rcar_du_crtc.c 29.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0+
2 3 4
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
5
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 7 8 9 10 11
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 */

#include <linux/clk.h>
#include <linux/mutex.h>
12
#include <linux/sys_soc.h>
13 14

#include <drm/drmP.h>
15 16
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
17 18 19 20
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
21
#include <drm/drm_plane_helper.h>
22 23 24 25 26 27

#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
28
#include "rcar_du_vsp.h"
29 30 31

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
32
	struct rcar_du_device *rcdu = rcrtc->group->dev;
33 34 35 36 37 38

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
39
	struct rcar_du_device *rcdu = rcrtc->group->dev;
40 41 42 43 44 45

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
46
	struct rcar_du_device *rcdu = rcrtc->group->dev;
47 48 49 50 51 52 53

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
54
	struct rcar_du_device *rcdu = rcrtc->group->dev;
55 56 57 58 59 60 61 62

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
				 u32 clr, u32 set)
{
63
	struct rcar_du_device *rcdu = rcrtc->group->dev;
64 65 66 67 68
	u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
}

69 70 71 72 73 74 75 76
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

77 78 79 80
	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

81
	ret = rcar_du_group_get(rcrtc->group);
82
	if (ret < 0)
83 84 85
		goto error_group;

	return 0;
86

87 88 89 90
error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
91 92 93 94 95
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
96
	rcar_du_group_put(rcrtc->group);
97 98

	clk_disable_unprepare(rcrtc->extclock);
99 100 101
	clk_disable_unprepare(rcrtc->clock);
}

102 103 104 105
/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

K
Koji Matsuoka 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
struct dpll_info {
	unsigned int output;
	unsigned int fdpll;
	unsigned int n;
	unsigned int m;
};

static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
				 struct dpll_info *dpll,
				 unsigned long input,
				 unsigned long target)
{
	unsigned long best_diff = (unsigned long)-1;
	unsigned long diff;
	unsigned int fdpll;
	unsigned int m;
	unsigned int n;

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	/*
	 *   fin                                 fvco        fout       fclkout
	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
	 *              +-> |  |                             |
	 *              |                                    |
	 *              +---------------- [1/N] <------------+
	 *
	 *	fclkout = fvco / P / FDPLL -- (1)
	 *
	 * fin/M = fvco/P/N
	 *
	 *	fvco = fin * P *  N / M -- (2)
	 *
	 * (1) + (2) indicates
	 *
	 *	fclkout = fin * N / M / FDPLL
	 *
	 * NOTES
	 *	N	: (n + 1)
	 *	M	: (m + 1)
	 *	FDPLL	: (fdpll + 1)
	 *	P	: 2
	 *	2kHz < fvco < 4096MHz
	 *
	 * To minimize the jitter,
	 * N : as large as possible
	 * M : as small as possible
	 */
	for (m = 0; m < 4; m++) {
		for (n = 119; n > 38; n--) {
			/*
			 * This code only runs on 64-bit architectures, the
			 * unsigned long type can thus be used for 64-bit
			 * computation. It will still compile without any
			 * warning on 32-bit architectures.
			 *
			 * To optimize calculations, use fout instead of fvco
			 * to verify the VCO frequency constraint.
			 */
			unsigned long fout = input * (n + 1) / (m + 1);

			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
				continue;

K
Koji Matsuoka 已提交
168 169 170
			for (fdpll = 1; fdpll < 32; fdpll++) {
				unsigned long output;

171
				output = fout / (fdpll + 1);
172
				if (output >= 400 * 1000 * 1000)
K
Koji Matsuoka 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
					continue;

				diff = abs((long)output - (long)target);
				if (best_diff > diff) {
					best_diff = diff;
					dpll->n = n;
					dpll->m = m;
					dpll->fdpll = fdpll;
					dpll->output = output;
				}

				if (diff == 0)
					goto done;
			}
		}
	}

done:
	dev_dbg(rcrtc->group->dev->dev,
		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
		 dpll->output, dpll->fdpll, dpll->n, dpll->m,
		 best_diff);
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
struct du_clk_params {
	struct clk *clk;
	unsigned long rate;
	unsigned long diff;
	u32 escr;
};

static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
				 u32 escr, struct du_clk_params *params)
{
	unsigned long rate;
	unsigned long diff;
	u32 div;

	/*
	 * If the target rate has already been achieved perfectly we can't do
	 * better.
	 */
	if (params->diff == 0)
		return;

