rcar_du_crtc.c 32.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
5
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 7 8 9 10 11
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 */

#include <linux/clk.h>
#include <linux/mutex.h>
12
#include <linux/platform_device.h>
13
#include <linux/sys_soc.h>
14

15 16
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
17
#include <drm/drm_crtc.h>
18
#include <drm/drm_device.h>
19 20
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
21
#include <drm/drm_plane_helper.h>
22
#include <drm/drm_vblank.h>
23 24 25

#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
26
#include "rcar_du_encoder.h"
27 28 29
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
30
#include "rcar_du_vsp.h"
31
#include "rcar_lvds.h"
32 33 34

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
35
	struct rcar_du_device *rcdu = rcrtc->dev;
36 37 38 39 40 41

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
42
	struct rcar_du_device *rcdu = rcrtc->dev;
43 44 45 46 47 48

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
49
	struct rcar_du_device *rcdu = rcrtc->dev;
50 51 52 53 54 55 56

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
57
	struct rcar_du_device *rcdu = rcrtc->dev;
58 59 60 61 62

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

63
void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
64
{
65
	struct rcar_du_device *rcdu = rcrtc->dev;
66

67 68
	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
69 70
}

71 72 73 74
/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

K
Koji Matsuoka 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
struct dpll_info {
	unsigned int output;
	unsigned int fdpll;
	unsigned int n;
	unsigned int m;
};

static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
				 struct dpll_info *dpll,
				 unsigned long input,
				 unsigned long target)
{
	unsigned long best_diff = (unsigned long)-1;
	unsigned long diff;
	unsigned int fdpll;
	unsigned int m;
	unsigned int n;

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
	/*
	 *   fin                                 fvco        fout       fclkout
	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
	 *              +-> |  |                             |
	 *              |                                    |
	 *              +---------------- [1/N] <------------+
	 *
	 *	fclkout = fvco / P / FDPLL -- (1)
	 *
	 * fin/M = fvco/P/N
	 *
	 *	fvco = fin * P *  N / M -- (2)
	 *
	 * (1) + (2) indicates
	 *
	 *	fclkout = fin * N / M / FDPLL
	 *
	 * NOTES
	 *	N	: (n + 1)
	 *	M	: (m + 1)
	 *	FDPLL	: (fdpll + 1)
	 *	P	: 2
	 *	2kHz < fvco < 4096MHz
	 *
	 * To minimize the jitter,
	 * N : as large as possible
	 * M : as small as possible
	 */
	for (m = 0; m < 4; m++) {
		for (n = 119; n > 38; n--) {
			/*
			 * This code only runs on 64-bit architectures, the
			 * unsigned long type can thus be used for 64-bit
			 * computation. It will still compile without any
			 * warning on 32-bit architectures.
			 *
			 * To optimize calculations, use fout instead of fvco
			 * to verify the VCO frequency constraint.
			 */
			unsigned long fout = input * (n + 1) / (m + 1);

			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
				continue;

K
Koji Matsuoka 已提交
137 138 139
			for (fdpll = 1; fdpll < 32; fdpll++) {
				unsigned long output;

140
				output = fout / (fdpll + 1);
141
				if (output >= 400 * 1000 * 1000)
K
Koji Matsuoka 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
					continue;

				diff = abs((long)output - (long)target);
				if (best_diff > diff) {
					best_diff = diff;
					dpll->n = n;
					dpll->m = m;
					dpll->fdpll = fdpll;
					dpll->output = output;
				}

				if (diff == 0)
					goto done;
			}
		}
	}

done:
160
	dev_dbg(rcrtc->dev->dev,
K
Koji Matsuoka 已提交
161
		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
162
		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
K
Koji Matsuoka 已提交
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
struct du_clk_params {
	struct clk *clk;
	unsigned long rate;
	unsigned long diff;
	u32 escr;
};

static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
				 u32 escr, struct du_clk_params *params)
{
	unsigned long rate;
	unsigned long diff;
	u32 div;

	/*
	 * If the target rate has already been achieved perfectly we can't do
	 * better.
	 */
	if (params->diff == 0)
		return;

