rcar_du_crtc.c 30.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
5
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 7 8 9 10 11
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 */

#include <linux/clk.h>
#include <linux/mutex.h>
12
#include <linux/sys_soc.h>
13 14

#include <drm/drmP.h>
15 16
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
17 18 19 20
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
21
#include <drm/drm_plane_helper.h>
22 23 24 25 26 27

#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
28
#include "rcar_du_vsp.h"
29 30 31

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
32
	struct rcar_du_device *rcdu = rcrtc->group->dev;
33 34 35 36 37 38

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
39
	struct rcar_du_device *rcdu = rcrtc->group->dev;
40 41 42 43 44 45

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
46
	struct rcar_du_device *rcdu = rcrtc->group->dev;
47 48 49 50 51 52 53

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
54
	struct rcar_du_device *rcdu = rcrtc->group->dev;
55 56 57 58 59

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

60
void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
61
{
62
	struct rcar_du_device *rcdu = rcrtc->group->dev;
63

64 65
	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
66 67
}

68 69 70 71
/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

K
Koji Matsuoka 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
struct dpll_info {
	unsigned int output;
	unsigned int fdpll;
	unsigned int n;
	unsigned int m;
};

static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
				 struct dpll_info *dpll,
				 unsigned long input,
				 unsigned long target)
{
	unsigned long best_diff = (unsigned long)-1;
	unsigned long diff;
	unsigned int fdpll;
	unsigned int m;
	unsigned int n;

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
	/*
	 *   fin                                 fvco        fout       fclkout
	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
	 *              +-> |  |                             |
	 *              |                                    |
	 *              +---------------- [1/N] <------------+
	 *
	 *	fclkout = fvco / P / FDPLL -- (1)
	 *
	 * fin/M = fvco/P/N
	 *
	 *	fvco = fin * P *  N / M -- (2)
	 *
	 * (1) + (2) indicates
	 *
	 *	fclkout = fin * N / M / FDPLL
	 *
	 * NOTES
	 *	N	: (n + 1)
	 *	M	: (m + 1)
	 *	FDPLL	: (fdpll + 1)
	 *	P	: 2
	 *	2kHz < fvco < 4096MHz
	 *
	 * To minimize the jitter,
	 * N : as large as possible
	 * M : as small as possible
	 */
	for (m = 0; m < 4; m++) {
		for (n = 119; n > 38; n--) {
			/*
			 * This code only runs on 64-bit architectures, the
			 * unsigned long type can thus be used for 64-bit
			 * computation. It will still compile without any
			 * warning on 32-bit architectures.
			 *
			 * To optimize calculations, use fout instead of fvco
			 * to verify the VCO frequency constraint.
			 */
			unsigned long fout = input * (n + 1) / (m + 1);

			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
				continue;

K
Koji Matsuoka 已提交
134 135 136
			for (fdpll = 1; fdpll < 32; fdpll++) {
				unsigned long output;

137
				output = fout / (fdpll + 1);
138
				if (output >= 400 * 1000 * 1000)
K
Koji Matsuoka 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
					continue;

				diff = abs((long)output - (long)target);
				if (best_diff > diff) {
					best_diff = diff;
					dpll->n = n;
					dpll->m = m;
					dpll->fdpll = fdpll;
					dpll->output = output;
				}

				if (diff == 0)
					goto done;
			}
		}
	}

done:
	dev_dbg(rcrtc->group->dev->dev,
		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
		 dpll->output, dpll->fdpll, dpll->n, dpll->m,
		 best_diff);
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
struct du_clk_params {
	struct clk *clk;
	unsigned long rate;
	unsigned long diff;
	u32 escr;
};

static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
				 u32 escr, struct du_clk_params *params)
{
	unsigned long rate;
	unsigned long diff;
	u32 div;

	/*
	 * If the target rate has already been achieved perfectly we can't do
	 * better.
	 */
	if (params->diff == 0)
		return;

	/*
	 * Compute the input clock rate and internal divisor values to obtain
	 * the clock rate closest to the target frequency.
	 */
	rate = clk_round_rate(clk, target);
	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
	diff = abs(rate / (div + 1) - target);

	/*
	 * Store the parameters if the resulting frequency is better than any
	 * previously calculated value.
	 */
	if (diff < params->diff) {
		params->clk = clk;
		params->rate = rate;
		params->diff = diff;
		params->escr = escr | div;
	}
}

