rcar_du_crtc.c 28.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
5
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 7 8 9 10 11
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 */

#include <linux/clk.h>
#include <linux/mutex.h>
12
#include <linux/sys_soc.h>
13 14

#include <drm/drmP.h>
15 16
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
17 18 19 20
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
21
#include <drm/drm_plane_helper.h>
22 23 24 25 26 27

#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
28
#include "rcar_du_vsp.h"
29 30 31

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
32
	struct rcar_du_device *rcdu = rcrtc->group->dev;
33 34 35 36 37 38

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
39
	struct rcar_du_device *rcdu = rcrtc->group->dev;
40 41 42 43 44 45

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
46
	struct rcar_du_device *rcdu = rcrtc->group->dev;
47 48 49 50 51 52 53

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
54
	struct rcar_du_device *rcdu = rcrtc->group->dev;
55 56 57 58 59 60 61 62

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
				 u32 clr, u32 set)
{
63
	struct rcar_du_device *rcdu = rcrtc->group->dev;
64 65 66 67 68
	u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
}

69 70 71 72 73 74 75 76
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

77 78 79 80
	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

81
	ret = rcar_du_group_get(rcrtc->group);
82
	if (ret < 0)
83 84 85
		goto error_group;

	return 0;
86

87 88 89 90
error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
91 92 93 94 95
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
96
	rcar_du_group_put(rcrtc->group);
97 98

	clk_disable_unprepare(rcrtc->extclock);
99 100 101
	clk_disable_unprepare(rcrtc->clock);
}

102 103 104 105
/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

K
Koji Matsuoka 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
struct dpll_info {
	unsigned int output;
	unsigned int fdpll;
	unsigned int n;
	unsigned int m;
};

static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
				 struct dpll_info *dpll,
				 unsigned long input,
				 unsigned long target)
{
	unsigned long best_diff = (unsigned long)-1;
	unsigned long diff;
	unsigned int fdpll;
	unsigned int m;
	unsigned int n;

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	/*
	 *   fin                                 fvco        fout       fclkout
	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
	 *              +-> |  |                             |
	 *              |                                    |
	 *              +---------------- [1/N] <------------+
	 *
	 *	fclkout = fvco / P / FDPLL -- (1)
	 *
	 * fin/M = fvco/P/N
	 *
	 *	fvco = fin * P *  N / M -- (2)
	 *
	 * (1) + (2) indicates
	 *
	 *	fclkout = fin * N / M / FDPLL
	 *
	 * NOTES
	 *	N	: (n + 1)
	 *	M	: (m + 1)
	 *	FDPLL	: (fdpll + 1)
	 *	P	: 2
	 *	2kHz < fvco < 4096MHz
	 *
	 * To minimize the jitter,
	 * N : as large as possible
	 * M : as small as possible
	 */
	for (m = 0; m < 4; m++) {
		for (n = 119; n > 38; n--) {
			/*
			 * This code only runs on 64-bit architectures, the
			 * unsigned long type can thus be used for 64-bit
			 * computation. It will still compile without any
			 * warning on 32-bit architectures.
			 *
			 * To optimize calculations, use fout instead of fvco
			 * to verify the VCO frequency constraint.
			 */
			unsigned long fout = input * (n + 1) / (m + 1);

			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
				continue;

K
Koji Matsuoka 已提交
168 169 170
			for (fdpll = 1; fdpll < 32; fdpll++) {
				unsigned long output;

171
				output = fout / (fdpll + 1);
172
				if (output >= 400 * 1000 * 1000)
K
Koji Matsuoka 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
					continue;

				diff = abs((long)output - (long)target);
				if (best_diff > diff) {
					best_diff = diff;
					dpll->n = n;
					dpll->m = m;
					dpll->fdpll = fdpll;
					dpll->output = output;
				}

				if (diff == 0)
					goto done;
			}
		}
	}

done:
	dev_dbg(rcrtc->group->dev->dev,
		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
		 dpll->output, dpll->fdpll, dpll->n, dpll->m,
		 best_diff);
}

197 198 199 200 201
static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

202 203
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
204
	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
K
Koji Matsuoka 已提交
205
	struct rcar_du_device *rcdu = rcrtc->group->dev;
206
	unsigned long mode_clock = mode->clock * 1000;
207 208
	unsigned long clk;
	u32 value;
209
	u32 escr;
210 211
	u32 div;

