rcar_du_crtc.c 34.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
5
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 7 8 9 10 11
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 */

#include <linux/clk.h>
#include <linux/mutex.h>
12
#include <linux/platform_device.h>
13
#include <linux/sys_soc.h>
14

15 16
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
17
#include <drm/drm_bridge.h>
18
#include <drm/drm_crtc.h>
19
#include <drm/drm_device.h>
20 21
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
22
#include <drm/drm_plane_helper.h>
23
#include <drm/drm_vblank.h>
24

25
#include "rcar_cmm.h"
26 27
#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
28
#include "rcar_du_encoder.h"
29 30 31
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
32
#include "rcar_du_vsp.h"
33
#include "rcar_lvds.h"
34 35 36

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
37
	struct rcar_du_device *rcdu = rcrtc->dev;
38 39 40 41 42 43

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
44
	struct rcar_du_device *rcdu = rcrtc->dev;
45 46 47 48 49 50

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
51
	struct rcar_du_device *rcdu = rcrtc->dev;
52 53 54 55 56 57 58

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
59
	struct rcar_du_device *rcdu = rcrtc->dev;
60 61 62 63 64

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

65
void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
66
{
67
	struct rcar_du_device *rcdu = rcrtc->dev;
68

69 70
	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
71 72
}

73 74 75 76
/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

K
Koji Matsuoka 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
struct dpll_info {
	unsigned int output;
	unsigned int fdpll;
	unsigned int n;
	unsigned int m;
};

static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
				 struct dpll_info *dpll,
				 unsigned long input,
				 unsigned long target)
{
	unsigned long best_diff = (unsigned long)-1;
	unsigned long diff;
	unsigned int fdpll;
	unsigned int m;
	unsigned int n;

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	/*
	 *   fin                                 fvco        fout       fclkout
	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
	 *              +-> |  |                             |
	 *              |                                    |
	 *              +---------------- [1/N] <------------+
	 *
	 *	fclkout = fvco / P / FDPLL -- (1)
	 *
	 * fin/M = fvco/P/N
	 *
	 *	fvco = fin * P *  N / M -- (2)
	 *
	 * (1) + (2) indicates
	 *
	 *	fclkout = fin * N / M / FDPLL
	 *
	 * NOTES
	 *	N	: (n + 1)
	 *	M	: (m + 1)
	 *	FDPLL	: (fdpll + 1)
	 *	P	: 2
	 *	2kHz < fvco < 4096MHz
	 *
	 * To minimize the jitter,
	 * N : as large as possible
	 * M : as small as possible
	 */
	for (m = 0; m < 4; m++) {
		for (n = 119; n > 38; n--) {
			/*
			 * This code only runs on 64-bit architectures, the
			 * unsigned long type can thus be used for 64-bit
			 * computation. It will still compile without any
			 * warning on 32-bit architectures.
			 *
			 * To optimize calculations, use fout instead of fvco
			 * to verify the VCO frequency constraint.
			 */
			unsigned long fout = input * (n + 1) / (m + 1);

			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
				continue;

K
Koji Matsuoka 已提交
139 140 141
			for (fdpll = 1; fdpll < 32; fdpll++) {
				unsigned long output;

142
				output = fout / (fdpll + 1);
143
				if (output >= 400 * 1000 * 1000)
K
Koji Matsuoka 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
					continue;

				diff = abs((long)output - (long)target);
				if (best_diff > diff) {
					best_diff = diff;
					dpll->n = n;
					dpll->m = m;
					dpll->fdpll = fdpll;
					dpll->output = output;
				}

				if (diff == 0)
					goto done;
			}
		}
	}

done:
162
	dev_dbg(rcrtc->dev->dev,
K
Koji Matsuoka 已提交
163
		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
164
		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
K
Koji Matsuoka 已提交
165 166
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
struct du_clk_params {
	struct clk *clk;
	unsigned long rate;
	unsigned long diff;
	u32 escr;
};

static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
				 u32 escr, struct du_clk_params *params)
{
	unsigned long rate;
	unsigned long diff;
	u32 div;

	/*
	 * If the target rate has already been achieved perfectly we can't do
	 * better.
	 */
	if (params->diff == 0)
		return;

	/*
	 * Compute the input clock rate and internal divisor values to obtain
	 * the clock rate closest to the target frequency.
	 */
	rate = clk_round_rate(clk, target);
	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
	diff = abs(rate / (div + 1) - target);