204 205 206 207 208
static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

209 210
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
211
	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
K
Koji Matsuoka 已提交
212
	struct rcar_du_device *rcdu = rcrtc->group->dev;
213
	unsigned long mode_clock = mode->clock * 1000;
214
	u32 dsmr;
215
	u32 escr;
216

217
	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
218
		unsigned long target = mode_clock;
K
Koji Matsuoka 已提交
219
		struct dpll_info dpll = { 0 };
220
		unsigned long extclk;
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
		u32 dpllcr;
		u32 div = 0;

		/*
		 * DU channels that have a display PLL can't use the internal
		 * system clock, and have no internal clock divider.
		 */

		/*
		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
		 * We can work around them by configuring the DPLL to twice the
		 * desired frequency, coupled with a /2 post-divider. Restrict
		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
		 * no post-divider when a display PLL is present (as shown by
		 * the workaround breaking HDMI output on M3-W during testing).
		 */
		if (soc_device_match(rcar_du_r8a7795_es1)) {
			target *= 2;
			div = 1;
K
Koji Matsuoka 已提交
240 241
		}

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
		extclk = clk_get_rate(rcrtc->extclock);
		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);

		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
		       | DPLLCR_FDPLL(dpll.fdpll)
		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
		       | DPLLCR_STBY;

		if (rcrtc->index == 1)
			dpllcr |= DPLLCR_PLCS1
			       |  DPLLCR_INCS_DOTCLKIN1;
		else
			dpllcr |= DPLLCR_PLCS0
			       |  DPLLCR_INCS_DOTCLKIN0;

		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);

		escr = ESCR_DCLKSEL_DCLKIN | div;
260 261 262 263 264 265 266 267
	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
		/*
		 * Use the LVDS PLL output as the dot clock when outputting to
		 * the LVDS encoder on an SoC that supports this clock routing
		 * option. We use the clock directly in that case, without any
		 * additional divider.
		 */
		escr = ESCR_DCLKSEL_DCLKIN;
268
	} else {
269
		struct du_clk_params params = { .diff = (unsigned long)-1 };
270

271 272 273 274 275
		rcar_du_escr_divider(rcrtc->clock, mode_clock,
				     ESCR_DCLKSEL_CLKS, &params);
		if (rcrtc->extclock)
			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
					     ESCR_DCLKSEL_DCLKIN, &params);
276

277 278 279
		dev_dbg(rcrtc->group->dev->dev,	"mode clock %lu %s rate %lu\n",
			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
			params.rate);
280

281 282
		clk_set_rate(params.clk, params.rate);
		escr = params.escr;
283
	}
284

285 286
	dev_dbg(rcrtc->group->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);

287 288
	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
289 290

	/* Signal polarities */
291 292 293 294 295
	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
	     | DSMR_DIPM_DISP | DSMR_CSPM;
	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
296 297 298 299 300 301 302 303 304

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

305 306 307 308 309 310 311 312 313
	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
314

315
	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
316 317 318
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

319 320
void rcar_du_crtc_route_output(struct drm_crtc *crtc,
			       enum rcar_du_output output)
321 322
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
323
	struct rcar_du_device *rcdu = rcrtc->group->dev;
324

325 326
	/*
	 * Store the route from the CRTC output to the DU output. The DU will be
327 328
	 * configured when starting the CRTC.
	 */
329
	rcrtc->outputs |= BIT(output);
330

331 332
	/*
	 * Store RGB routing to DPAD0, the hardware will be configured when
333 334 335
	 * starting the CRTC.
	 */
	if (output == RCAR_DU_OUTPUT_DPAD0)
336
		rcdu->dpad0_source = rcrtc->index;
337 338
}

339 340
static unsigned int plane_zpos(struct rcar_du_plane *plane)
{
341
	return plane->plane.state->normalized_zpos;
342 343
}

344 345 346
static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane *plane)
{
347
	return to_rcar_plane_state(plane->plane.state)->format;
348 349
}

350
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
351 352
{
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
353
	struct rcar_du_device *rcdu = rcrtc->group->dev;
354
	unsigned int num_planes = 0;
355 356
	unsigned int dptsr_planes;
	unsigned int hwplanes = 0;
357 358 359 360
	unsigned int prio = 0;
	unsigned int i;
	u32 dspr = 0;

361
	for (i = 0; i < rcrtc->group->num_planes; ++i) {
362
		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
363 364
		unsigned int j;