212 213
	/*
	 * Compute the clock divisor and select the internal or external dot
214 215
	 * clock based on the requested frequency.
	 */
216
	clk = clk_get_rate(rcrtc->clock);
217
	div = DIV_ROUND_CLOSEST(clk, mode_clock);
218
	div = clamp(div, 1U, 64U) - 1;
219 220 221
	escr = div | ESCR_DCLKSEL_CLKS;

	if (rcrtc->extclock) {
K
Koji Matsuoka 已提交
222
		struct dpll_info dpll = { 0 };
223 224 225 226 227 228
		unsigned long extclk;
		unsigned long extrate;
		unsigned long rate;
		u32 extdiv;

		extclk = clk_get_rate(rcrtc->extclock);
K
Koji Matsuoka 已提交
229
		if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
230 231 232 233 234 235 236 237 238 239 240 241 242 243
			unsigned long target = mode_clock;

			/*
			 * The H3 ES1.x exhibits dot clock duty cycle stability
			 * issues. We can work around them by configuring the
			 * DPLL to twice the desired frequency, coupled with a
			 * /2 post-divider. This isn't needed on other SoCs and
			 * breaks HDMI output on M3-W for a currently unknown
			 * reason, so restrict the workaround to H3 ES1.x.
			 */
			if (soc_device_match(rcar_du_r8a7795_es1))
				target *= 2;

			rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
K
Koji Matsuoka 已提交
244 245 246
			extclk = dpll.output;
		}

247 248 249 250 251 252 253 254
		extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
		extdiv = clamp(extdiv, 1U, 64U) - 1;

		rate = clk / (div + 1);
		extrate = extclk / (extdiv + 1);

		if (abs((long)extrate - (long)mode_clock) <
		    abs((long)rate - (long)mode_clock)) {
K
Koji Matsuoka 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

			if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
				u32 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
					   | DPLLCR_FDPLL(dpll.fdpll)
					   | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
					   | DPLLCR_STBY;

				if (rcrtc->index == 1)
					dpllcr |= DPLLCR_PLCS1
					       |  DPLLCR_INCS_DOTCLKIN1;
				else
					dpllcr |= DPLLCR_PLCS0
					       |  DPLLCR_INCS_DOTCLKIN0;

				rcar_du_group_write(rcrtc->group, DPLLCR,
						    dpllcr);
			}
272 273

			escr = ESCR_DCLKSEL_DCLKIN | extdiv;
274
		}
275 276 277 278

		dev_dbg(rcrtc->group->dev->dev,
			"mode clock %lu extrate %lu rate %lu ESCR 0x%08x\n",
			mode_clock, extrate, rate, escr);
279
	}
280

281
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
282
			    escr);
283
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
284 285

	/* Signal polarities */
286 287
	value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
	      | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
288
	      | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
289
	      | DSMR_DIPM_DISP | DSMR_CSPM;
290 291 292 293 294 295 296 297 298 299
	rcar_du_crtc_write(rcrtc, DSMR, value);

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

300 301 302 303 304 305 306 307 308
	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
309

310
	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
311 312 313
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

314 315
void rcar_du_crtc_route_output(struct drm_crtc *crtc,
			       enum rcar_du_output output)
316 317
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
318
	struct rcar_du_device *rcdu = rcrtc->group->dev;
319

320 321
	/*
	 * Store the route from the CRTC output to the DU output. The DU will be
322 323
	 * configured when starting the CRTC.
	 */
324
	rcrtc->outputs |= BIT(output);
325

326 327
	/*
	 * Store RGB routing to DPAD0, the hardware will be configured when
328 329 330
	 * starting the CRTC.
	 */
	if (output == RCAR_DU_OUTPUT_DPAD0)
331
		rcdu->dpad0_source = rcrtc->index;
332 333
}

334 335
static unsigned int plane_zpos(struct rcar_du_plane *plane)
{
336
	return plane->plane.state->normalized_zpos;
337 338
}

339 340 341
static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane *plane)
{
342
	return to_rcar_plane_state(plane->plane.state)->format;
343 344
}

345
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
346 347
{
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
348
	struct rcar_du_device *rcdu = rcrtc->group->dev;
349
	unsigned int num_planes = 0;
350 351
	unsigned int dptsr_planes;
	unsigned int hwplanes = 0;
352 353 354 355
	unsigned int prio = 0;
	unsigned int i;
	u32 dspr = 0;