	/*
	 * Store the parameters if the resulting frequency is better than any
	 * previously calculated value.
	 */
	if (diff < params->diff) {
		params->clk = clk;
		params->rate = rate;
		params->diff = diff;
		params->escr = escr | div;
	}
}

208 209 210 211 212
static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

213 214
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
215
	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
216
	struct rcar_du_device *rcdu = rcrtc->dev;
217
	unsigned long mode_clock = mode->clock * 1000;
218
	u32 dsmr;
219
	u32 escr;
220

221
	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
222
		unsigned long target = mode_clock;
K
Koji Matsuoka 已提交
223
		struct dpll_info dpll = { 0 };
224
		unsigned long extclk;
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
		u32 dpllcr;
		u32 div = 0;

		/*
		 * DU channels that have a display PLL can't use the internal
		 * system clock, and have no internal clock divider.
		 */

		/*
		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
		 * We can work around them by configuring the DPLL to twice the
		 * desired frequency, coupled with a /2 post-divider. Restrict
		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
		 * no post-divider when a display PLL is present (as shown by
		 * the workaround breaking HDMI output on M3-W during testing).
		 */
		if (soc_device_match(rcar_du_r8a7795_es1)) {
			target *= 2;
			div = 1;
K
Koji Matsuoka 已提交
244 245
		}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
		extclk = clk_get_rate(rcrtc->extclock);
		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);

		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
		       | DPLLCR_FDPLL(dpll.fdpll)
		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
		       | DPLLCR_STBY;

		if (rcrtc->index == 1)
			dpllcr |= DPLLCR_PLCS1
			       |  DPLLCR_INCS_DOTCLKIN1;
		else
			dpllcr |= DPLLCR_PLCS0
			       |  DPLLCR_INCS_DOTCLKIN0;

		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);

		escr = ESCR_DCLKSEL_DCLKIN | div;
264 265 266 267 268 269 270 271
	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
		/*
		 * Use the LVDS PLL output as the dot clock when outputting to
		 * the LVDS encoder on an SoC that supports this clock routing
		 * option. We use the clock directly in that case, without any
		 * additional divider.
		 */
		escr = ESCR_DCLKSEL_DCLKIN;
272
	} else {
273
		struct du_clk_params params = { .diff = (unsigned long)-1 };
274

275 276 277 278 279
		rcar_du_escr_divider(rcrtc->clock, mode_clock,
				     ESCR_DCLKSEL_CLKS, &params);
		if (rcrtc->extclock)
			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
					     ESCR_DCLKSEL_DCLKIN, &params);
280

281
		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
282 283
			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
			params.rate);
284

285 286
		clk_set_rate(params.clk, params.rate);
		escr = params.escr;
287
	}
288

289
	dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
290

291 292
	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
293 294

	/* Signal polarities */
295 296 297 298 299
	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
	     | DSMR_DIPM_DISP | DSMR_CSPM;
	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
300 301 302 303 304 305 306 307 308

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

309 310 311 312 313 314 315 316 317
	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
318

319
	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
320 321 322
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

323 324
static unsigned int plane_zpos(struct rcar_du_plane *plane)
{
325
	return plane->plane.state->normalized_zpos;
326 327
}

328 329 330
static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane *plane)
{
331
	return to_rcar_plane_state(plane->plane.state)->format;
332 333
}

334
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
335 336
{
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
337
	struct rcar_du_device *rcdu = rcrtc->dev;
338
	unsigned int num_planes = 0;
339 340
	unsigned int dptsr_planes;
	unsigned int hwplanes = 0;
341 342 343 344
	unsigned int prio = 0;
	unsigned int i;
	u32 dspr = 0;

345
	for (i = 0; i < rcrtc->group->num_planes; ++i) {
346
		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
347 348
		unsigned int j;

349 350
		if (plane->plane.state->crtc != &rcrtc->crtc ||
		    !plane->plane.state->visible)
351 352 353 354
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
355
			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
356 357 358 359 360
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
361
		prio += plane_format(plane)->planes * 4;
362 363 364 365
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
366
		struct drm_plane_state *state = plane->plane.state;
367
		unsigned int index = to_rcar_plane_state(state)->hwindex;
368 369 370

		prio -= 4;
		dspr |= (index + 1) << prio;
371
		hwplanes |= 1 << index;
372

373
		if (plane_format(plane)->planes == 2) {
374 375 376 377
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
378
			hwplanes |= 1 << index;
379 380 381
		}
	}