365 366
		if (plane->plane.state->crtc != &rcrtc->crtc ||
		    !plane->plane.state->visible)
367 368 369 370
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
371
			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
372 373 374 375 376
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
377
		prio += plane_format(plane)->planes * 4;
378 379 380 381
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
382
		struct drm_plane_state *state = plane->plane.state;
383
		unsigned int index = to_rcar_plane_state(state)->hwindex;
384 385 386

		prio -= 4;
		dspr |= (index + 1) << prio;
387
		hwplanes |= 1 << index;
388

389
		if (plane_format(plane)->planes == 2) {
390 391 392 393
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
394
			hwplanes |= 1 << index;
395 396 397
		}
	}

398 399
	/* If VSP+DU integration is enabled the plane assignment is fixed. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
400 401 402 403 404 405 406
		if (rcdu->info->gen < 3) {
			dspr = (rcrtc->index % 2) + 1;
			hwplanes = 1 << (rcrtc->index % 2);
		} else {
			dspr = (rcrtc->index % 2) ? 3 : 1;
			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
		}
407 408
	}

409 410
	/*
	 * Update the planes to display timing and dot clock generator
411 412 413 414 415 416
	 * associations.
	 *
	 * Updating the DPTSR register requires restarting the CRTC group,
	 * resulting in visible flicker. To mitigate the issue only update the
	 * association if needed by enabled planes. Planes being disabled will
	 * keep their current association.
417
	 */
418 419 420 421 422 423 424 425 426 427 428 429
	mutex_lock(&rcrtc->group->lock);

	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
		     : rcrtc->group->dptsr_planes & ~hwplanes;

	if (dptsr_planes != rcrtc->group->dptsr_planes) {
		rcar_du_group_write(rcrtc->group, DPTSR,
				    (dptsr_planes << 16) | dptsr_planes);
		rcrtc->group->dptsr_planes = dptsr_planes;

		if (rcrtc->group->used_crtcs)
			rcar_du_group_restart(rcrtc->group);
430 431
	}

432 433 434 435
	/* Restart the group if plane sources have changed. */
	if (rcrtc->group->need_restart)
		rcar_du_group_restart(rcrtc->group);

436 437
	mutex_unlock(&rcrtc->group->lock);

438 439
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
440 441
}

442 443 444 445
/* -----------------------------------------------------------------------------
 * Page Flip
 */

446
void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
447 448 449 450 451 452 453 454 455 456 457 458 459 460
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
461
	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
462
	wake_up(&rcrtc->flip_wait);
463 464
	spin_unlock_irqrestore(&dev->event_lock, flags);

465
	drm_crtc_vblank_put(&rcrtc->crtc);
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

495 496 497 498
/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

499
static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
500 501 502 503 504 505 506
{
	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
507
	rcar_du_group_set_routing(rcrtc->group);
508

509 510
	/* Start with all planes disabled. */
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
511

512 513 514 515 516 517 518 519
	/* Enable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_enable(rcrtc);

	/* Turn vertical blanking interrupt reporting on. */
	drm_crtc_vblank_on(&rcrtc->crtc);
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	/*
	 * Guard against double-get, as the function is called from both the
	 * .atomic_enable() and .atomic_begin() handlers.
	 */
	if (rcrtc->initialized)
		return 0;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

	ret = rcar_du_group_get(rcrtc->group);
	if (ret < 0)
		goto error_group;

	rcar_du_crtc_setup(rcrtc);
	rcrtc->initialized = true;

	return 0;

error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
	rcar_du_group_put(rcrtc->group);

	clk_disable_unprepare(rcrtc->extclock);
	clk_disable_unprepare(rcrtc->clock);

	rcrtc->initialized = false;
}

565 566 567 568
static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	bool interlaced;

569 570
	/*
	 * Select master sync mode. This enables display operation in master
571 572 573
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
574
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
575 576 577
	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
				   DSYSR_TVM_MASTER);
578

579
	rcar_du_group_start_stop(rcrtc->group, true);
580 581
}

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	struct drm_crtc *crtc = &rcrtc->crtc;
	u32 status;

	/* Make sure vblank interrupts are enabled. */
	drm_crtc_vblank_get(crtc);

	/*
	 * Disable planes and calculate how many vertical blanking interrupts we
	 * have to wait for. If a vertical blanking interrupt has been triggered
	 * but not processed yet, we don't know whether it occurred before or
	 * after the planes got disabled. We thus have to wait for two vblank
	 * interrupts in that case.
	 */
	spin_lock_irq(&rcrtc->vblank_lock);
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
	spin_unlock_irq(&rcrtc->vblank_lock);