	/*
	 * Compute the input clock rate and internal divisor values to obtain
	 * the clock rate closest to the target frequency.
	 */
	rate = clk_round_rate(clk, target);
	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
	diff = abs(rate / (div + 1) - target);

	/*
	 * Store the parameters if the resulting frequency is better than any
	 * previously calculated value.
	 */
	if (diff < params->diff) {
		params->clk = clk;
		params->rate = rate;
		params->diff = diff;
		params->escr = escr | div;
	}
}

206 207 208 209 210
static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

211 212
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
213
	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
214
	struct rcar_du_device *rcdu = rcrtc->dev;
215
	unsigned long mode_clock = mode->clock * 1000;
216
	u32 dsmr;
217
	u32 escr;
218

219
	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
220
		unsigned long target = mode_clock;
K
Koji Matsuoka 已提交
221
		struct dpll_info dpll = { 0 };
222
		unsigned long extclk;
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
		u32 dpllcr;
		u32 div = 0;

		/*
		 * DU channels that have a display PLL can't use the internal
		 * system clock, and have no internal clock divider.
		 */

		/*
		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
		 * We can work around them by configuring the DPLL to twice the
		 * desired frequency, coupled with a /2 post-divider. Restrict
		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
		 * no post-divider when a display PLL is present (as shown by
		 * the workaround breaking HDMI output on M3-W during testing).
		 */
		if (soc_device_match(rcar_du_r8a7795_es1)) {
			target *= 2;
			div = 1;
K
Koji Matsuoka 已提交
242 243
		}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
		extclk = clk_get_rate(rcrtc->extclock);
		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);

		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
		       | DPLLCR_FDPLL(dpll.fdpll)
		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
		       | DPLLCR_STBY;

		if (rcrtc->index == 1)
			dpllcr |= DPLLCR_PLCS1
			       |  DPLLCR_INCS_DOTCLKIN1;
		else
			dpllcr |= DPLLCR_PLCS0
			       |  DPLLCR_INCS_DOTCLKIN0;

		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);

		escr = ESCR_DCLKSEL_DCLKIN | div;
262 263 264 265 266 267 268 269
	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
		/*
		 * Use the LVDS PLL output as the dot clock when outputting to
		 * the LVDS encoder on an SoC that supports this clock routing
		 * option. We use the clock directly in that case, without any
		 * additional divider.
		 */
		escr = ESCR_DCLKSEL_DCLKIN;
270
	} else {
271
		struct du_clk_params params = { .diff = (unsigned long)-1 };
272

273 274 275 276 277
		rcar_du_escr_divider(rcrtc->clock, mode_clock,
				     ESCR_DCLKSEL_CLKS, &params);
		if (rcrtc->extclock)
			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
					     ESCR_DCLKSEL_DCLKIN, &params);
278

279
		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
280 281
			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
			params.rate);
282

283 284
		clk_set_rate(params.clk, params.rate);
		escr = params.escr;
285
	}
286

287
	dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
288

289 290
	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
291 292

	/* Signal polarities */
293 294 295 296 297
	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
	     | DSMR_DIPM_DISP | DSMR_CSPM;
	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
298 299 300 301 302 303 304 305 306

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

307 308 309 310 311 312 313 314 315
	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
316

317
	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
318 319 320
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

321 322
static unsigned int plane_zpos(struct rcar_du_plane *plane)
{
323
	return plane->plane.state->normalized_zpos;
324 325
}

326 327 328
static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane *plane)
{
329
	return to_rcar_plane_state(plane->plane.state)->format;
330 331
}

332
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
333 334
{
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
335
	struct rcar_du_device *rcdu = rcrtc->dev;
336
	unsigned int num_planes = 0;
337 338
	unsigned int dptsr_planes;
	unsigned int hwplanes = 0;
339 340 341 342
	unsigned int prio = 0;
	unsigned int i;
	u32 dspr = 0;

343
	for (i = 0; i < rcrtc->group->num_planes; ++i) {
344
		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
345 346
		unsigned int j;