382 383
	/* If VSP+DU integration is enabled the plane assignment is fixed. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
384 385 386 387 388 389 390
		if (rcdu->info->gen < 3) {
			dspr = (rcrtc->index % 2) + 1;
			hwplanes = 1 << (rcrtc->index % 2);
		} else {
			dspr = (rcrtc->index % 2) ? 3 : 1;
			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
		}
391 392
	}

393 394
	/*
	 * Update the planes to display timing and dot clock generator
395 396 397 398 399 400
	 * associations.
	 *
	 * Updating the DPTSR register requires restarting the CRTC group,
	 * resulting in visible flicker. To mitigate the issue only update the
	 * association if needed by enabled planes. Planes being disabled will
	 * keep their current association.
401
	 */
402 403 404 405 406 407 408 409 410 411 412 413
	mutex_lock(&rcrtc->group->lock);

	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
		     : rcrtc->group->dptsr_planes & ~hwplanes;

	if (dptsr_planes != rcrtc->group->dptsr_planes) {
		rcar_du_group_write(rcrtc->group, DPTSR,
				    (dptsr_planes << 16) | dptsr_planes);
		rcrtc->group->dptsr_planes = dptsr_planes;

		if (rcrtc->group->used_crtcs)
			rcar_du_group_restart(rcrtc->group);
414 415
	}

416 417 418 419
	/* Restart the group if plane sources have changed. */
	if (rcrtc->group->need_restart)
		rcar_du_group_restart(rcrtc->group);

420 421
	mutex_unlock(&rcrtc->group->lock);

422 423
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
424 425
}

426 427 428 429
/* -----------------------------------------------------------------------------
 * Page Flip
 */

430
void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
431 432 433 434 435 436 437 438 439 440 441 442 443 444
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
445
	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
446
	wake_up(&rcrtc->flip_wait);
447 448
	spin_unlock_irqrestore(&dev->event_lock, flags);

449
	drm_crtc_vblank_put(&rcrtc->crtc);
450 451
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
467
	struct rcar_du_device *rcdu = rcrtc->dev;
468 469 470 471 472 473 474 475 476 477 478

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
/* -----------------------------------------------------------------------------
 * Color Management Module (CMM)
 */

static int rcar_du_cmm_check(struct drm_crtc *crtc,
			     struct drm_crtc_state *state)
{
	struct drm_property_blob *drm_lut = state->gamma_lut;
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct device *dev = rcrtc->dev->dev;

	if (!drm_lut)
		return 0;

	/* We only accept fully populated LUT tables. */
	if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
		dev_err(dev, "invalid gamma lut size: %zu bytes\n",
			drm_lut->length);
		return -EINVAL;
	}

	return 0;
}

static void rcar_du_cmm_setup(struct drm_crtc *crtc)
{
	struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_cmm_config cmm_config = {};

	if (!rcrtc->cmm)
		return;

	if (drm_lut)
		cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;

	rcar_cmm_setup(rcrtc->cmm, &cmm_config);
}

518 519 520 521
/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

522
static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
523 524 525 526 527 528 529
{
	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
530
	rcar_du_group_set_routing(rcrtc->group);
531

532 533
	/* Start with all planes disabled. */
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
534

535
	/* Enable the VSP compositor. */
536
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
537 538 539 540 541 542
		rcar_du_vsp_enable(rcrtc);

	/* Turn vertical blanking interrupt reporting on. */
	drm_crtc_vblank_on(&rcrtc->crtc);
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	/*
	 * Guard against double-get, as the function is called from both the
	 * .atomic_enable() and .atomic_begin() handlers.
	 */
	if (rcrtc->initialized)
		return 0;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

	ret = rcar_du_group_get(rcrtc->group);
	if (ret < 0)
		goto error_group;

	rcar_du_crtc_setup(rcrtc);
	rcrtc->initialized = true;

	return 0;

error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
	rcar_du_group_put(rcrtc->group);

	clk_disable_unprepare(rcrtc->extclock);
	clk_disable_unprepare(rcrtc->clock);

	rcrtc->initialized = false;
}

588 589 590 591
static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	bool interlaced;

592 593
	/*
	 * Select master sync mode. This enables display operation in master
594 595 596
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
597
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
598 599 600
	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
				   DSYSR_TVM_MASTER);
601

