file.c 63.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32 33

#include <asm/io.h>
34
#include <asm/time.h>
35
#include <asm/spu.h>
36
#include <asm/spu_info.h>
37 38 39
#include <asm/uaccess.h>

#include "spufs.h"
40
#include "sputrace.h"
41

42 43
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
150
static const struct file_operations __fops = {				\
151 152 153 154 155 156 157
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

158

159 160 161 162
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
163
	struct spu_context *ctx = i->i_ctx;
164

165
	mutex_lock(&ctx->mapping_lock);
166
	file->private_data = ctx;
167 168
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
169
	mutex_unlock(&ctx->mapping_lock);
170 171 172 173 174 175 176 177 178
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

179
	mutex_lock(&ctx->mapping_lock);
180 181
	if (!--i->i_openers)
		ctx->local_store = NULL;
182
	mutex_unlock(&ctx->mapping_lock);
183 184 185
	return 0;
}

186 187 188 189 190 191 192 193 194
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

195 196 197 198
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
199
	struct spu_context *ctx = file->private_data;
200
	ssize_t ret;
201

202 203 204
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
205
	ret = __spufs_mem_read(ctx, buffer, size, pos);
206
	spu_release(ctx);
207

208 209 210 211 212
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
213
					size_t size, loff_t *ppos)
214 215
{
	struct spu_context *ctx = file->private_data;
216
	char *local_store;
217
	loff_t pos = *ppos;
218
	int ret;
219

220 221 222
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
223
		return -EFBIG;
224 225
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
226

227 228 229 230
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

231
	local_store = ctx->ops->get_ls(ctx);
232
	ret = copy_from_user(local_store + pos, buffer, size);
233
	spu_release(ctx);
234 235 236 237 238

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
239 240
}

N
Nick Piggin 已提交
241 242
static int
spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243
{
244
	struct spu_context *ctx	= vma->vm_file->private_data;
N
Nick Piggin 已提交
245 246 247
	unsigned long address = (unsigned long)vmf->virtual_address;
	unsigned long pfn, offset;

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
264

N
Nick Piggin 已提交
265
	offset = vmf->pgoff << PAGE_SHIFT;
266
	if (offset >= LS_SIZE)
N
Nick Piggin 已提交
267
		return VM_FAULT_SIGBUS;
268

N
Nick Piggin 已提交
269 270
	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
			address, offset);
271

272
	if (spu_acquire(ctx))
N
Nick Piggin 已提交
273
		return VM_FAULT_NOPAGE;
274

275
	if (ctx->state == SPU_STATE_SAVED) {
276
		vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
277
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
278
	} else {
279
		vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
280
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
281
	}
282
	vm_insert_pfn(vma, address, pfn);
283

284
	spu_release(ctx);
285

N
Nick Piggin 已提交
286
	return VM_FAULT_NOPAGE;
287 288
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static int spufs_mem_mmap_access(struct vm_area_struct *vma,
				unsigned long address,
				void *buf, int len, int write)
{
	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	char *local_store;

	if (write && !(vma->vm_flags & VM_WRITE))
		return -EACCES;
	if (spu_acquire(ctx))
		return -EINTR;
	if ((offset + len) > vma->vm_end)
		len = vma->vm_end - offset;
	local_store = ctx->ops->get_ls(ctx);
	if (write)
		memcpy_toio(local_store + offset, buf, len);
	else
		memcpy_fromio(buf, local_store + offset, len);
	spu_release(ctx);
	return len;
}
311

312
static const struct vm_operations_struct spufs_mem_mmap_vmops = {
N
Nick Piggin 已提交
313
	.fault = spufs_mem_mmap_fault,
314
	.access = spufs_mem_mmap_access,
315 316
};

317
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
318
{
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