	/*
	 * Compute the input clock rate and internal divisor values to obtain
	 * the clock rate closest to the target frequency.
	 */
	rate = clk_round_rate(clk, target);
	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
	diff = abs(rate / (div + 1) - target);

	/*
	 * Store the parameters if the resulting frequency is better than any
	 * previously calculated value.
	 */
	if (diff < params->diff) {
		params->clk = clk;
		params->rate = rate;
		params->diff = diff;
		params->escr = escr | div;
	}
}

238 239 240 241 242
static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

243 244
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
245
	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
K
Koji Matsuoka 已提交
246
	struct rcar_du_device *rcdu = rcrtc->group->dev;
247
	unsigned long mode_clock = mode->clock * 1000;
248
	u32 dsmr;
249
	u32 escr;
250

251
	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
252
		unsigned long target = mode_clock;
K
Koji Matsuoka 已提交
253
		struct dpll_info dpll = { 0 };
254
		unsigned long extclk;
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
		u32 dpllcr;
		u32 div = 0;

		/*
		 * DU channels that have a display PLL can't use the internal
		 * system clock, and have no internal clock divider.
		 */

		if (WARN_ON(!rcrtc->extclock))
			return;

		/*
		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
		 * We can work around them by configuring the DPLL to twice the
		 * desired frequency, coupled with a /2 post-divider. Restrict
		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
		 * no post-divider when a display PLL is present (as shown by
		 * the workaround breaking HDMI output on M3-W during testing).
		 */
		if (soc_device_match(rcar_du_r8a7795_es1)) {
			target *= 2;
			div = 1;
K
Koji Matsuoka 已提交
277 278
		}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
		extclk = clk_get_rate(rcrtc->extclock);
		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);

		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
		       | DPLLCR_FDPLL(dpll.fdpll)
		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
		       | DPLLCR_STBY;

		if (rcrtc->index == 1)
			dpllcr |= DPLLCR_PLCS1
			       |  DPLLCR_INCS_DOTCLKIN1;
		else
			dpllcr |= DPLLCR_PLCS0
			       |  DPLLCR_INCS_DOTCLKIN0;

		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);

		escr = ESCR_DCLKSEL_DCLKIN | div;
	} else {
298
		struct du_clk_params params = { .diff = (unsigned long)-1 };
299

300 301 302 303 304
		rcar_du_escr_divider(rcrtc->clock, mode_clock,
				     ESCR_DCLKSEL_CLKS, &params);
		if (rcrtc->extclock)
			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
					     ESCR_DCLKSEL_DCLKIN, &params);
305

306 307 308
		dev_dbg(rcrtc->group->dev->dev,	"mode clock %lu %s rate %lu\n",
			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
			params.rate);
309

310 311
		clk_set_rate(params.clk, params.rate);
		escr = params.escr;
312
	}
313

314 315
	dev_dbg(rcrtc->group->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);

316 317
	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
318 319

	/* Signal polarities */
320 321 322 323 324
	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
	     | DSMR_DIPM_DISP | DSMR_CSPM;
	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
325 326 327 328 329 330 331 332 333

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

334 335 336 337 338 339 340 341 342
	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
343

344
	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
345 346 347
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

348 349
void rcar_du_crtc_route_output(struct drm_crtc *crtc,
			       enum rcar_du_output output)
350 351
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
352
	struct rcar_du_device *rcdu = rcrtc->group->dev;
353

354 355
	/*
	 * Store the route from the CRTC output to the DU output. The DU will be
356 357
	 * configured when starting the CRTC.
	 */
358
	rcrtc->outputs |= BIT(output);
359

360 361
	/*
	 * Store RGB routing to DPAD0, the hardware will be configured when
362 363 364
	 * starting the CRTC.
	 */
	if (output == RCAR_DU_OUTPUT_DPAD0)
365
		rcdu->dpad0_source = rcrtc->index;
366 367
}

368 369
static unsigned int plane_zpos(struct rcar_du_plane *plane)
{
370
	return plane->plane.state->normalized_zpos;
371 372
}

373 374 375
static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane *plane)
{
376
	return to_rcar_plane_state(plane->plane.state)->format;
377 378
}

379
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
380 381
{
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
382
	struct rcar_du_device *rcdu = rcrtc->group->dev;
383
	unsigned int num_planes = 0;
384 385
	unsigned int dptsr_planes;
	unsigned int hwplanes = 0;
386 387 388 389
	unsigned int prio = 0;
	unsigned int i;
	u32 dspr = 0;