602
	rcar_du_group_start_stop(rcrtc->group, true);
603 604
}

605 606
static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
{
607
	struct rcar_du_device *rcdu = rcrtc->dev;
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	struct drm_crtc *crtc = &rcrtc->crtc;
	u32 status;

	/* Make sure vblank interrupts are enabled. */
	drm_crtc_vblank_get(crtc);

	/*
	 * Disable planes and calculate how many vertical blanking interrupts we
	 * have to wait for. If a vertical blanking interrupt has been triggered
	 * but not processed yet, we don't know whether it occurred before or
	 * after the planes got disabled. We thus have to wait for two vblank
	 * interrupts in that case.
	 */
	spin_lock_irq(&rcrtc->vblank_lock);
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
	spin_unlock_irq(&rcrtc->vblank_lock);

	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
				msecs_to_jiffies(100)))
		dev_warn(rcdu->dev, "vertical blanking timeout\n");

	drm_crtc_vblank_put(crtc);
}

634 635 636 637
static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

638 639
	/*
	 * Disable all planes and wait for the change to take effect. This is
640 641 642 643
	 * required as the plane enable registers are updated on vblank, and no
	 * vblank will occur once the CRTC is stopped. Disabling planes when
	 * starting the CRTC thus wouldn't be enough as it would start scanning
	 * out immediately from old frame buffers until the next vblank.
644 645 646 647 648
	 *
	 * This increases the CRTC stop delay, especially when multiple CRTCs
	 * are stopped in one operation as we now wait for one vblank per CRTC.
	 * Whether this can be improved needs to be researched.
	 */
649
	rcar_du_crtc_disable_planes(rcrtc);
650

651 652
	/*
	 * Disable vertical blanking interrupt reporting. We first need to wait
653 654
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
655 656
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
657
	drm_crtc_vblank_off(crtc);
658

659
	/* Disable the VSP compositor. */
660
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
661 662
		rcar_du_vsp_disable(rcrtc);

663 664 665
	if (rcrtc->cmm)
		rcar_cmm_disable(rcrtc->cmm);

666 667
	/*
	 * Select switch sync mode. This stops display operation and configures
668
	 * the HSYNC and VSYNC signals as inputs.
669 670 671
	 *
	 * TODO: Find another way to stop the display for DUs that don't support
	 * TVM sync.
672
	 */
673
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
674 675
		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
					   DSYSR_TVM_SWITCH);
676

677
	rcar_du_group_start_stop(rcrtc->group, false);
678 679
}

680 681 682 683
/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

684 685 686 687 688
static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
				     struct drm_crtc_state *state)
{
	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
	struct drm_encoder *encoder;
689 690 691 692 693
	int ret;

	ret = rcar_du_cmm_check(crtc, state);
	if (ret)
		return ret;
694 695 696 697 698

	/* Store the routes from the CRTC output to the DU outputs. */
	rstate->outputs = 0;

	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
699
		struct rcar_du_encoder *renc;
700

701 702 703 704 705
		/* Skip the writeback encoder. */
		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
			continue;

		renc = to_rcar_encoder(encoder);
706 707 708 709 710 711
		rstate->outputs |= BIT(renc->output);
	}

	return 0;
}

712 713
static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
				       struct drm_crtc_state *old_state)
714 715
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
716
	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
717
	struct rcar_du_device *rcdu = rcrtc->dev;
718

719 720
	if (rcrtc->cmm)
		rcar_cmm_enable(rcrtc->cmm);
721
	rcar_du_crtc_get(rcrtc);
722 723 724 725 726 727 728 729 730 731 732 733

	/*
	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
	 * the DU channel. We need to enable its clock output explicitly if
	 * the LVDS output is disabled.
	 */
	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
		struct rcar_du_encoder *encoder =
			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
		const struct drm_display_mode *mode =
			&crtc->state->adjusted_mode;
734
		struct drm_bridge *bridge;
735

736 737
		bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
		rcar_lvds_clk_enable(bridge, mode->clock * 1000);
738 739
	}

740
	rcar_du_crtc_start(rcrtc);
741 742 743 744 745 746 747

	/*
	 * TODO: The chip manual indicates that CMM tables should be written
	 * after the DU channel has been activated. Investigate the impact
	 * of this restriction on the first displayed frame.
	 */
	rcar_du_cmm_setup(crtc);
748 749
}

750 751
static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
					struct drm_crtc_state *old_state)
752 753
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
754
	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
755
	struct rcar_du_device *rcdu = rcrtc->dev;
756