356
	for (i = 0; i < rcrtc->group->num_planes; ++i) {
357
		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
358 359
		unsigned int j;

360 361
		if (plane->plane.state->crtc != &rcrtc->crtc ||
		    !plane->plane.state->visible)
362 363 364 365
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
366
			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
367 368 369 370 371
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
372
		prio += plane_format(plane)->planes * 4;
373 374 375 376
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
377
		struct drm_plane_state *state = plane->plane.state;
378
		unsigned int index = to_rcar_plane_state(state)->hwindex;
379 380 381

		prio -= 4;
		dspr |= (index + 1) << prio;
382
		hwplanes |= 1 << index;
383

384
		if (plane_format(plane)->planes == 2) {
385 386 387 388
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
389
			hwplanes |= 1 << index;
390 391 392
		}
	}

393 394
	/* If VSP+DU integration is enabled the plane assignment is fixed. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
395 396 397 398 399 400 401
		if (rcdu->info->gen < 3) {
			dspr = (rcrtc->index % 2) + 1;
			hwplanes = 1 << (rcrtc->index % 2);
		} else {
			dspr = (rcrtc->index % 2) ? 3 : 1;
			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
		}
402 403
	}

404 405
	/*
	 * Update the planes to display timing and dot clock generator
406 407 408 409 410 411
	 * associations.
	 *
	 * Updating the DPTSR register requires restarting the CRTC group,
	 * resulting in visible flicker. To mitigate the issue only update the
	 * association if needed by enabled planes. Planes being disabled will
	 * keep their current association.
412
	 */
413 414 415 416 417 418 419 420 421 422 423 424
	mutex_lock(&rcrtc->group->lock);

	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
		     : rcrtc->group->dptsr_planes & ~hwplanes;

	if (dptsr_planes != rcrtc->group->dptsr_planes) {
		rcar_du_group_write(rcrtc->group, DPTSR,
				    (dptsr_planes << 16) | dptsr_planes);
		rcrtc->group->dptsr_planes = dptsr_planes;

		if (rcrtc->group->used_crtcs)
			rcar_du_group_restart(rcrtc->group);
425 426
	}

427 428 429 430
	/* Restart the group if plane sources have changed. */
	if (rcrtc->group->need_restart)
		rcar_du_group_restart(rcrtc->group);

431 432
	mutex_unlock(&rcrtc->group->lock);

433 434
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
435 436
}

437 438 439 440
/* -----------------------------------------------------------------------------
 * Page Flip
 */

441
void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
442 443 444 445 446 447 448 449 450 451 452 453 454 455
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
456
	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
457
	wake_up(&rcrtc->flip_wait);
458 459
	spin_unlock_irqrestore(&dev->event_lock, flags);

460
	drm_crtc_vblank_put(&rcrtc->crtc);
461 462
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

490 491 492 493
/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

494
static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
495 496 497 498 499 500 501
{
	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
502
	rcar_du_group_set_routing(rcrtc->group);
503

504 505
	/* Start with all planes disabled. */
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
506

507 508 509 510 511 512 513 514 515 516 517 518
	/* Enable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_enable(rcrtc);

	/* Turn vertical blanking interrupt reporting on. */
	drm_crtc_vblank_on(&rcrtc->crtc);
}

static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	bool interlaced;

519 520
	/*
	 * Select master sync mode. This enables display operation in master
521 522 523
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
524 525 526 527
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
			     (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
			     DSYSR_TVM_MASTER);
528

529
	rcar_du_group_start_stop(rcrtc->group, true);
530 531
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	struct drm_crtc *crtc = &rcrtc->crtc;
	u32 status;

	/* Make sure vblank interrupts are enabled. */
	drm_crtc_vblank_get(crtc);

	/*
	 * Disable planes and calculate how many vertical blanking interrupts we
	 * have to wait for. If a vertical blanking interrupt has been triggered
	 * but not processed yet, we don't know whether it occurred before or
	 * after the planes got disabled. We thus have to wait for two vblank
	 * interrupts in that case.
	 */
	spin_lock_irq(&rcrtc->vblank_lock);
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
	spin_unlock_irq(&rcrtc->vblank_lock);