390
	for (i = 0; i < rcrtc->group->num_planes; ++i) {
391
		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
392 393
		unsigned int j;

394 395
		if (plane->plane.state->crtc != &rcrtc->crtc ||
		    !plane->plane.state->visible)
396 397 398 399
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
400
			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
401 402 403 404 405
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
406
		prio += plane_format(plane)->planes * 4;
407 408 409 410
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
411
		struct drm_plane_state *state = plane->plane.state;
412
		unsigned int index = to_rcar_plane_state(state)->hwindex;
413 414 415

		prio -= 4;
		dspr |= (index + 1) << prio;
416
		hwplanes |= 1 << index;
417

418
		if (plane_format(plane)->planes == 2) {
419 420 421 422
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
423
			hwplanes |= 1 << index;
424 425 426
		}
	}

427 428
	/* If VSP+DU integration is enabled the plane assignment is fixed. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
429 430 431 432 433 434 435
		if (rcdu->info->gen < 3) {
			dspr = (rcrtc->index % 2) + 1;
			hwplanes = 1 << (rcrtc->index % 2);
		} else {
			dspr = (rcrtc->index % 2) ? 3 : 1;
			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
		}
436 437
	}

438 439
	/*
	 * Update the planes to display timing and dot clock generator
440 441 442 443 444 445
	 * associations.
	 *
	 * Updating the DPTSR register requires restarting the CRTC group,
	 * resulting in visible flicker. To mitigate the issue only update the
	 * association if needed by enabled planes. Planes being disabled will
	 * keep their current association.
446
	 */
447 448 449 450 451 452 453 454 455 456 457 458
	mutex_lock(&rcrtc->group->lock);

	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
		     : rcrtc->group->dptsr_planes & ~hwplanes;

	if (dptsr_planes != rcrtc->group->dptsr_planes) {
		rcar_du_group_write(rcrtc->group, DPTSR,
				    (dptsr_planes << 16) | dptsr_planes);
		rcrtc->group->dptsr_planes = dptsr_planes;

		if (rcrtc->group->used_crtcs)
			rcar_du_group_restart(rcrtc->group);
459 460
	}

461 462 463 464
	/* Restart the group if plane sources have changed. */
	if (rcrtc->group->need_restart)
		rcar_du_group_restart(rcrtc->group);

465 466
	mutex_unlock(&rcrtc->group->lock);

467 468
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
469 470
}

471 472 473 474
/* -----------------------------------------------------------------------------
 * Page Flip
 */

475
void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
476 477 478 479 480 481 482 483 484 485 486 487 488 489
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
490
	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
491
	wake_up(&rcrtc->flip_wait);
492 493
	spin_unlock_irqrestore(&dev->event_lock, flags);

494
	drm_crtc_vblank_put(&rcrtc->crtc);
495 496
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

524 525 526 527
/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

528
static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
529 530 531 532 533 534 535
{
	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
536
	rcar_du_group_set_routing(rcrtc->group);
537

538 539
	/* Start with all planes disabled. */
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
540

541 542 543 544 545 546 547 548 549 550 551 552
	/* Enable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_enable(rcrtc);

	/* Turn vertical blanking interrupt reporting on. */
	drm_crtc_vblank_on(&rcrtc->crtc);
}

static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	bool interlaced;

553 554
	/*
	 * Select master sync mode. This enables display operation in master
555 556 557
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
558 559 560 561
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
			     (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
			     DSYSR_TVM_MASTER);
562

563
	rcar_du_group_start_stop(rcrtc->group, true);
564 565
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	struct drm_crtc *crtc = &rcrtc->crtc;
	u32 status;

	/* Make sure vblank interrupts are enabled. */
	drm_crtc_vblank_get(crtc);

	/*
	 * Disable planes and calculate how many vertical blanking interrupts we
	 * have to wait for. If a vertical blanking interrupt has been triggered
	 * but not processed yet, we don't know whether it occurred before or
	 * after the planes got disabled. We thus have to wait for two vblank
	 * interrupts in that case.
	 */
	spin_lock_irq(&rcrtc->vblank_lock);
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
	spin_unlock_irq(&rcrtc->vblank_lock);