757 758
	rcar_du_crtc_stop(rcrtc);
	rcar_du_crtc_put(rcrtc);
759

760 761 762 763
	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
		struct rcar_du_encoder *encoder =
			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
764
		struct drm_bridge *bridge;
765 766 767 768 769

		/*
		 * Disable the LVDS clock output, see
		 * rcar_du_crtc_atomic_enable().
		 */
770 771
		bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
		rcar_lvds_clk_disable(bridge);
772 773
	}

774 775 776 777 778 779
	spin_lock_irq(&crtc->dev->event_lock);
	if (crtc->state->event) {
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
	}
	spin_unlock_irq(&crtc->dev->event_lock);
780 781
}

782 783
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
784 785
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
786

787 788 789 790
	WARN_ON(!crtc->state->enable);

	/*
	 * If a mode set is in progress we can be called with the CRTC disabled.
791 792 793 794 795 796 797
	 * We thus need to first get and setup the CRTC in order to configure
	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
	 * kept awake until the .atomic_enable() call that will follow. The get
	 * operation in .atomic_enable() will in that case be a no-op, and the
	 * CRTC will be put later in .atomic_disable().
	 *
	 * If a mode set is not in progress the CRTC is enabled, and the
798
	 * following get call will be a no-op. There is thus no need to balance
799
	 * it in .atomic_flush() either.
800
	 */
801
	rcar_du_crtc_get(rcrtc);
802

803 804 805 806
	/* If the active state changed, we let .atomic_enable handle CMM. */
	if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
		rcar_du_cmm_setup(crtc);

807
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
808
		rcar_du_vsp_atomic_begin(rcrtc);
809 810
}

811 812
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
813 814
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
815 816
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
817

818
	rcar_du_crtc_update_planes(rcrtc);
819

820 821 822 823 824 825 826 827 828
	if (crtc->state->event) {
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = crtc->state->event;
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

829
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
830
		rcar_du_vsp_atomic_flush(rcrtc);
831 832
}

833 834 835
static enum drm_mode_status
rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
			const struct drm_display_mode *mode)
836 837
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
838
	struct rcar_du_device *rcdu = rcrtc->dev;
839
	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
840
	unsigned int vbp;
841 842 843 844

	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
		return MODE_NO_INTERLACE;

845 846 847 848 849 850 851 852 853 854 855
	/*
	 * The hardware requires a minimum combined horizontal sync and back
	 * porch of 20 pixels and a minimum vertical back porch of 3 lines.
	 */
	if (mode->htotal - mode->hsync_start < 20)
		return MODE_HBLANK_NARROW;

	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
	if (vbp < 3)
		return MODE_VBLANK_NARROW;

856 857 858
	return MODE_OK;
}

859
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
860
	.atomic_check = rcar_du_crtc_atomic_check,
861 862
	.atomic_begin = rcar_du_crtc_atomic_begin,
	.atomic_flush = rcar_du_crtc_atomic_flush,
863
	.atomic_enable = rcar_du_crtc_atomic_enable,
864
	.atomic_disable = rcar_du_crtc_atomic_disable,
865
	.mode_valid = rcar_du_crtc_mode_valid,
866 867
};

868 869
static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
{
870
	struct rcar_du_device *rcdu = rcrtc->dev;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	const char **sources;
	unsigned int count;
	int i = -1;

	/* CRC available only on Gen3 HW. */
	if (rcdu->info->gen < 3)
		return;

	/* Reserve 1 for "auto" source. */
	count = rcrtc->vsp->num_planes + 1;

	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
	if (!sources)
		return;

	sources[0] = kstrdup("auto", GFP_KERNEL);
	if (!sources[0])
		goto error;

	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
		char name[16];

		sprintf(name, "plane%u", plane->base.id);
		sources[i + 1] = kstrdup(name, GFP_KERNEL);
		if (!sources[i + 1])
			goto error;
	}

	rcrtc->sources = sources;
	rcrtc->sources_count = count;
	return;

error:
	while (i >= 0) {
		kfree(sources[i]);
		i--;
	}
	kfree(sources);
}

static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
{
	unsigned int i;

	if (!rcrtc->sources)
		return;

	for (i = 0; i < rcrtc->sources_count; i++)
		kfree(rcrtc->sources[i]);
	kfree(rcrtc->sources);

	rcrtc->sources = NULL;
	rcrtc->sources_count = 0;
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;
	struct rcar_du_crtc_state *copy;

	if (WARN_ON(!crtc->state))
		return NULL;

	state = to_rcar_crtc_state(crtc->state);
	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
	if (copy == NULL)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);

	return &copy->state;
}

static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
					      struct drm_crtc_state *state)
{
	__drm_atomic_helper_crtc_destroy_state(state);
	kfree(to_rcar_crtc_state(state));
}

