rcar_du_crtc.c 19.8 KB
Newer Older
1 2 3
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
4
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/clk.h>
#include <linux/mutex.h>

#include <drm/drmP.h>
18 19
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
20 21 22 23
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
24
#include <drm/drm_plane_helper.h>
25 26 27 28 29 30

#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
31
#include "rcar_du_vsp.h"
32 33 34

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
35
	struct rcar_du_device *rcdu = rcrtc->group->dev;
36 37 38 39 40 41

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
42
	struct rcar_du_device *rcdu = rcrtc->group->dev;
43 44 45 46 47 48

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
49
	struct rcar_du_device *rcdu = rcrtc->group->dev;
50 51 52 53 54 55 56

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
57
	struct rcar_du_device *rcdu = rcrtc->group->dev;
58 59 60 61 62 63 64 65

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
				 u32 clr, u32 set)
{
66
	struct rcar_du_device *rcdu = rcrtc->group->dev;
67 68 69 70 71
	u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
}

72 73 74 75 76 77 78 79
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

80 81 82 83
	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

84
	ret = rcar_du_group_get(rcrtc->group);
85
	if (ret < 0)
86 87 88
		goto error_group;

	return 0;
89

90 91 92 93
error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
94 95 96 97 98
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
99
	rcar_du_group_put(rcrtc->group);
100 101

	clk_disable_unprepare(rcrtc->extclock);
102 103 104
	clk_disable_unprepare(rcrtc->clock);
}

105 106 107 108
/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

K
Koji Matsuoka 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
struct dpll_info {
	unsigned int output;
	unsigned int fdpll;
	unsigned int n;
	unsigned int m;
};

static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
				 struct dpll_info *dpll,
				 unsigned long input,
				 unsigned long target)
{
	unsigned long best_diff = (unsigned long)-1;
	unsigned long diff;
	unsigned int fdpll;
	unsigned int m;
	unsigned int n;

	for (n = 39; n < 120; n++) {
		for (m = 0; m < 4; m++) {
			for (fdpll = 1; fdpll < 32; fdpll++) {
				unsigned long output;

				/* 1/2 (FRQSEL=1) for duty rate 50% */
				output = input * (n + 1) / (m + 1)
				       / (fdpll + 1) / 2;

				if (output >= 400000000)
					continue;

				diff = abs((long)output - (long)target);
				if (best_diff > diff) {
					best_diff = diff;
					dpll->n = n;
					dpll->m = m;
					dpll->fdpll = fdpll;
					dpll->output = output;
				}

				if (diff == 0)
					goto done;
			}
		}
	}

done:
	dev_dbg(rcrtc->group->dev->dev,
		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
		 dpll->output, dpll->fdpll, dpll->n, dpll->m,
		 best_diff);
}

161 162
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
163
	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
K
Koji Matsuoka 已提交
164
	struct rcar_du_device *rcdu = rcrtc->group->dev;
165
	unsigned long mode_clock = mode->clock * 1000;
166 167
	unsigned long clk;
	u32 value;
168
	u32 escr;
169 170
	u32 div;

171 172 173
	/* Compute the clock divisor and select the internal or external dot
	 * clock based on the requested frequency.
	 */
174
	clk = clk_get_rate(rcrtc->clock);
175
	div = DIV_ROUND_CLOSEST(clk, mode_clock);
176
	div = clamp(div, 1U, 64U) - 1;
177 178 179
	escr = div | ESCR_DCLKSEL_CLKS;

	if (rcrtc->extclock) {
K
Koji Matsuoka 已提交
180
		struct dpll_info dpll = { 0 };
181 182 183 184 185 186
		unsigned long extclk;
		unsigned long extrate;
		unsigned long rate;
		u32 extdiv;

		extclk = clk_get_rate(rcrtc->extclock);
K
Koji Matsuoka 已提交
187 188 189 190 191
		if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
			rcar_du_dpll_divider(rcrtc, &dpll, extclk, mode_clock);
			extclk = dpll.output;
		}