	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
				msecs_to_jiffies(100)))
		dev_warn(rcdu->dev, "vertical blanking timeout\n");

	drm_crtc_vblank_put(crtc);
}

595 596 597 598
static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

599 600
	/*
	 * Disable all planes and wait for the change to take effect. This is
601 602 603 604
	 * required as the plane enable registers are updated on vblank, and no
	 * vblank will occur once the CRTC is stopped. Disabling planes when
	 * starting the CRTC thus wouldn't be enough as it would start scanning
	 * out immediately from old frame buffers until the next vblank.
605 606 607 608 609
	 *
	 * This increases the CRTC stop delay, especially when multiple CRTCs
	 * are stopped in one operation as we now wait for one vblank per CRTC.
	 * Whether this can be improved needs to be researched.
	 */
610
	rcar_du_crtc_disable_planes(rcrtc);
611

612 613
	/*
	 * Disable vertical blanking interrupt reporting. We first need to wait
614 615
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
616 617
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
618
	drm_crtc_vblank_off(crtc);
619

620 621 622 623
	/* Disable the VSP compositor. */
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_disable(rcrtc);

624 625
	/*
	 * Select switch sync mode. This stops display operation and configures
626 627 628 629
	 * the HSYNC and VSYNC signals as inputs.
	 */
	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);

630
	rcar_du_group_start_stop(rcrtc->group, false);
631 632
}

633 634 635 636
/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

637 638
static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
				       struct drm_crtc_state *old_state)
639 640 641
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

642 643 644 645 646 647 648 649 650 651
	/*
	 * If the CRTC has already been setup by the .atomic_begin() handler we
	 * can skip the setup stage.
	 */
	if (!rcrtc->initialized) {
		rcar_du_crtc_get(rcrtc);
		rcar_du_crtc_setup(rcrtc);
		rcrtc->initialized = true;
	}

652 653 654
	rcar_du_crtc_start(rcrtc);
}

655 656
static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
					struct drm_crtc_state *old_state)
657 658
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
659

660 661
	rcar_du_crtc_stop(rcrtc);
	rcar_du_crtc_put(rcrtc);
662

663 664 665 666 667 668 669
	spin_lock_irq(&crtc->dev->event_lock);
	if (crtc->state->event) {
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
	}
	spin_unlock_irq(&crtc->dev->event_lock);

670
	rcrtc->initialized = false;
671
	rcrtc->outputs = 0;
672 673
}

674 675
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
676 677
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
678

679 680 681 682 683 684 685 686 687 688 689 690 691
	WARN_ON(!crtc->state->enable);

	/*
	 * If a mode set is in progress we can be called with the CRTC disabled.
	 * We then need to first setup the CRTC in order to configure planes.
	 * The .atomic_enable() handler will notice and skip the CRTC setup.
	 */
	if (!rcrtc->initialized) {
		rcar_du_crtc_get(rcrtc);
		rcar_du_crtc_setup(rcrtc);
		rcrtc->initialized = true;
	}

692 693
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_begin(rcrtc);
694 695
}

696 697
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
698 699
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
700 701
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
702

703
	rcar_du_crtc_update_planes(rcrtc);
704

705 706 707 708 709 710 711 712 713
	if (crtc->state->event) {
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = crtc->state->event;
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

714 715
	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_flush(rcrtc);
716 717
}

718 719 720 721 722 723 724 725 726 727 728 729 730
enum drm_mode_status rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
				   const struct drm_display_mode *mode)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;

	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
		return MODE_NO_INTERLACE;

	return MODE_OK;
}

731
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
732 733
	.atomic_begin = rcar_du_crtc_atomic_begin,
	.atomic_flush = rcar_du_crtc_atomic_flush,
734
	.atomic_enable = rcar_du_crtc_atomic_enable,
735
	.atomic_disable = rcar_du_crtc_atomic_disable,
736
	.mode_valid = rcar_du_crtc_mode_valid,
737 738
};

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->group->dev;
	const char **sources;
	unsigned int count;
	int i = -1;

	/* CRC available only on Gen3 HW. */
	if (rcdu->info->gen < 3)
		return;

	/* Reserve 1 for "auto" source. */
	count = rcrtc->vsp->num_planes + 1;

	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
	if (!sources)
		return;

	sources[0] = kstrdup("auto", GFP_KERNEL);
	if (!sources[0])
		goto error;