347 348
		if (plane->plane.state->crtc != &rcrtc->crtc ||
		    !plane->plane.state->visible)
349 350 351 352
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
353
			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
354 355 356 357 358
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
359
		prio += plane_format(plane)->planes * 4;
360 361 362 363
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
364
		struct drm_plane_state *state = plane->plane.state;
365
		unsigned int index = to_rcar_plane_state(state)->hwindex;
366 367 368

		prio -= 4;
		dspr |= (index + 1) << prio;
369
		hwplanes |= 1 << index;
370

371
		if (plane_format(plane)->planes == 2) {
372 373 374 375
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
376
			hwplanes |= 1 << index;
377 378 379
		}
	}

380 381
	/* If VSP+DU integration is enabled the plane assignment is fixed. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
382 383 384 385 386 387 388
		if (rcdu->info->gen < 3) {
			dspr = (rcrtc->index % 2) + 1;
			hwplanes = 1 << (rcrtc->index % 2);
		} else {
			dspr = (rcrtc->index % 2) ? 3 : 1;
			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
		}
389 390
	}

391 392
	/*
	 * Update the planes to display timing and dot clock generator
393 394 395 396 397 398
	 * associations.
	 *
	 * Updating the DPTSR register requires restarting the CRTC group,
	 * resulting in visible flicker. To mitigate the issue only update the
	 * association if needed by enabled planes. Planes being disabled will
	 * keep their current association.
399
	 */
400 401 402 403 404 405 406 407 408 409 410 411
	mutex_lock(&rcrtc->group->lock);

	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
		     : rcrtc->group->dptsr_planes & ~hwplanes;

	if (dptsr_planes != rcrtc->group->dptsr_planes) {
		rcar_du_group_write(rcrtc->group, DPTSR,
				    (dptsr_planes << 16) | dptsr_planes);
		rcrtc->group->dptsr_planes = dptsr_planes;

		if (rcrtc->group->used_crtcs)
			rcar_du_group_restart(rcrtc->group);
412 413
	}

414 415 416 417
	/* Restart the group if plane sources have changed. */
	if (rcrtc->group->need_restart)
		rcar_du_group_restart(rcrtc->group);

418 419
	mutex_unlock(&rcrtc->group->lock);

420 421
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
422 423
}

424 425 426 427
/* -----------------------------------------------------------------------------
 * Page Flip
 */

428
void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
429 430 431 432 433 434 435 436 437 438 439 440 441 442
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
443
	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
444
	wake_up(&rcrtc->flip_wait);
445 446
	spin_unlock_irqrestore(&dev->event_lock, flags);

447
	drm_crtc_vblank_put(&rcrtc->crtc);
448 449
}

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
465
	struct rcar_du_device *rcdu = rcrtc->dev;
466 467 468 469 470 471 472 473 474 475 476

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

477 478 479 480
/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

481
static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
482 483 484 485 486 487 488
{
	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
489
	rcar_du_group_set_routing(rcrtc->group);
490

491 492
	/* Start with all planes disabled. */
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
493

494
	/* Enable the VSP compositor. */
495
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
496 497 498 499 500 501
		rcar_du_vsp_enable(rcrtc);

	/* Turn vertical blanking interrupt reporting on. */
	drm_crtc_vblank_on(&rcrtc->crtc);
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	/*
	 * Guard against double-get, as the function is called from both the
	 * .atomic_enable() and .atomic_begin() handlers.
	 */
	if (rcrtc->initialized)
		return 0;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

	ret = rcar_du_group_get(rcrtc->group);
	if (ret < 0)
		goto error_group;

	rcar_du_crtc_setup(rcrtc);
	rcrtc->initialized = true;

	return 0;

error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
	rcar_du_group_put(rcrtc->group);

	clk_disable_unprepare(rcrtc->extclock);
	clk_disable_unprepare(rcrtc->clock);

	rcrtc->initialized = false;
}

547 548 549 550
static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	bool interlaced;

551 552
	/*
	 * Select master sync mode. This enables display operation in master
553 554 555
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
556
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
557 558 559
	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
				   DSYSR_TVM_MASTER);
560