	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
				msecs_to_jiffies(100)))
		dev_warn(rcdu->dev, "vertical blanking timeout\n");

	drm_crtc_vblank_put(crtc);
}

561 562 563 564
static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

565 566
	/*
	 * Disable all planes and wait for the change to take effect. This is
567 568 569 570
	 * required as the plane enable registers are updated on vblank, and no
	 * vblank will occur once the CRTC is stopped. Disabling planes when
	 * starting the CRTC thus wouldn't be enough as it would start scanning
	 * out immediately from old frame buffers until the next vblank.
571 572 573 574 575
	 *
	 * This increases the CRTC stop delay, especially when multiple CRTCs
	 * are stopped in one operation as we now wait for one vblank per CRTC.
	 * Whether this can be improved needs to be researched.
	 */
576
	rcar_du_crtc_disable_planes(rcrtc);
577

578 579
	/*
	 * Disable vertical blanking interrupt reporting. We first need to wait
580 581
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
582 583
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
584
	drm_crtc_vblank_off(crtc);
585

586 587 588 589
	/* Disable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_disable(rcrtc);

590 591
	/*
	 * Select switch sync mode. This stops display operation and configures
592 593 594 595
	 * the HSYNC and VSYNC signals as inputs.
	 */
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);

596
	rcar_du_group_start_stop(rcrtc->group, false);
597 598
}

599 600 601 602
/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

603 604
static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
				       struct drm_crtc_state *old_state)
605 606 607
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

608 609 610 611 612 613 614 615 616 617
	/*
	 * If the CRTC has already been setup by the .atomic_begin() handler we
	 * can skip the setup stage.
	 */
	if (!rcrtc->initialized) {
		rcar_du_crtc_get(rcrtc);
		rcar_du_crtc_setup(rcrtc);
		rcrtc->initialized = true;
	}

618 619 620
	rcar_du_crtc_start(rcrtc);
}

621 622
static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
					struct drm_crtc_state *old_state)
623 624
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
625

626 627
	rcar_du_crtc_stop(rcrtc);
	rcar_du_crtc_put(rcrtc);
628

629 630 631 632 633 634 635
	spin_lock_irq(&crtc->dev->event_lock);
	if (crtc->state->event) {
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
	}
	spin_unlock_irq(&crtc->dev->event_lock);

636
	rcrtc->initialized = false;
637
	rcrtc->outputs = 0;
638 639
}

640 641
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
642 643
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
644

645 646 647 648 649 650 651 652 653 654 655 656 657
	WARN_ON(!crtc->state->enable);

	/*
	 * If a mode set is in progress we can be called with the CRTC disabled.
	 * We then need to first setup the CRTC in order to configure planes.
	 * The .atomic_enable() handler will notice and skip the CRTC setup.
	 */
	if (!rcrtc->initialized) {
		rcar_du_crtc_get(rcrtc);
		rcar_du_crtc_setup(rcrtc);
		rcrtc->initialized = true;
	}

658 659
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_begin(rcrtc);
660 661
}

662 663
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
664 665
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
666 667
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
668

669
	rcar_du_crtc_update_planes(rcrtc);
670

671 672 673 674 675 676 677 678 679
	if (crtc->state->event) {
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = crtc->state->event;
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

680 681
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_flush(rcrtc);
682 683
}

684
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
685 686
	.atomic_begin = rcar_du_crtc_atomic_begin,
	.atomic_flush = rcar_du_crtc_atomic_flush,
687
	.atomic_enable = rcar_du_crtc_atomic_enable,
688
	.atomic_disable = rcar_du_crtc_atomic_disable,
689 690
};

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	const char **sources;
	unsigned int count;
	int i = -1;

	/* CRC available only on Gen3 HW. */
	if (rcdu->info->gen < 3)
		return;

	/* Reserve 1 for "auto" source. */
	count = rcrtc->vsp->num_planes + 1;

	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
	if (!sources)
		return;

	sources[0] = kstrdup("auto", GFP_KERNEL);
	if (!sources[0])
		goto error;