	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
				msecs_to_jiffies(100)))
		dev_warn(rcdu->dev, "vertical blanking timeout\n");

	drm_crtc_vblank_put(crtc);
}

611 612 613 614
static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

615 616
	/*
	 * Disable all planes and wait for the change to take effect. This is
617 618 619 620
	 * required as the plane enable registers are updated on vblank, and no
	 * vblank will occur once the CRTC is stopped. Disabling planes when
	 * starting the CRTC thus wouldn't be enough as it would start scanning
	 * out immediately from old frame buffers until the next vblank.
621 622 623 624 625
	 *
	 * This increases the CRTC stop delay, especially when multiple CRTCs
	 * are stopped in one operation as we now wait for one vblank per CRTC.
	 * Whether this can be improved needs to be researched.
	 */
626
	rcar_du_crtc_disable_planes(rcrtc);
627

628 629
	/*
	 * Disable vertical blanking interrupt reporting. We first need to wait
630 631
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
632 633
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
634
	drm_crtc_vblank_off(crtc);
635

636 637 638 639
	/* Disable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_disable(rcrtc);

640 641
	/*
	 * Select switch sync mode. This stops display operation and configures
642
	 * the HSYNC and VSYNC signals as inputs.
643 644 645
	 *
	 * TODO: Find another way to stop the display for DUs that don't support
	 * TVM sync.
646
	 */
647 648 649
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_TVM_SYNC))
		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
					   DSYSR_TVM_SWITCH);
650

651
	rcar_du_group_start_stop(rcrtc->group, false);
652 653
}

654 655 656 657
/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

658 659
static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
				       struct drm_crtc_state *old_state)
660 661 662
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

663
	rcar_du_crtc_get(rcrtc);
664 665 666
	rcar_du_crtc_start(rcrtc);
}

667 668
static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
					struct drm_crtc_state *old_state)
669 670
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
671

672 673
	rcar_du_crtc_stop(rcrtc);
	rcar_du_crtc_put(rcrtc);
674

675 676 677 678 679 680 681
	spin_lock_irq(&crtc->dev->event_lock);
	if (crtc->state->event) {
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
	}
	spin_unlock_irq(&crtc->dev->event_lock);

682
	rcrtc->outputs = 0;
683 684
}

685 686
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
687 688
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
689

690 691 692 693
	WARN_ON(!crtc->state->enable);

	/*
	 * If a mode set is in progress we can be called with the CRTC disabled.
694 695 696 697 698 699 700
	 * We thus need to first get and setup the CRTC in order to configure
	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
	 * kept awake until the .atomic_enable() call that will follow. The get
	 * operation in .atomic_enable() will in that case be a no-op, and the
	 * CRTC will be put later in .atomic_disable().
	 *
	 * If a mode set is not in progress the CRTC is enabled, and the
701
	 * following get call will be a no-op. There is thus no need to balance
702
	 * it in .atomic_flush() either.
703
	 */
704
	rcar_du_crtc_get(rcrtc);
705

706 707
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_begin(rcrtc);
708 709
}

710 711
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
712 713
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
714 715
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
716

717
	rcar_du_crtc_update_planes(rcrtc);
718

719 720 721 722 723 724 725 726 727
	if (crtc->state->event) {
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = crtc->state->event;
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

728 729
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_flush(rcrtc);
730 731
}

732 733 734 735 736 737 738 739 740 741 742 743 744
enum drm_mode_status rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
				   const struct drm_display_mode *mode)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;

	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
		return MODE_NO_INTERLACE;

	return MODE_OK;
}

745
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
746 747
	.atomic_begin = rcar_du_crtc_atomic_begin,
	.atomic_flush = rcar_du_crtc_atomic_flush,
748
	.atomic_enable = rcar_du_crtc_atomic_enable,
749
	.atomic_disable = rcar_du_crtc_atomic_disable,
750
	.mode_valid = rcar_du_crtc_mode_valid,
751 752
};

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	const char **sources;
	unsigned int count;
	int i = -1;

	/* CRC available only on Gen3 HW. */
	if (rcdu->info->gen < 3)
		return;

	/* Reserve 1 for "auto" source. */
	count = rcrtc->vsp->num_planes + 1;

	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
	if (!sources)
		return;

	sources[0] = kstrdup("auto", GFP_KERNEL);
	if (!sources[0])
		goto error;