561
	rcar_du_group_start_stop(rcrtc->group, true);
562 563
}

564 565
static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
{
566
	struct rcar_du_device *rcdu = rcrtc->dev;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	struct drm_crtc *crtc = &rcrtc->crtc;
	u32 status;

	/* Make sure vblank interrupts are enabled. */
	drm_crtc_vblank_get(crtc);

	/*
	 * Disable planes and calculate how many vertical blanking interrupts we
	 * have to wait for. If a vertical blanking interrupt has been triggered
	 * but not processed yet, we don't know whether it occurred before or
	 * after the planes got disabled. We thus have to wait for two vblank
	 * interrupts in that case.
	 */
	spin_lock_irq(&rcrtc->vblank_lock);
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
	spin_unlock_irq(&rcrtc->vblank_lock);

	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
				msecs_to_jiffies(100)))
		dev_warn(rcdu->dev, "vertical blanking timeout\n");

	drm_crtc_vblank_put(crtc);
}

593 594 595 596
static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

597 598
	/*
	 * Disable all planes and wait for the change to take effect. This is
599 600 601 602
	 * required as the plane enable registers are updated on vblank, and no
	 * vblank will occur once the CRTC is stopped. Disabling planes when
	 * starting the CRTC thus wouldn't be enough as it would start scanning
	 * out immediately from old frame buffers until the next vblank.
603 604 605 606 607
	 *
	 * This increases the CRTC stop delay, especially when multiple CRTCs
	 * are stopped in one operation as we now wait for one vblank per CRTC.
	 * Whether this can be improved needs to be researched.
	 */
608
	rcar_du_crtc_disable_planes(rcrtc);
609

610 611
	/*
	 * Disable vertical blanking interrupt reporting. We first need to wait
612 613
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
614 615
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
616
	drm_crtc_vblank_off(crtc);
617

618
	/* Disable the VSP compositor. */
619
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
620 621
		rcar_du_vsp_disable(rcrtc);

622 623
	/*
	 * Select switch sync mode. This stops display operation and configures
624
	 * the HSYNC and VSYNC signals as inputs.
625 626 627
	 *
	 * TODO: Find another way to stop the display for DUs that don't support
	 * TVM sync.
628
	 */
629
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
630 631
		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
					   DSYSR_TVM_SWITCH);
632

633
	rcar_du_group_start_stop(rcrtc->group, false);
634 635
}

636 637 638 639
/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

640 641 642 643 644 645 646 647 648 649
static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
				     struct drm_crtc_state *state)
{
	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
	struct drm_encoder *encoder;

	/* Store the routes from the CRTC output to the DU outputs. */
	rstate->outputs = 0;

	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
650
		struct rcar_du_encoder *renc;
651

652 653 654 655 656
		/* Skip the writeback encoder. */
		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
			continue;

		renc = to_rcar_encoder(encoder);
657 658 659 660 661 662
		rstate->outputs |= BIT(renc->output);
	}

	return 0;
}

663 664
static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
				       struct drm_crtc_state *old_state)
665 666
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
667
	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
668
	struct rcar_du_device *rcdu = rcrtc->dev;
669

670
	rcar_du_crtc_get(rcrtc);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687

	/*
	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
	 * the DU channel. We need to enable its clock output explicitly if
	 * the LVDS output is disabled.
	 */
	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
		struct rcar_du_encoder *encoder =
			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
		const struct drm_display_mode *mode =
			&crtc->state->adjusted_mode;

		rcar_lvds_clk_enable(encoder->base.bridge,
				     mode->clock * 1000);
	}

688 689 690
	rcar_du_crtc_start(rcrtc);
}

691 692
static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
					struct drm_crtc_state *old_state)
693 694
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
695
	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
696
	struct rcar_du_device *rcdu = rcrtc->dev;
697

698 699
	rcar_du_crtc_stop(rcrtc);
	rcar_du_crtc_put(rcrtc);
700

701 702 703 704 705 706 707 708 709 710 711 712
	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
		struct rcar_du_encoder *encoder =
			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];

		/*
		 * Disable the LVDS clock output, see
		 * rcar_du_crtc_atomic_enable().
		 */
		rcar_lvds_clk_disable(encoder->base.bridge);
	}