335 336
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
337

338
	vma->vm_flags |= VM_IO | VM_PFNMAP;
339
	vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
340 341

	vma->vm_ops = &spufs_mem_mmap_vmops;
342 343 344
	return 0;
}

345
#ifdef CONFIG_SPU_FS_64K_LS
346 347 348
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

364
static const struct file_operations spufs_mem_fops = {
365 366 367 368 369 370
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
371 372 373
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
374 375
};

N
Nick Piggin 已提交
376 377
static int spufs_ps_fault(struct vm_area_struct *vma,
				    struct vm_fault *vmf,
378
				    unsigned long ps_offs,
379
				    unsigned long ps_size)
380 381
{
	struct spu_context *ctx = vma->vm_file->private_data;
N
Nick Piggin 已提交
382
	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
383
	int ret = 0;
384

N
Nick Piggin 已提交
385
	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
386

387
	if (offset >= ps_size)
N
Nick Piggin 已提交
388
		return VM_FAULT_SIGBUS;
389

390 391 392
	if (fatal_signal_pending(current))
		return VM_FAULT_SIGBUS;

393 394 395 396 397 398 399
	/*
	 * Because we release the mmap_sem, the context may be destroyed while
	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
	 * in the meantime.
	 */
	get_spu_context(ctx);

400 401 402 403 404
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
N
Nick Piggin 已提交
405
	 * to return VM_FAULT_NOPAGE because the mappings may have
406
	 * hanged.
407
	 */
408
	if (spu_acquire(ctx))
409
		goto refault;
410

411 412
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
N
Nick Piggin 已提交
413
		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
414
		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
N
Nick Piggin 已提交
415
		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
416
		down_read(&current->mm->mmap_sem);
417 418
	} else {
		area = ctx->spu->problem_phys + ps_offs;
N
Nick Piggin 已提交
419 420 421
		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
					(area + offset) >> PAGE_SHIFT);
		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
422
	}
423

424 425
	if (!ret)
		spu_release(ctx);
426 427 428

refault:
	put_spu_context(ctx);
N
Nick Piggin 已提交
429
	return VM_FAULT_NOPAGE;
430 431
}

432
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
433 434
static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
					   struct vm_fault *vmf)
435
{
436
	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
437 438
}

439
static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
N
Nick Piggin 已提交
440
	.fault = spufs_cntl_mmap_fault,
441 442 443 444 445 446 447 448 449 450
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

451
	vma->vm_flags |= VM_IO | VM_PFNMAP;
452
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
453 454 455 456

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
457 458 459
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
460

461
static int spufs_cntl_get(void *data, u64 *val)
462
{
463
	struct spu_context *ctx = data;
464
	int ret;
465

466 467 468
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
469
	*val = ctx->ops->status_read(ctx);
470 471
	spu_release(ctx);

472
	return 0;
473 474
}

475
static int spufs_cntl_set(void *data, u64 val)
476
{
477
	struct spu_context *ctx = data;
478
	int ret;
479

480 481 482
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
483 484
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
485 486

	return 0;
487 488
}

489
static int spufs_cntl_open(struct inode *inode, struct file *file)
490
{
491 492 493
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

494
	mutex_lock(&ctx->mapping_lock);
495
	file->private_data = ctx;
496 497
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
498
	mutex_unlock(&ctx->mapping_lock);
499
	return simple_attr_open(inode, file, spufs_cntl_get,
500
					spufs_cntl_set, "0x%08lx");
501 502
}

503 504 505 506 507 508
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

509
	simple_attr_release(inode, file);
510

511
	mutex_lock(&ctx->mapping_lock);
512 513
	if (!--i->i_openers)
		ctx->cntl = NULL;
514
	mutex_unlock(&ctx->mapping_lock);
515 516 517
	return 0;
}

518
static const struct file_operations spufs_cntl_fops = {
519
	.open = spufs_cntl_open,
520
	.release = spufs_cntl_release,
521 522
	.read = simple_attr_read,
	.write = simple_attr_write,
523 524 525
	.mmap = spufs_cntl_mmap,
};