	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
		char name[16];

		sprintf(name, "plane%u", plane->base.id);
		sources[i + 1] = kstrdup(name, GFP_KERNEL);
		if (!sources[i + 1])
			goto error;
	}

	rcrtc->sources = sources;
	rcrtc->sources_count = count;
	return;

error:
	while (i >= 0) {
		kfree(sources[i]);
		i--;
	}
	kfree(sources);
}

static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
{
	unsigned int i;

	if (!rcrtc->sources)
		return;

	for (i = 0; i < rcrtc->sources_count; i++)
		kfree(rcrtc->sources[i]);
	kfree(rcrtc->sources);

	rcrtc->sources = NULL;
	rcrtc->sources_count = 0;
}

798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;
	struct rcar_du_crtc_state *copy;

	if (WARN_ON(!crtc->state))
		return NULL;

	state = to_rcar_crtc_state(crtc->state);
	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
	if (copy == NULL)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);

	return &copy->state;
}

static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
					      struct drm_crtc_state *state)
{
	__drm_atomic_helper_crtc_destroy_state(state);
	kfree(to_rcar_crtc_state(state));
}

824 825 826 827 828 829 830 831 832
static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_crc_cleanup(rcrtc);

	return drm_crtc_cleanup(crtc);
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
static void rcar_du_crtc_reset(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;

	if (crtc->state) {
		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
		crtc->state = NULL;
	}

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL)
		return;

	state->crc.source = VSP1_DU_CRC_NONE;
	state->crc.index = 0;

	crtc->state = &state->state;
	crtc->state->crtc = crtc;
}

853 854 855 856 857 858
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
859
	rcrtc->vblank_enable = true;
860 861 862 863 864 865 866 867 868

	return 0;
}

static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
869
	rcrtc->vblank_enable = false;
870 871
}

872 873 874
static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
					 const char *source_name,
					 enum vsp1_du_crc_source *source)
875
{
876
	unsigned int index;
877 878 879 880 881 882 883
	int ret;

	/*
	 * Parse the source name. Supported values are "plane%u" to compute the
	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
	 * CRC on the composer (VSP) output.
	 */
884

885
	if (!source_name) {
886 887
		*source = VSP1_DU_CRC_NONE;
		return 0;
888
	} else if (!strcmp(source_name, "auto")) {
889 890
		*source = VSP1_DU_CRC_OUTPUT;
		return 0;
891
	} else if (strstarts(source_name, "plane")) {
892 893 894
		unsigned int i;

		*source = VSP1_DU_CRC_PLANE;
895 896 897 898 899 900

		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
		if (ret < 0)
			return ret;

		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
901 902
			if (index == rcrtc->vsp->planes[i].plane.base.id)
				return i;
903
		}
904
	}
905

906 907 908 909 910 911 912 913 914 915 916 917
	return -EINVAL;
}

static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
					  const char *source_name,
					  size_t *values_cnt)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	enum vsp1_du_crc_source source;

	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
918 919 920
		return -EINVAL;
	}

921 922 923 924
	*values_cnt = 1;
	return 0;
}

925 926 927 928 929 930 931 932 933
const char *const *rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc,
						size_t *count)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	*count = rcrtc->sources_count;
	return rcrtc->sources;
}

934
static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
935
				       const char *source_name)
936 937 938 939 940 941 942 943 944 945 946 947 948 949
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_modeset_acquire_ctx ctx;
	struct drm_crtc_state *crtc_state;
	struct drm_atomic_state *state;
	enum vsp1_du_crc_source source;
	unsigned int index;
	int ret;

	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
	if (ret < 0)
		return ret;

	index = ret;
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

	/* Perform an atomic commit to set the CRC source. */
	drm_modeset_acquire_init(&ctx, 0);

	state = drm_atomic_state_alloc(crtc->dev);
	if (!state) {
		ret = -ENOMEM;
		goto unlock;
	}

	state->acquire_ctx = &ctx;

retry:
	crtc_state = drm_atomic_get_crtc_state(state, crtc);
	if (!IS_ERR(crtc_state)) {
		struct rcar_du_crtc_state *rcrtc_state;

		rcrtc_state = to_rcar_crtc_state(crtc_state);
		rcrtc_state->crc.source = source;
		rcrtc_state->crc.index = index;

		ret = drm_atomic_commit(state);
	} else {
		ret = PTR_ERR(crtc_state);
	}

	if (ret == -EDEADLK) {
		drm_atomic_state_clear(state);
		drm_modeset_backoff(&ctx);
		goto retry;
	}

	drm_atomic_state_put(state);