	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
		char name[16];

		sprintf(name, "plane%u", plane->base.id);
		sources[i + 1] = kstrdup(name, GFP_KERNEL);
		if (!sources[i + 1])
			goto error;
	}

	rcrtc->sources = sources;
	rcrtc->sources_count = count;
	return;

error:
	while (i >= 0) {
		kfree(sources[i]);
		i--;
	}
	kfree(sources);
}

static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
{
	unsigned int i;

	if (!rcrtc->sources)
		return;

	for (i = 0; i < rcrtc->sources_count; i++)
		kfree(rcrtc->sources[i]);
	kfree(rcrtc->sources);

	rcrtc->sources = NULL;
	rcrtc->sources_count = 0;
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;
	struct rcar_du_crtc_state *copy;

	if (WARN_ON(!crtc->state))
		return NULL;

	state = to_rcar_crtc_state(crtc->state);
	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
	if (copy == NULL)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);

	return &copy->state;
}

static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
					      struct drm_crtc_state *state)
{
	__drm_atomic_helper_crtc_destroy_state(state);
	kfree(to_rcar_crtc_state(state));
}

838 839 840 841 842 843 844 845 846
static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_crc_cleanup(rcrtc);

	return drm_crtc_cleanup(crtc);
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
static void rcar_du_crtc_reset(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;

	if (crtc->state) {
		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
		crtc->state = NULL;
	}

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL)
		return;

	state->crc.source = VSP1_DU_CRC_NONE;
	state->crc.index = 0;

	crtc->state = &state->state;
	crtc->state->crtc = crtc;
}

867 868 869 870 871 872
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
873
	rcrtc->vblank_enable = true;
874 875 876 877 878 879 880 881 882

	return 0;
}

static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
883
	rcrtc->vblank_enable = false;
884 885
}

886 887 888
static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
					 const char *source_name,
					 enum vsp1_du_crc_source *source)
889
{
890
	unsigned int index;
891 892 893 894 895 896 897
	int ret;

	/*
	 * Parse the source name. Supported values are "plane%u" to compute the
	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
	 * CRC on the composer (VSP) output.
	 */
898

899
	if (!source_name) {
900 901
		*source = VSP1_DU_CRC_NONE;
		return 0;
902
	} else if (!strcmp(source_name, "auto")) {
903 904
		*source = VSP1_DU_CRC_OUTPUT;
		return 0;
905
	} else if (strstarts(source_name, "plane")) {
906 907 908
		unsigned int i;

		*source = VSP1_DU_CRC_PLANE;
909 910 911 912 913 914

		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
		if (ret < 0)
			return ret;

		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
915 916
			if (index == rcrtc->vsp->planes[i].plane.base.id)
				return i;
917
		}
918
	}
919

920 921 922 923 924 925 926 927 928 929 930 931
	return -EINVAL;
}

static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
					  const char *source_name,
					  size_t *values_cnt)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	enum vsp1_du_crc_source source;

	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
932 933 934
		return -EINVAL;
	}

935 936 937 938
	*values_cnt = 1;
	return 0;
}

939 940 941 942 943 944 945 946 947
const char *const *rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc,
						size_t *count)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	*count = rcrtc->sources_count;
	return rcrtc->sources;
}

948
static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
949
				       const char *source_name)
950 951 952 953 954 955 956 957 958 959 960 961 962 963
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_modeset_acquire_ctx ctx;
	struct drm_crtc_state *crtc_state;
	struct drm_atomic_state *state;
	enum vsp1_du_crc_source source;
	unsigned int index;
	int ret;

	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
	if (ret < 0)
		return ret;

	index = ret;
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001

	/* Perform an atomic commit to set the CRC source. */
	drm_modeset_acquire_init(&ctx, 0);

	state = drm_atomic_state_alloc(crtc->dev);
	if (!state) {
		ret = -ENOMEM;
		goto unlock;
	}

	state->acquire_ctx = &ctx;

retry:
	crtc_state = drm_atomic_get_crtc_state(state, crtc);
	if (!IS_ERR(crtc_state)) {
		struct rcar_du_crtc_state *rcrtc_state;

		rcrtc_state = to_rcar_crtc_state(crtc_state);
		rcrtc_state->crc.source = source;
		rcrtc_state->crc.index = index;

		ret = drm_atomic_commit(state);
	} else {
		ret = PTR_ERR(crtc_state);
	}

	if (ret == -EDEADLK) {
		drm_atomic_state_clear(state);
		drm_modeset_backoff(&ctx);
		goto retry;
	}

	drm_atomic_state_put(state);