713 714 715 716 717 718
	spin_lock_irq(&crtc->dev->event_lock);
	if (crtc->state->event) {
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
	}
	spin_unlock_irq(&crtc->dev->event_lock);
719 720
}

721 722
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
723 724
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
725

726 727 728 729
	WARN_ON(!crtc->state->enable);

	/*
	 * If a mode set is in progress we can be called with the CRTC disabled.
730 731 732 733 734 735 736
	 * We thus need to first get and setup the CRTC in order to configure
	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
	 * kept awake until the .atomic_enable() call that will follow. The get
	 * operation in .atomic_enable() will in that case be a no-op, and the
	 * CRTC will be put later in .atomic_disable().
	 *
	 * If a mode set is not in progress the CRTC is enabled, and the
737
	 * following get call will be a no-op. There is thus no need to balance
738
	 * it in .atomic_flush() either.
739
	 */
740
	rcar_du_crtc_get(rcrtc);
741

742
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
743
		rcar_du_vsp_atomic_begin(rcrtc);
744 745
}

746 747
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
748 749
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
750 751
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
752

753
	rcar_du_crtc_update_planes(rcrtc);
754

755 756 757 758 759 760 761 762 763
	if (crtc->state->event) {
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = crtc->state->event;
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

764
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
765
		rcar_du_vsp_atomic_flush(rcrtc);
766 767
}

768 769 770
static enum drm_mode_status
rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
			const struct drm_display_mode *mode)
771 772
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
773
	struct rcar_du_device *rcdu = rcrtc->dev;
774
	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
775
	unsigned int vbp;
776 777 778 779

	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
		return MODE_NO_INTERLACE;

780 781 782 783 784 785 786 787 788 789 790
	/*
	 * The hardware requires a minimum combined horizontal sync and back
	 * porch of 20 pixels and a minimum vertical back porch of 3 lines.
	 */
	if (mode->htotal - mode->hsync_start < 20)
		return MODE_HBLANK_NARROW;

	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
	if (vbp < 3)
		return MODE_VBLANK_NARROW;

791 792 793
	return MODE_OK;
}

794
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
795
	.atomic_check = rcar_du_crtc_atomic_check,
796 797
	.atomic_begin = rcar_du_crtc_atomic_begin,
	.atomic_flush = rcar_du_crtc_atomic_flush,
798
	.atomic_enable = rcar_du_crtc_atomic_enable,
799
	.atomic_disable = rcar_du_crtc_atomic_disable,
800
	.mode_valid = rcar_du_crtc_mode_valid,
801 802
};

803 804
static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
{
805
	struct rcar_du_device *rcdu = rcrtc->dev;
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	const char **sources;
	unsigned int count;
	int i = -1;

	/* CRC available only on Gen3 HW. */
	if (rcdu->info->gen < 3)
		return;

	/* Reserve 1 for "auto" source. */
	count = rcrtc->vsp->num_planes + 1;

	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
	if (!sources)
		return;

	sources[0] = kstrdup("auto", GFP_KERNEL);
	if (!sources[0])
		goto error;

	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
		char name[16];

		sprintf(name, "plane%u", plane->base.id);
		sources[i + 1] = kstrdup(name, GFP_KERNEL);
		if (!sources[i + 1])
			goto error;
	}

	rcrtc->sources = sources;
	rcrtc->sources_count = count;
	return;

error:
	while (i >= 0) {
		kfree(sources[i]);
		i--;
	}
	kfree(sources);
}

static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
{
	unsigned int i;

	if (!rcrtc->sources)
		return;

	for (i = 0; i < rcrtc->sources_count; i++)
		kfree(rcrtc->sources[i]);
	kfree(rcrtc->sources);

	rcrtc->sources = NULL;
	rcrtc->sources_count = 0;
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;
	struct rcar_du_crtc_state *copy;

	if (WARN_ON(!crtc->state))
		return NULL;

	state = to_rcar_crtc_state(crtc->state);
	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
	if (copy == NULL)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);

	return &copy->state;
}

static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
					      struct drm_crtc_state *state)
{
	__drm_atomic_helper_crtc_destroy_state(state);
	kfree(to_rcar_crtc_state(state));
}