192 193 194 195 196 197 198 199 200 201
		extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
		extdiv = clamp(extdiv, 1U, 64U) - 1;

		rate = clk / (div + 1);
		extrate = extclk / (extdiv + 1);

		if (abs((long)extrate - (long)mode_clock) <
		    abs((long)rate - (long)mode_clock)) {
			dev_dbg(rcrtc->group->dev->dev,
				"crtc%u: using external clock\n", rcrtc->index);
K
Koji Matsuoka 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

			if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
				u32 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
					   | DPLLCR_FDPLL(dpll.fdpll)
					   | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
					   | DPLLCR_STBY;

				if (rcrtc->index == 1)
					dpllcr |= DPLLCR_PLCS1
					       |  DPLLCR_INCS_DOTCLKIN1;
				else
					dpllcr |= DPLLCR_PLCS0
					       |  DPLLCR_INCS_DOTCLKIN0;

				rcar_du_group_write(rcrtc->group, DPLLCR,
						    dpllcr);

				escr = ESCR_DCLKSEL_DCLKIN | 1;
			} else {
				escr = ESCR_DCLKSEL_DCLKIN | extdiv;
			}
223 224
		}
	}
225

226
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
227
			    escr);
228
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
229 230

	/* Signal polarities */
231 232
	value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
	      | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
233
	      | DSMR_DIPM_DISP | DSMR_CSPM;
234 235 236 237 238 239 240 241 242 243
	rcar_du_crtc_write(rcrtc, DSMR, value);

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

244 245 246 247 248 249 250 251 252
	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
253

254
	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
255 256 257
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

258 259
void rcar_du_crtc_route_output(struct drm_crtc *crtc,
			       enum rcar_du_output output)
260 261
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
262
	struct rcar_du_device *rcdu = rcrtc->group->dev;
263 264 265 266

	/* Store the route from the CRTC output to the DU output. The DU will be
	 * configured when starting the CRTC.
	 */
267
	rcrtc->outputs |= BIT(output);
268

269 270 271 272
	/* Store RGB routing to DPAD0, the hardware will be configured when
	 * starting the CRTC.
	 */
	if (output == RCAR_DU_OUTPUT_DPAD0)
273
		rcdu->dpad0_source = rcrtc->index;
274 275
}

276 277
static unsigned int plane_zpos(struct rcar_du_plane *plane)
{
278
	return plane->plane.state->normalized_zpos;
279 280
}

281 282 283
static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane *plane)
{
284
	return to_rcar_plane_state(plane->plane.state)->format;
285 286
}

287
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
288 289
{
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
290
	struct rcar_du_device *rcdu = rcrtc->group->dev;
291
	unsigned int num_planes = 0;
292 293
	unsigned int dptsr_planes;
	unsigned int hwplanes = 0;
294 295 296 297
	unsigned int prio = 0;
	unsigned int i;
	u32 dspr = 0;

298
	for (i = 0; i < rcrtc->group->num_planes; ++i) {
299
		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
300 301
		unsigned int j;

302
		if (plane->plane.state->crtc != &rcrtc->crtc)
303 304 305 306
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
307
			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
308 309 310 311 312
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
313
		prio += plane_format(plane)->planes * 4;
314 315 316 317
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
318
		struct drm_plane_state *state = plane->plane.state;
319
		unsigned int index = to_rcar_plane_state(state)->hwindex;
320 321 322

		prio -= 4;
		dspr |= (index + 1) << prio;
323
		hwplanes |= 1 << index;
324

325
		if (plane_format(plane)->planes == 2) {
326 327 328 329
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
330
			hwplanes |= 1 << index;
331 332 333
		}
	}

334 335
	/* If VSP+DU integration is enabled the plane assignment is fixed. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
336 337 338 339 340 341 342
		if (rcdu->info->gen < 3) {
			dspr = (rcrtc->index % 2) + 1;
			hwplanes = 1 << (rcrtc->index % 2);
		} else {
			dspr = (rcrtc->index % 2) ? 3 : 1;
			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
		}
343 344
	}

345 346 347 348 349 350 351
	/* Update the planes to display timing and dot clock generator
	 * associations.
	 *
	 * Updating the DPTSR register requires restarting the CRTC group,
	 * resulting in visible flicker. To mitigate the issue only update the
	 * association if needed by enabled planes. Planes being disabled will
	 * keep their current association.
352
	 */
353 354 355 356 357 358 359 360 361 362 363 364
	mutex_lock(&rcrtc->group->lock);