unlock:
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

	return 0;
}

static const struct drm_crtc_funcs crtc_funcs_gen2 = {
	.reset = rcar_du_crtc_reset,
	.destroy = drm_crtc_cleanup,
	.set_config = drm_atomic_helper_set_config,
	.page_flip = drm_atomic_helper_page_flip,
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
};

static const struct drm_crtc_funcs crtc_funcs_gen3 = {
	.reset = rcar_du_crtc_reset,
1004
	.destroy = rcar_du_crtc_cleanup,
1005
	.set_config = drm_atomic_helper_set_config,
1006
	.page_flip = drm_atomic_helper_page_flip,
1007 1008
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1009 1010
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
1011
	.set_crc_source = rcar_du_crtc_set_crc_source,
1012
	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1013
	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1014 1015
};

1016 1017 1018 1019 1020 1021 1022
/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
1023
	struct rcar_du_device *rcdu = rcrtc->group->dev;
1024 1025 1026
	irqreturn_t ret = IRQ_NONE;
	u32 status;

1027 1028
	spin_lock(&rcrtc->vblank_lock);

1029 1030 1031
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (status & DSSR_VBK) {
		/*
		 * Wake up the vblank wait if the counter reaches 0. This must
		 * be protected by the vblank_lock to avoid races in
		 * rcar_du_crtc_disable_planes().
		 */
		if (rcrtc->vblank_count) {
			if (--rcrtc->vblank_count == 0)
				wake_up(&rcrtc->vblank_wait);
		}
	}

	spin_unlock(&rcrtc->vblank_lock);

1046
	if (status & DSSR_VBK) {
1047 1048
		if (rcdu->info->gen < 3) {
			drm_crtc_handle_vblank(&rcrtc->crtc);
1049
			rcar_du_crtc_finish_page_flip(rcrtc);
1050
		}
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

1062 1063
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
			unsigned int hwindex)
1064
{
1065
	static const unsigned int mmio_offsets[] = {
1066
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1067 1068
	};

1069
	struct rcar_du_device *rcdu = rgrp->dev;
1070
	struct platform_device *pdev = to_platform_device(rcdu->dev);
1071
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1072
	struct drm_crtc *crtc = &rcrtc->crtc;
1073
	struct drm_plane *primary;
1074
	unsigned int irqflags;
1075 1076
	struct clk *clk;
	char clk_name[9];
1077 1078
	char *name;
	int irq;
1079 1080
	int ret;

1081
	/* Get the CRTC clock and the optional external clock. */
1082
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1083
		sprintf(clk_name, "du.%u", hwindex);
1084 1085 1086 1087 1088 1089 1090
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
1091
		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1092 1093 1094
		return PTR_ERR(rcrtc->clock);
	}

1095
	sprintf(clk_name, "dclkin.%u", hwindex);
1096 1097 1098 1099
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
	} else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
1100
		dev_info(rcdu->dev, "can't get external clock %u\n", hwindex);
1101 1102 1103
		return -EPROBE_DEFER;
	}

1104
	init_waitqueue_head(&rcrtc->flip_wait);
1105 1106
	init_waitqueue_head(&rcrtc->vblank_wait);
	spin_lock_init(&rcrtc->vblank_lock);
1107

1108
	rcrtc->group = rgrp;
1109 1110
	rcrtc->mmio_offset = mmio_offsets[hwindex];
	rcrtc->index = hwindex;
1111

1112
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1113
		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1114
	else
1115
		primary = &rgrp->planes[swindex % 2].plane;
1116

1117 1118 1119 1120
	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
					rcdu->info->gen <= 2 ?
					&crtc_funcs_gen2 : &crtc_funcs_gen3,
					NULL);
1121 1122 1123 1124 1125
	if (ret < 0)
		return ret;

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

1126 1127 1128
	/* Start with vertical blanking interrupt reporting disabled. */
	drm_crtc_vblank_off(crtc);

1129 1130
	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1131 1132
		/* The IRQ's are associated with the CRTC (sw)index. */
		irq = platform_get_irq(pdev, swindex);
1133 1134 1135 1136 1137 1138 1139
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
1140
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
J
Julia Lawall 已提交
1141
		return irq;
1142 1143 1144 1145 1146 1147
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
1148
			"failed to register IRQ for CRTC %u\n", swindex);
1149 1150 1151
		return ret;
	}

1152 1153
	rcar_du_crtc_crc_init(rcrtc);

1154 1155
	return 0;
}