888 889 890 891 892 893 894 895 896
static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_crc_cleanup(rcrtc);

	return drm_crtc_cleanup(crtc);
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
static void rcar_du_crtc_reset(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;

	if (crtc->state) {
		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
		crtc->state = NULL;
	}

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL)
		return;

	state->crc.source = VSP1_DU_CRC_NONE;
	state->crc.index = 0;

	crtc->state = &state->state;
	crtc->state->crtc = crtc;
}

917 918 919 920 921 922
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
923
	rcrtc->vblank_enable = true;
924 925 926 927 928 929 930 931 932

	return 0;
}

static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
933
	rcrtc->vblank_enable = false;
934 935
}

936 937 938
static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
					 const char *source_name,
					 enum vsp1_du_crc_source *source)
939
{
940
	unsigned int index;
941 942 943 944 945 946 947
	int ret;

	/*
	 * Parse the source name. Supported values are "plane%u" to compute the
	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
	 * CRC on the composer (VSP) output.
	 */
948

949
	if (!source_name) {
950 951
		*source = VSP1_DU_CRC_NONE;
		return 0;
952
	} else if (!strcmp(source_name, "auto")) {
953 954
		*source = VSP1_DU_CRC_OUTPUT;
		return 0;
955
	} else if (strstarts(source_name, "plane")) {
956 957 958
		unsigned int i;

		*source = VSP1_DU_CRC_PLANE;
959 960 961 962 963 964

		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
		if (ret < 0)
			return ret;

		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
965 966
			if (index == rcrtc->vsp->planes[i].plane.base.id)
				return i;
967
		}
968
	}
969

970 971 972 973 974 975 976 977 978 979 980 981
	return -EINVAL;
}

static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
					  const char *source_name,
					  size_t *values_cnt)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	enum vsp1_du_crc_source source;

	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
982 983 984
		return -EINVAL;
	}

985 986 987 988
	*values_cnt = 1;
	return 0;
}

989 990
static const char *const *
rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
991 992 993 994 995 996 997
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	*count = rcrtc->sources_count;
	return rcrtc->sources;
}

998
static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
999
				       const char *source_name)
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_modeset_acquire_ctx ctx;
	struct drm_crtc_state *crtc_state;
	struct drm_atomic_state *state;
	enum vsp1_du_crc_source source;
	unsigned int index;
	int ret;

	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
	if (ret < 0)
		return ret;

	index = ret;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

	/* Perform an atomic commit to set the CRC source. */
	drm_modeset_acquire_init(&ctx, 0);

	state = drm_atomic_state_alloc(crtc->dev);
	if (!state) {
		ret = -ENOMEM;
		goto unlock;
	}

	state->acquire_ctx = &ctx;

retry:
	crtc_state = drm_atomic_get_crtc_state(state, crtc);
	if (!IS_ERR(crtc_state)) {
		struct rcar_du_crtc_state *rcrtc_state;

		rcrtc_state = to_rcar_crtc_state(crtc_state);
		rcrtc_state->crc.source = source;
		rcrtc_state->crc.index = index;

		ret = drm_atomic_commit(state);
	} else {
		ret = PTR_ERR(crtc_state);
	}

	if (ret == -EDEADLK) {
		drm_atomic_state_clear(state);
		drm_modeset_backoff(&ctx);
		goto retry;
	}

	drm_atomic_state_put(state);

unlock:
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

1052
	return ret;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
}

static const struct drm_crtc_funcs crtc_funcs_gen2 = {
	.reset = rcar_du_crtc_reset,
	.destroy = drm_crtc_cleanup,
	.set_config = drm_atomic_helper_set_config,
	.page_flip = drm_atomic_helper_page_flip,
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
};

static const struct drm_crtc_funcs crtc_funcs_gen3 = {
	.reset = rcar_du_crtc_reset,
1068
	.destroy = rcar_du_crtc_cleanup,
1069
	.set_config = drm_atomic_helper_set_config,
1070
	.page_flip = drm_atomic_helper_page_flip,
1071 1072
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1073 1074
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
1075
	.set_crc_source = rcar_du_crtc_set_crc_source,
1076
	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1077
	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1078 1079
};