	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
		     : rcrtc->group->dptsr_planes & ~hwplanes;

	if (dptsr_planes != rcrtc->group->dptsr_planes) {
		rcar_du_group_write(rcrtc->group, DPTSR,
				    (dptsr_planes << 16) | dptsr_planes);
		rcrtc->group->dptsr_planes = dptsr_planes;

		if (rcrtc->group->used_crtcs)
			rcar_du_group_restart(rcrtc->group);
365 366
	}

367 368 369 370
	/* Restart the group if plane sources have changed. */
	if (rcrtc->group->need_restart)
		rcar_du_group_restart(rcrtc->group);

371 372
	mutex_unlock(&rcrtc->group->lock);

373 374
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
375 376
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
/* -----------------------------------------------------------------------------
 * Page Flip
 */

static void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
396
	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
397
	wake_up(&rcrtc->flip_wait);
398 399
	spin_unlock_irqrestore(&dev->event_lock, flags);

400
	drm_crtc_vblank_put(&rcrtc->crtc);
401 402
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

430 431 432 433
/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

434 435 436
static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;
437
	bool interlaced;
438 439 440 441 442 443 444 445 446 447

	if (rcrtc->started)
		return;

	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
448
	rcar_du_group_set_routing(rcrtc->group);
449

450 451
	/* Start with all planes disabled. */
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
452 453 454 455 456

	/* Select master sync mode. This enables display operation in master
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
457 458 459 460
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
			     (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
			     DSYSR_TVM_MASTER);
461

462
	rcar_du_group_start_stop(rcrtc->group, true);
463

464 465 466 467
	/* Enable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_enable(rcrtc);

468 469 470
	/* Turn vertical blanking interrupt reporting back on. */
	drm_crtc_vblank_on(crtc);

471 472 473 474 475 476 477 478 479 480
	rcrtc->started = true;
}

static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

	if (!rcrtc->started)
		return;

481 482 483 484 485 486 487 488 489 490 491 492 493
	/* Disable all planes and wait for the change to take effect. This is
	 * required as the DSnPR registers are updated on vblank, and no vblank
	 * will occur once the CRTC is stopped. Disabling planes when starting
	 * the CRTC thus wouldn't be enough as it would start scanning out
	 * immediately from old frame buffers until the next vblank.
	 *
	 * This increases the CRTC stop delay, especially when multiple CRTCs
	 * are stopped in one operation as we now wait for one vblank per CRTC.
	 * Whether this can be improved needs to be researched.
	 */
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
	drm_crtc_wait_one_vblank(crtc);

494 495 496
	/* Disable vertical blanking interrupt reporting. We first need to wait
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
497 498
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
499
	drm_crtc_vblank_off(crtc);
500

501 502 503 504
	/* Disable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_disable(rcrtc);

505 506 507 508 509
	/* Select switch sync mode. This stops display operation and configures
	 * the HSYNC and VSYNC signals as inputs.
	 */
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);

510
	rcar_du_group_start_stop(rcrtc->group, false);
511 512 513 514 515 516

	rcrtc->started = false;
}

void rcar_du_crtc_suspend(struct rcar_du_crtc *rcrtc)
{
517 518 519
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_disable(rcrtc);

520
	rcar_du_crtc_stop(rcrtc);
521
	rcar_du_crtc_put(rcrtc);
522 523 524 525
}

void rcar_du_crtc_resume(struct rcar_du_crtc *rcrtc)
{
526 527
	unsigned int i;

528
	if (!rcrtc->crtc.state->active)
529 530
		return;

531
	rcar_du_crtc_get(rcrtc);
532
	rcar_du_crtc_start(rcrtc);
533 534

	/* Commit the planes state. */
535 536 537 538 539
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) {
		rcar_du_vsp_enable(rcrtc);
	} else {
		for (i = 0; i < rcrtc->group->num_planes; ++i) {
			struct rcar_du_plane *plane = &rcrtc->group->planes[i];
540

541 542
			if (plane->plane.state->crtc != &rcrtc->crtc)
				continue;
543

544 545
			rcar_du_plane_setup(plane);
		}
546 547 548
	}

	rcar_du_crtc_update_planes(rcrtc);
549 550
}

551 552 553 554
/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

555
static void rcar_du_crtc_enable(struct drm_crtc *crtc)
556 557 558
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