unlock:
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

1002
	return ret;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
}

static const struct drm_crtc_funcs crtc_funcs_gen2 = {
	.reset = rcar_du_crtc_reset,
	.destroy = drm_crtc_cleanup,
	.set_config = drm_atomic_helper_set_config,
	.page_flip = drm_atomic_helper_page_flip,
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
};

static const struct drm_crtc_funcs crtc_funcs_gen3 = {
	.reset = rcar_du_crtc_reset,
1018
	.destroy = rcar_du_crtc_cleanup,
1019
	.set_config = drm_atomic_helper_set_config,
1020
	.page_flip = drm_atomic_helper_page_flip,
1021 1022
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1023 1024
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
1025
	.set_crc_source = rcar_du_crtc_set_crc_source,
1026
	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1027
	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1028 1029
};

1030 1031 1032 1033 1034 1035 1036
/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
1037
	struct rcar_du_device *rcdu = rcrtc->group->dev;
1038 1039 1040
	irqreturn_t ret = IRQ_NONE;
	u32 status;

1041 1042
	spin_lock(&rcrtc->vblank_lock);

1043 1044 1045
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (status & DSSR_VBK) {
		/*
		 * Wake up the vblank wait if the counter reaches 0. This must
		 * be protected by the vblank_lock to avoid races in
		 * rcar_du_crtc_disable_planes().
		 */
		if (rcrtc->vblank_count) {
			if (--rcrtc->vblank_count == 0)
				wake_up(&rcrtc->vblank_wait);
		}
	}

	spin_unlock(&rcrtc->vblank_lock);

1060
	if (status & DSSR_VBK) {
1061 1062
		if (rcdu->info->gen < 3) {
			drm_crtc_handle_vblank(&rcrtc->crtc);
1063
			rcar_du_crtc_finish_page_flip(rcrtc);
1064
		}
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

1076 1077
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
			unsigned int hwindex)
1078
{
1079
	static const unsigned int mmio_offsets[] = {
1080
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1081 1082
	};

1083
	struct rcar_du_device *rcdu = rgrp->dev;
1084
	struct platform_device *pdev = to_platform_device(rcdu->dev);
1085
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1086
	struct drm_crtc *crtc = &rcrtc->crtc;
1087
	struct drm_plane *primary;
1088
	unsigned int irqflags;
1089 1090
	struct clk *clk;
	char clk_name[9];
1091 1092
	char *name;
	int irq;
1093 1094
	int ret;

1095
	/* Get the CRTC clock and the optional external clock. */
1096
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1097
		sprintf(clk_name, "du.%u", hwindex);
1098 1099 1100 1101 1102 1103 1104
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
1105
		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1106 1107 1108
		return PTR_ERR(rcrtc->clock);
	}

1109
	sprintf(clk_name, "dclkin.%u", hwindex);
1110 1111 1112
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
1113
	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1114
		return -EPROBE_DEFER;
1115 1116 1117 1118 1119 1120 1121 1122
	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
		/*
		 * DU channels that have a display PLL can't use the internal
		 * system clock and thus require an external clock.
		 */
		ret = PTR_ERR(clk);
		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
		return ret;
1123 1124
	}

1125
	init_waitqueue_head(&rcrtc->flip_wait);
1126 1127
	init_waitqueue_head(&rcrtc->vblank_wait);
	spin_lock_init(&rcrtc->vblank_lock);
1128

1129
	rcrtc->group = rgrp;
1130 1131
	rcrtc->mmio_offset = mmio_offsets[hwindex];
	rcrtc->index = hwindex;
1132
	rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1133

1134
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1135
		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1136
	else
1137
		primary = &rgrp->planes[swindex % 2].plane;
1138

1139 1140 1141 1142
	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
					rcdu->info->gen <= 2 ?
					&crtc_funcs_gen2 : &crtc_funcs_gen3,
					NULL);
1143 1144 1145 1146 1147
	if (ret < 0)
		return ret;

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

1148 1149 1150
	/* Start with vertical blanking interrupt reporting disabled. */
	drm_crtc_vblank_off(crtc);

1151 1152
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1153 1154
		/* The IRQ's are associated with the CRTC (sw)index. */
		irq = platform_get_irq(pdev, swindex);
1155 1156 1157 1158 1159 1160 1161
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
1162
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
J
Julia Lawall 已提交
1163
		return irq;
1164 1165 1166 1167 1168 1169
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
1170
			"failed to register IRQ for CRTC %u\n", swindex);
1171 1172 1173
		return ret;
	}

1174 1175
	rcar_du_crtc_crc_init(rcrtc);

1176 1177
	return 0;
}