	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
		char name[16];

		sprintf(name, "plane%u", plane->base.id);
		sources[i + 1] = kstrdup(name, GFP_KERNEL);
		if (!sources[i + 1])
			goto error;
	}

	rcrtc->sources = sources;
	rcrtc->sources_count = count;
	return;

error:
	while (i >= 0) {
		kfree(sources[i]);
		i--;
	}
	kfree(sources);
}

static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
{
	unsigned int i;

	if (!rcrtc->sources)
		return;

	for (i = 0; i < rcrtc->sources_count; i++)
		kfree(rcrtc->sources[i]);
	kfree(rcrtc->sources);

	rcrtc->sources = NULL;
	rcrtc->sources_count = 0;
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;
	struct rcar_du_crtc_state *copy;

	if (WARN_ON(!crtc->state))
		return NULL;

	state = to_rcar_crtc_state(crtc->state);
	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
	if (copy == NULL)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);

	return &copy->state;
}

static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
					      struct drm_crtc_state *state)
{
	__drm_atomic_helper_crtc_destroy_state(state);
	kfree(to_rcar_crtc_state(state));
}

776 777 778 779 780 781 782 783 784
static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_crc_cleanup(rcrtc);

	return drm_crtc_cleanup(crtc);
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static void rcar_du_crtc_reset(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;

	if (crtc->state) {
		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
		crtc->state = NULL;
	}

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL)
		return;

	state->crc.source = VSP1_DU_CRC_NONE;
	state->crc.index = 0;

	crtc->state = &state->state;
	crtc->state->crtc = crtc;
}

805 806 807 808 809 810
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
811
	rcrtc->vblank_enable = true;
812 813 814 815 816 817 818 819 820

	return 0;
}

static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
821
	rcrtc->vblank_enable = false;
822 823
}

824 825 826
static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
					 const char *source_name,
					 enum vsp1_du_crc_source *source)
827
{
828
	unsigned int index;
829 830 831 832 833 834 835
	int ret;

	/*
	 * Parse the source name. Supported values are "plane%u" to compute the
	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
	 * CRC on the composer (VSP) output.
	 */
836

837
	if (!source_name) {
838 839
		*source = VSP1_DU_CRC_NONE;
		return 0;
840
	} else if (!strcmp(source_name, "auto")) {
841 842
		*source = VSP1_DU_CRC_OUTPUT;
		return 0;
843
	} else if (strstarts(source_name, "plane")) {
844 845 846
		unsigned int i;

		*source = VSP1_DU_CRC_PLANE;
847 848 849 850 851 852

		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
		if (ret < 0)
			return ret;

		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
853 854
			if (index == rcrtc->vsp->planes[i].plane.base.id)
				return i;
855
		}
856
	}
857

858 859 860 861 862 863 864 865 866 867 868 869
	return -EINVAL;
}

static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
					  const char *source_name,
					  size_t *values_cnt)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	enum vsp1_du_crc_source source;

	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
870 871 872
		return -EINVAL;
	}

873 874 875 876
	*values_cnt = 1;
	return 0;
}

877 878 879 880 881 882 883 884 885
const char *const *rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc,
						size_t *count)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	*count = rcrtc->sources_count;
	return rcrtc->sources;
}

886
static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
887
				       const char *source_name)
888 889 890 891 892 893 894 895 896 897 898 899 900 901
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_modeset_acquire_ctx ctx;
	struct drm_crtc_state *crtc_state;
	struct drm_atomic_state *state;
	enum vsp1_du_crc_source source;
	unsigned int index;
	int ret;

	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
	if (ret < 0)
		return ret;

	index = ret;
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955

	/* Perform an atomic commit to set the CRC source. */
	drm_modeset_acquire_init(&ctx, 0);

	state = drm_atomic_state_alloc(crtc->dev);
	if (!state) {
		ret = -ENOMEM;
		goto unlock;
	}

	state->acquire_ctx = &ctx;

retry:
	crtc_state = drm_atomic_get_crtc_state(state, crtc);
	if (!IS_ERR(crtc_state)) {
		struct rcar_du_crtc_state *rcrtc_state;

		rcrtc_state = to_rcar_crtc_state(crtc_state);
		rcrtc_state->crc.source = source;
		rcrtc_state->crc.index = index;

		ret = drm_atomic_commit(state);
	} else {
		ret = PTR_ERR(crtc_state);
	}

	if (ret == -EDEADLK) {
		drm_atomic_state_clear(state);
		drm_modeset_backoff(&ctx);
		goto retry;
	}

	drm_atomic_state_put(state);

unlock:
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

	return 0;
}

static const struct drm_crtc_funcs crtc_funcs_gen2 = {
	.reset = rcar_du_crtc_reset,
	.destroy = drm_crtc_cleanup,
	.set_config = drm_atomic_helper_set_config,
	.page_flip = drm_atomic_helper_page_flip,
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
};