559 560 561 562 563 564 565
	rcar_du_crtc_get(rcrtc);
	rcar_du_crtc_start(rcrtc);
}

static void rcar_du_crtc_disable(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
566

567 568
	rcar_du_crtc_stop(rcrtc);
	rcar_du_crtc_put(rcrtc);
569

570 571 572 573 574 575 576
	spin_lock_irq(&crtc->dev->event_lock);
	if (crtc->state->event) {
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
	}
	spin_unlock_irq(&crtc->dev->event_lock);

577
	rcrtc->outputs = 0;
578 579
}

580 581
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
582 583
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
584 585
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
586

587
	if (crtc->state->event) {
588 589 590
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
591 592
		rcrtc->event = crtc->state->event;
		crtc->state->event = NULL;
593 594
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}
595 596 597

	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_begin(rcrtc);
598 599
}

600 601
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
602 603 604
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

605
	rcar_du_crtc_update_planes(rcrtc);
606 607 608

	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_flush(rcrtc);
609 610
}

611 612
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
	.disable = rcar_du_crtc_disable,
613
	.enable = rcar_du_crtc_enable,
614 615
	.atomic_begin = rcar_du_crtc_atomic_begin,
	.atomic_flush = rcar_du_crtc_atomic_flush,
616 617
};

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);

	return 0;
}

static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
}

635
static const struct drm_crtc_funcs crtc_funcs = {
636
	.reset = drm_atomic_helper_crtc_reset,
637
	.destroy = drm_crtc_cleanup,
638
	.set_config = drm_atomic_helper_set_config,
639
	.page_flip = drm_atomic_helper_page_flip,
640 641
	.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
	.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
642 643
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
644 645
};

646 647 648 649 650 651 652 653 654 655 656 657 658 659
/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
	irqreturn_t ret = IRQ_NONE;
	u32 status;

	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

	if (status & DSSR_FRM) {
660
		drm_crtc_handle_vblank(&rcrtc->crtc);
661 662 663 664 665 666 667 668 669 670 671
		rcar_du_crtc_finish_page_flip(rcrtc);
		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

672
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int index)
673
{
674
	static const unsigned int mmio_offsets[] = {
675
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
676 677
	};

678
	struct rcar_du_device *rcdu = rgrp->dev;
679
	struct platform_device *pdev = to_platform_device(rcdu->dev);
680 681
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[index];
	struct drm_crtc *crtc = &rcrtc->crtc;
682
	struct drm_plane *primary;
683
	unsigned int irqflags;
684 685
	struct clk *clk;
	char clk_name[9];
686 687
	char *name;
	int irq;
688 689
	int ret;

690
	/* Get the CRTC clock and the optional external clock. */
691 692 693 694 695 696 697 698 699 700 701 702 703
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		sprintf(clk_name, "du.%u", index);
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
		dev_err(rcdu->dev, "no clock for CRTC %u\n", index);
		return PTR_ERR(rcrtc->clock);
	}

704 705 706 707 708 709 710 711 712
	sprintf(clk_name, "dclkin.%u", index);
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
	} else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
		dev_info(rcdu->dev, "can't get external clock %u\n", index);
		return -EPROBE_DEFER;
	}

713 714
	init_waitqueue_head(&rcrtc->flip_wait);

715
	rcrtc->group = rgrp;
716
	rcrtc->mmio_offset = mmio_offsets[index];
717 718
	rcrtc->index = index;

719 720 721 722 723 724
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
		primary = &rcrtc->vsp->planes[0].plane;
	else
		primary = &rgrp->planes[index % 2].plane;

	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary,
725
					NULL, &crtc_funcs, NULL);
726 727 728 729 730
	if (ret < 0)
		return ret;

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

731 732 733
	/* Start with vertical blanking interrupt reporting disabled. */
	drm_crtc_vblank_off(crtc);

734 735 736 737 738 739 740 741 742 743 744
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		irq = platform_get_irq(pdev, index);
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", index);
J
Julia Lawall 已提交
745
		return irq;
746 747 748 749 750 751 752 753 754 755
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
			"failed to register IRQ for CRTC %u\n", index);
		return ret;
	}

756 757
	return 0;
}