953 954 955 956 957 958 959 960 961
static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_crc_cleanup(rcrtc);

	return drm_crtc_cleanup(crtc);
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
static void rcar_du_crtc_reset(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;

	if (crtc->state) {
		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
		crtc->state = NULL;
	}

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL)
		return;

	state->crc.source = VSP1_DU_CRC_NONE;
	state->crc.index = 0;

	crtc->state = &state->state;
	crtc->state->crtc = crtc;
}

982 983 984 985 986 987
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
988
	rcrtc->vblank_enable = true;
989 990 991 992 993 994 995 996 997

	return 0;
}

static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
998
	rcrtc->vblank_enable = false;
999 1000
}

1001 1002 1003
static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
					 const char *source_name,
					 enum vsp1_du_crc_source *source)
1004
{
1005
	unsigned int index;
1006 1007 1008 1009 1010 1011 1012
	int ret;

	/*
	 * Parse the source name. Supported values are "plane%u" to compute the
	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
	 * CRC on the composer (VSP) output.
	 */
1013

1014
	if (!source_name) {
1015 1016
		*source = VSP1_DU_CRC_NONE;
		return 0;
1017
	} else if (!strcmp(source_name, "auto")) {
1018 1019
		*source = VSP1_DU_CRC_OUTPUT;
		return 0;
1020
	} else if (strstarts(source_name, "plane")) {
1021 1022 1023
		unsigned int i;

		*source = VSP1_DU_CRC_PLANE;
1024 1025 1026 1027 1028 1029

		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
		if (ret < 0)
			return ret;

		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1030 1031
			if (index == rcrtc->vsp->planes[i].plane.base.id)
				return i;
1032
		}
1033
	}
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	return -EINVAL;
}

static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
					  const char *source_name,
					  size_t *values_cnt)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	enum vsp1_du_crc_source source;

	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1047 1048 1049
		return -EINVAL;
	}

1050 1051 1052 1053
	*values_cnt = 1;
	return 0;
}

1054 1055
static const char *const *
rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1056 1057 1058 1059 1060 1061 1062
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	*count = rcrtc->sources_count;
	return rcrtc->sources;
}

1063
static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1064
				       const char *source_name)
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_modeset_acquire_ctx ctx;
	struct drm_crtc_state *crtc_state;
	struct drm_atomic_state *state;
	enum vsp1_du_crc_source source;
	unsigned int index;
	int ret;

	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
	if (ret < 0)
		return ret;

	index = ret;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

	/* Perform an atomic commit to set the CRC source. */
	drm_modeset_acquire_init(&ctx, 0);

	state = drm_atomic_state_alloc(crtc->dev);
	if (!state) {
		ret = -ENOMEM;
		goto unlock;
	}

	state->acquire_ctx = &ctx;

retry:
	crtc_state = drm_atomic_get_crtc_state(state, crtc);
	if (!IS_ERR(crtc_state)) {
		struct rcar_du_crtc_state *rcrtc_state;

		rcrtc_state = to_rcar_crtc_state(crtc_state);
		rcrtc_state->crc.source = source;
		rcrtc_state->crc.index = index;

		ret = drm_atomic_commit(state);
	} else {
		ret = PTR_ERR(crtc_state);
	}

	if (ret == -EDEADLK) {
		drm_atomic_state_clear(state);
		drm_modeset_backoff(&ctx);
		goto retry;
	}

	drm_atomic_state_put(state);

unlock:
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

1117
	return ret;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}

static const struct drm_crtc_funcs crtc_funcs_gen2 = {
	.reset = rcar_du_crtc_reset,
	.destroy = drm_crtc_cleanup,
	.set_config = drm_atomic_helper_set_config,
	.page_flip = drm_atomic_helper_page_flip,
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
};

static const struct drm_crtc_funcs crtc_funcs_gen3 = {
	.reset = rcar_du_crtc_reset,
1133
	.destroy = rcar_du_crtc_cleanup,
1134
	.set_config = drm_atomic_helper_set_config,
1135
	.page_flip = drm_atomic_helper_page_flip,
1136 1137
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1138 1139
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
1140
	.set_crc_source = rcar_du_crtc_set_crc_source,
1141
	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1142
	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1143
	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1144 1145
};