1080 1081 1082 1083 1084 1085 1086
/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
1087
	struct rcar_du_device *rcdu = rcrtc->dev;
1088 1089 1090
	irqreturn_t ret = IRQ_NONE;
	u32 status;

1091 1092
	spin_lock(&rcrtc->vblank_lock);

1093 1094 1095
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	if (status & DSSR_VBK) {
		/*
		 * Wake up the vblank wait if the counter reaches 0. This must
		 * be protected by the vblank_lock to avoid races in
		 * rcar_du_crtc_disable_planes().
		 */
		if (rcrtc->vblank_count) {
			if (--rcrtc->vblank_count == 0)
				wake_up(&rcrtc->vblank_wait);
		}
	}

	spin_unlock(&rcrtc->vblank_lock);

1110
	if (status & DSSR_VBK) {
1111 1112
		if (rcdu->info->gen < 3) {
			drm_crtc_handle_vblank(&rcrtc->crtc);
1113
			rcar_du_crtc_finish_page_flip(rcrtc);
1114
		}
1115

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

1126 1127
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
			unsigned int hwindex)
1128
{
1129
	static const unsigned int mmio_offsets[] = {
1130
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1131 1132
	};

1133
	struct rcar_du_device *rcdu = rgrp->dev;
1134
	struct platform_device *pdev = to_platform_device(rcdu->dev);
1135
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1136
	struct drm_crtc *crtc = &rcrtc->crtc;
1137
	struct drm_plane *primary;
1138
	unsigned int irqflags;
1139 1140
	struct clk *clk;
	char clk_name[9];
1141 1142
	char *name;
	int irq;
1143 1144
	int ret;

1145
	/* Get the CRTC clock and the optional external clock. */
1146
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1147
		sprintf(clk_name, "du.%u", hwindex);
1148 1149 1150 1151 1152 1153 1154
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
1155
		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1156 1157 1158
		return PTR_ERR(rcrtc->clock);
	}

1159
	sprintf(clk_name, "dclkin.%u", hwindex);
1160 1161 1162
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
1163
	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1164
		return -EPROBE_DEFER;
1165 1166 1167 1168 1169 1170 1171 1172
	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
		/*
		 * DU channels that have a display PLL can't use the internal
		 * system clock and thus require an external clock.
		 */
		ret = PTR_ERR(clk);
		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
		return ret;
1173 1174
	}

1175
	init_waitqueue_head(&rcrtc->flip_wait);
1176 1177
	init_waitqueue_head(&rcrtc->vblank_wait);
	spin_lock_init(&rcrtc->vblank_lock);
1178

1179
	rcrtc->dev = rcdu;
1180
	rcrtc->group = rgrp;
1181 1182
	rcrtc->mmio_offset = mmio_offsets[hwindex];
	rcrtc->index = hwindex;
1183
	rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1184

1185
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1186
		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1187
	else
1188
		primary = &rgrp->planes[swindex % 2].plane;
1189

1190 1191 1192 1193
	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
					rcdu->info->gen <= 2 ?
					&crtc_funcs_gen2 : &crtc_funcs_gen3,
					NULL);
1194 1195 1196 1197 1198
	if (ret < 0)
		return ret;

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

1199 1200 1201
	/* Start with vertical blanking interrupt reporting disabled. */
	drm_crtc_vblank_off(crtc);

1202 1203
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1204 1205
		/* The IRQ's are associated with the CRTC (sw)index. */
		irq = platform_get_irq(pdev, swindex);
1206 1207 1208 1209 1210 1211 1212
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
1213
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
J
Julia Lawall 已提交
1214
		return irq;
1215 1216 1217 1218 1219 1220
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
1221
			"failed to register IRQ for CRTC %u\n", swindex);
1222 1223 1224
		return ret;
	}

1225 1226
	rcar_du_crtc_crc_init(rcrtc);

1227 1228
	return 0;
}