static const struct drm_crtc_funcs crtc_funcs_gen3 = {
	.reset = rcar_du_crtc_reset,
956
	.destroy = rcar_du_crtc_cleanup,
957
	.set_config = drm_atomic_helper_set_config,
958
	.page_flip = drm_atomic_helper_page_flip,
959 960
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
961 962
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
963
	.set_crc_source = rcar_du_crtc_set_crc_source,
964
	.verify_crc_source = rcar_du_crtc_verify_crc_source,
965
	.get_crc_sources = rcar_du_crtc_get_crc_sources,
966 967
};

968 969 970 971 972 973 974
/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
975
	struct rcar_du_device *rcdu = rcrtc->group->dev;
976 977 978
	irqreturn_t ret = IRQ_NONE;
	u32 status;

979 980
	spin_lock(&rcrtc->vblank_lock);

981 982 983
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

984 985 986 987 988 989 990 991 992 993 994 995 996 997
	if (status & DSSR_VBK) {
		/*
		 * Wake up the vblank wait if the counter reaches 0. This must
		 * be protected by the vblank_lock to avoid races in
		 * rcar_du_crtc_disable_planes().
		 */
		if (rcrtc->vblank_count) {
			if (--rcrtc->vblank_count == 0)
				wake_up(&rcrtc->vblank_wait);
		}
	}

	spin_unlock(&rcrtc->vblank_lock);

998
	if (status & DSSR_VBK) {
999 1000
		if (rcdu->info->gen < 3) {
			drm_crtc_handle_vblank(&rcrtc->crtc);
1001
			rcar_du_crtc_finish_page_flip(rcrtc);
1002
		}
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

1014 1015
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
			unsigned int hwindex)
1016
{
1017
	static const unsigned int mmio_offsets[] = {
1018
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1019 1020
	};

1021
	struct rcar_du_device *rcdu = rgrp->dev;
1022
	struct platform_device *pdev = to_platform_device(rcdu->dev);
1023
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1024
	struct drm_crtc *crtc = &rcrtc->crtc;
1025
	struct drm_plane *primary;
1026
	unsigned int irqflags;
1027 1028
	struct clk *clk;
	char clk_name[9];
1029 1030
	char *name;
	int irq;
1031 1032
	int ret;

1033
	/* Get the CRTC clock and the optional external clock. */
1034
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1035
		sprintf(clk_name, "du.%u", hwindex);
1036 1037 1038 1039 1040 1041 1042
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
1043
		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1044 1045 1046
		return PTR_ERR(rcrtc->clock);
	}

1047
	sprintf(clk_name, "dclkin.%u", hwindex);
1048 1049 1050 1051
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
	} else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
1052
		dev_info(rcdu->dev, "can't get external clock %u\n", hwindex);
1053 1054 1055
		return -EPROBE_DEFER;
	}

1056
	init_waitqueue_head(&rcrtc->flip_wait);
1057 1058
	init_waitqueue_head(&rcrtc->vblank_wait);
	spin_lock_init(&rcrtc->vblank_lock);
1059

1060
	rcrtc->group = rgrp;
1061 1062
	rcrtc->mmio_offset = mmio_offsets[hwindex];
	rcrtc->index = hwindex;
1063

1064
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1065
		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1066
	else
1067
		primary = &rgrp->planes[swindex % 2].plane;
1068

1069 1070 1071 1072
	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
					rcdu->info->gen <= 2 ?
					&crtc_funcs_gen2 : &crtc_funcs_gen3,
					NULL);
1073 1074 1075 1076 1077
	if (ret < 0)
		return ret;

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

1078 1079 1080
	/* Start with vertical blanking interrupt reporting disabled. */
	drm_crtc_vblank_off(crtc);

1081 1082
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1083 1084
		/* The IRQ's are associated with the CRTC (sw)index. */
		irq = platform_get_irq(pdev, swindex);
1085 1086 1087 1088 1089 1090 1091
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
1092
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
J
Julia Lawall 已提交
1093
		return irq;
1094 1095 1096 1097 1098 1099
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
1100
			"failed to register IRQ for CRTC %u\n", swindex);
1101 1102 1103
		return ret;
	}

1104 1105
	rcar_du_crtc_crc_init(rcrtc);

1106 1107
	return 0;
}