1146 1147 1148 1149 1150 1151 1152
/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
1153
	struct rcar_du_device *rcdu = rcrtc->dev;
1154 1155 1156
	irqreturn_t ret = IRQ_NONE;
	u32 status;

1157 1158
	spin_lock(&rcrtc->vblank_lock);

1159 1160 1161
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	if (status & DSSR_VBK) {
		/*
		 * Wake up the vblank wait if the counter reaches 0. This must
		 * be protected by the vblank_lock to avoid races in
		 * rcar_du_crtc_disable_planes().
		 */
		if (rcrtc->vblank_count) {
			if (--rcrtc->vblank_count == 0)
				wake_up(&rcrtc->vblank_wait);
		}
	}

	spin_unlock(&rcrtc->vblank_lock);

1176
	if (status & DSSR_VBK) {
1177 1178
		if (rcdu->info->gen < 3) {
			drm_crtc_handle_vblank(&rcrtc->crtc);
1179
			rcar_du_crtc_finish_page_flip(rcrtc);
1180
		}
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

1192 1193
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
			unsigned int hwindex)
1194
{
1195
	static const unsigned int mmio_offsets[] = {
1196
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1197 1198
	};

1199
	struct rcar_du_device *rcdu = rgrp->dev;
1200
	struct platform_device *pdev = to_platform_device(rcdu->dev);
1201
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1202
	struct drm_crtc *crtc = &rcrtc->crtc;
1203
	struct drm_plane *primary;
1204
	unsigned int irqflags;
1205 1206
	struct clk *clk;
	char clk_name[9];
1207 1208
	char *name;
	int irq;
1209 1210
	int ret;

1211
	/* Get the CRTC clock and the optional external clock. */
1212
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1213
		sprintf(clk_name, "du.%u", hwindex);
1214 1215 1216 1217 1218 1219 1220
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
1221
		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1222 1223 1224
		return PTR_ERR(rcrtc->clock);
	}

1225
	sprintf(clk_name, "dclkin.%u", hwindex);
1226 1227 1228
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
1229
	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1230
		return -EPROBE_DEFER;
1231 1232 1233 1234 1235 1236 1237 1238
	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
		/*
		 * DU channels that have a display PLL can't use the internal
		 * system clock and thus require an external clock.
		 */
		ret = PTR_ERR(clk);
		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
		return ret;
1239 1240
	}

1241
	init_waitqueue_head(&rcrtc->flip_wait);
1242 1243
	init_waitqueue_head(&rcrtc->vblank_wait);
	spin_lock_init(&rcrtc->vblank_lock);
1244

1245
	rcrtc->dev = rcdu;
1246
	rcrtc->group = rgrp;
1247 1248
	rcrtc->mmio_offset = mmio_offsets[hwindex];
	rcrtc->index = hwindex;
1249
	rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1250

1251
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1252
		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1253
	else
1254
		primary = &rgrp->planes[swindex % 2].plane;
1255

1256 1257 1258 1259
	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
					rcdu->info->gen <= 2 ?
					&crtc_funcs_gen2 : &crtc_funcs_gen3,
					NULL);
1260 1261 1262
	if (ret < 0)
		return ret;

1263 1264 1265 1266
	/* CMM might be disabled for this CRTC. */
	if (rcdu->cmms[swindex]) {
		rcrtc->cmm = rcdu->cmms[swindex];
		rgrp->cmms_mask |= BIT(hwindex % 2);
1267 1268 1269

		drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
		drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1270 1271
	}

1272 1273
	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

1274 1275 1276
	/* Start with vertical blanking interrupt reporting disabled. */
	drm_crtc_vblank_off(crtc);

1277 1278
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1279 1280
		/* The IRQ's are associated with the CRTC (sw)index. */
		irq = platform_get_irq(pdev, swindex);
1281 1282 1283 1284 1285 1286 1287
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
1288
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
J
Julia Lawall 已提交
1289
		return irq;
1290 1291 1292 1293 1294 1295
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
1296
			"failed to register IRQ for CRTC %u\n", swindex);
1297 1298 1299
		return ret;
	}

1300 1301
	rcar_du_crtc_crc_init(rcrtc);

1302 1303
	return 0;
}