_entropy();
		crng_init = 2;
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
	}
	primary_crng.init_time = jiffies - CRNG_RESEED_INTERVAL - 1;

1230 1231 1232 1233
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1234 1235 1236
	return 0;
}

1237
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1238 1239 1240 1241 1242
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1243
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1244 1245
	 * source.
	 */
1246
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1247 1248
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1249
		disk->random = state;
1250
	}
L
Linus Torvalds 已提交
1251
}
1252
#endif
L
Linus Torvalds 已提交
1253

1254 1255
static ssize_t urandom_read_nowarn(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
1256 1257 1258
{
	int ret;

1259
	nbytes = min_t(size_t, nbytes, INT_MAX >> 6);
1260
	ret = extract_crng_user(buf, nbytes);
1261
	trace_urandom_read(8 * nbytes, 0, input_pool.entropy_count);
1262 1263 1264
	return ret;
}

1265 1266
static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
			    loff_t *ppos)
L
Linus Torvalds 已提交
1267
{
1268
	static int maxwarn = 10;
1269

1270
	if (!crng_ready() && maxwarn > 0) {
1271
		maxwarn--;
1272
		if (__ratelimit(&urandom_warning))
Y
Yangtao Li 已提交
1273 1274
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1275
	}
1276 1277

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1278 1279
}

1280 1281
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
1282 1283 1284 1285 1286 1287 1288 1289 1290
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1291
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1292
{
1293
	__poll_t mask;
L
Linus Torvalds 已提交
1294

1295
	poll_wait(file, &crng_init_wait, wait);
1296 1297
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1298
	if (crng_ready())
1299
		mask |= EPOLLIN | EPOLLRDNORM;
1300
	if (input_pool.entropy_count < POOL_MIN_BITS)
1301
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1302 1303 1304
	return mask;
}

1305
static int write_pool(const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1306 1307
{
	size_t bytes;
1308
	u32 t, buf[16];
L
Linus Torvalds 已提交
1309 1310
	const char __user *p = buffer;

1311
	while (count > 0) {
1312 1313
		int b, i = 0;

1314 1315 1316
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1317

1318
		for (b = bytes; b > 0; b -= sizeof(u32), i++) {
1319 1320 1321 1322 1323
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1324
		count -= bytes;
L
Linus Torvalds 已提交
1325 1326
		p += bytes;

1327
		mix_pool_bytes(buf, bytes);
1328
		cond_resched();
L
Linus Torvalds 已提交
1329
	}
1330 1331 1332 1333

	return 0;
}

1334 1335
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1336 1337 1338
{
	size_t ret;

1339
	ret = write_pool(buffer, count);
1340 1341 1342 1343
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1344 1345
}

M
Matt Mackall 已提交
1346
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1347 1348 1349 1350 1351 1352 1353
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1354
		/* inherently racy, no point locking */
1355
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1356 1357 1358 1359 1360 1361 1362
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1363 1364 1365 1366
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1376
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1377 1378
		if (retval < 0)
			return retval;
1379 1380
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1381 1382
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1383 1384 1385 1386
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1387 1388
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1389
		if (xchg(&input_pool.entropy_count, 0)) {
1390 1391 1392
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1393
		return 0;
1394 1395 1396 1397 1398
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1399
		crng_reseed();
1400
		return 0;
L
Linus Torvalds 已提交
1401 1402 1403 1404 1405
	default:
		return -EINVAL;
	}
}

1406 1407 1408 1409 1410
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1411
const struct file_operations random_fops = {
1412
	.read = random_read,
L
Linus Torvalds 已提交
1413
	.write = random_write,
1414
	.poll = random_poll,
M
Matt Mackall 已提交
1415
	.unlocked_ioctl = random_ioctl,
1416
	.compat_ioctl = compat_ptr_ioctl,
1417
	.fasync = random_fasync,
1418
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1419 1420
};

1421
const struct file_operations urandom_fops = {
1422
	.read = urandom_read,
L
Linus Torvalds 已提交
1423
	.write = random_write,
M
Matt Mackall 已提交
1424
	.unlocked_ioctl = random_ioctl,
1425
	.compat_ioctl = compat_ptr_ioctl,
1426
	.fasync = random_fasync,
1427
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1428 1429
};

1430 1431
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
1432
{
1433 1434
	int ret;

1435
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1436 1437 1438 1439 1440 1441
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
1442
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1443 1444 1445 1446 1447
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

1448
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
1449 1450
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
1451 1452 1453
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
1454
	}
1455
	return urandom_read_nowarn(NULL, buf, count, NULL);
1456 1457
}

L
Linus Torvalds 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1468
static int random_min_urandom_seed = 60;
1469 1470
static int random_write_wakeup_bits = POOL_MIN_BITS;
static int sysctl_poolsize = POOL_BITS;
L
Linus Torvalds 已提交
1471 1472 1473
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
1474
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
1475 1476 1477
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
1478 1479 1480
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
1481
 */
1482 1483
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1484
{
1485
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
1486 1487 1488 1489 1490 1491
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1492 1493 1494 1495 1496 1497 1498 1499
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1500

J
Joe Perches 已提交
1501 1502
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
1503 1504 1505
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

1506
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1507 1508
}

1509
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1510 1511 1512 1513 1514
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1515
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1516 1517 1518
	},
	{
		.procname	= "entropy_avail",
1519
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1520 1521
		.maxlen		= sizeof(int),
		.mode		= 0444,
1522
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1523 1524 1525
	},
	{
		.procname	= "write_wakeup_threshold",
1526
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
1527 1528
		.maxlen		= sizeof(int),
		.mode		= 0644,
1529
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1530
	},
1531 1532 1533 1534 1535 1536 1537
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
1543
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1544 1545 1546 1547 1548
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
1549
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1550
	},
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
1567
	{ }
L
Linus Torvalds 已提交
1568
};
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1580
#endif	/* CONFIG_SYSCTL */
L
Linus Torvalds 已提交
1581

1582 1583
static atomic_t batch_generation = ATOMIC_INIT(0);

1584 1585
struct batched_entropy {
	union {
1586 1587
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
1588
	};
1589
	local_lock_t lock;
1590
	unsigned int position;
1591
	int generation;
1592
};
1593

L
Linus Torvalds 已提交
1594
/*
1595
 * Get a random word for internal kernel use only. The quality of the random
1596 1597
 * number is good as /dev/urandom, but there is no backtrack protection, with
 * the goal of being quite fast and not depleting entropy. In order to ensure
1598
 * that the randomness provided by this function is okay, the function
1599 1600
 * wait_for_random_bytes() should be called and return 0 at least once at any
 * point prior.
L
Linus Torvalds 已提交
1601
 */
1602
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
1603
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock)
1604 1605
};

1606
u64 get_random_u64(void)
L
Linus Torvalds 已提交
1607
{
1608
	u64 ret;
1609
	unsigned long flags;
1610
	struct batched_entropy *batch;
1611
	static void *previous;
1612
	int next_gen;
1613

1614
	warn_unseeded_randomness(&previous);
1615

1616
	local_lock_irqsave(&batched_entropy_u64.lock, flags);
1617
	batch = raw_cpu_ptr(&batched_entropy_u64);
1618 1619 1620 1621

	next_gen = atomic_read(&batch_generation);
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0 ||
	    next_gen != batch->generation) {
1622
		extract_crng((u8 *)batch->entropy_u64);
1623
		batch->position = 0;
1624
		batch->generation = next_gen;
1625
	}
1626

1627
	ret = batch->entropy_u64[batch->position++];
1628
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
1629
	return ret;
L
Linus Torvalds 已提交
1630
}
1631
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
1632

1633
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
1634
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock)
1635
};
1636

1637
u32 get_random_u32(void)
1638
{
1639
	u32 ret;
1640
	unsigned long flags;
1641
	struct batched_entropy *batch;
1642
	static void *previous;
1643
	int next_gen;
1644

1645
	warn_unseeded_randomness(&previous);
1646

1647
	local_lock_irqsave(&batched_entropy_u32.lock, flags);
1648
	batch = raw_cpu_ptr(&batched_entropy_u32);
1649 1650 1651 1652

	next_gen = atomic_read(&batch_generation);
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0 ||
	    next_gen != batch->generation) {
1653
		extract_crng((u8 *)batch->entropy_u32);
1654
		batch->position = 0;
1655
		batch->generation = next_gen;
1656
	}
1657

1658
	ret = batch->entropy_u32[batch->position++];
1659
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
1660 1661
	return ret;
}
1662
EXPORT_SYMBOL(get_random_u32);
1663

1664 1665
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
1666 1667
 * bumping the generation counter.
 */
1668 1669
static void invalidate_batched_entropy(void)
{
1670
	atomic_inc(&batch_generation);
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
1687
unsigned long randomize_page(unsigned long start, unsigned long range)
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

1705 1706 1707 1708 1709 1710 1711
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
T
Theodore Ts'o 已提交
1712
	if (unlikely(crng_init == 0)) {
1713
		size_t ret = crng_fast_load(buffer, count);
1714
		mix_pool_bytes(buffer, ret);
1715 1716 1717 1718
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
1719
	}
1720

1721
	/* Throttle writing if we're above the trickle threshold.
1722 1723 1724
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
1725
	 */
1726
	wait_event_interruptible_timeout(random_write_wait,
1727
			!system_wq || kthread_should_stop() ||
1728
			input_pool.entropy_count < POOL_MIN_BITS,
1729
			CRNG_RESEED_INTERVAL);
1730 1731
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
1732 1733
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
1747
EXPORT_SYMBOL_GPL(add_bootloader_randomness);