526 527 528 529 530 531 532 533
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

534 535 536 537 538 539 540 541 542
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

543 544 545 546 547
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
548
	struct spu_context *ctx = file->private_data;
549

550 551 552 553 554
	/* pre-check for file position: if we'd return EOF, there's no point
	 * causing a deschedule */
	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
		return 0;

555 556 557
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
558
	ret = __spufs_regs_read(ctx, buffer, size, pos);
559
	spu_release_saved(ctx);
560 561 562 563 564 565 566 567 568 569 570
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

571
	if (*pos >= sizeof(lscsa->gprs))
572
		return -EFBIG;
573 574

	size = min_t(ssize_t, sizeof(lscsa->gprs) - *pos, size);
575 576
	*pos += size;

577 578 579
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
580

581
	ret = copy_from_user((char *)lscsa->gprs + *pos - size,
582 583
			     buffer, size) ? -EFAULT : size;

584
	spu_release_saved(ctx);
585 586 587
	return ret;
}

588
static const struct file_operations spufs_regs_fops = {
589 590 591
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
592 593 594
	.llseek  = generic_file_llseek,
};

595 596 597 598 599 600 601 602 603
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

604 605 606 607 608
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
609
	struct spu_context *ctx = file->private_data;
610

611 612 613
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
614
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
615
	spu_release_saved(ctx);
616 617 618 619 620 621 622 623 624 625 626
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

627
	if (*pos >= sizeof(lscsa->fpcr))
628 629
		return -EFBIG;

630 631
	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);

632 633 634
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
635

636
	*pos += size;
637 638 639
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

640
	spu_release_saved(ctx);
641 642 643
	return ret;
}

644
static const struct file_operations spufs_fpcr_fops = {
645 646 647 648 649 650
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

651 652 653 654 655 656 657 658 659
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

660 661 662 663 664 665 666 667
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
668 669 670
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
671
	struct spu_context *ctx = file->private_data;
672 673
	u32 mbox_data, __user *udata;
	ssize_t count;
674 675 676 677

	if (len < 4)
		return -EINVAL;

678 679 680 681 682
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

683 684 685 686
	count = spu_acquire(ctx);
	if (count)
		return count;

687
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
705
	spu_release(ctx);
706

707 708
	if (!count)
		count = -EAGAIN;
709

710
	return count;
711 712
}

713
static const struct file_operations spufs_mbox_fops = {
714 715 716 717 718 719 720
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
721
	struct spu_context *ctx = file->private_data;
722
	ssize_t ret;
723 724 725 726 727
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

728 729 730
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
731 732 733 734

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
735 736 737 738 739 740 741

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

742
static const struct file_operations spufs_mbox_stat_fops = {
743 744 745 746 747
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
748
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
749
{
750 751
	return ctx->ops->ibox_read(ctx, data);
}
752

753 754 755
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
756

757
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
758 759
}

760 761
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
762
{
763 764
	struct spu_context *ctx = spu->ctx;

765 766 767
	if (!ctx)
		return;

768 769
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
770 771
}

772 773 774 775 776 777 778 779 780 781 782 783
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
784 785 786
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
787
	struct spu_context *ctx = file->private_data;
788 789
	u32 ibox_data, __user *udata;
	ssize_t count;
790 791 792 793

	if (len < 4)
		return -EINVAL;

794 795 796 797 798
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

799 800
	count = spu_acquire(ctx);
	if (count)
801
		goto out;
802

803 804
	/* wait only for the first element */
	count = 0;
805
	if (file->f_flags & O_NONBLOCK) {
806
		if (!spu_ibox_read(ctx, &ibox_data)) {
807
			count = -EAGAIN;
808 809
			goto out_unlock;
		}
810
	} else {
811
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
812 813
		if (count)
			goto out;
814 815
	}

816 817 818
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
819
		goto out_unlock;
820

821 822 823 824 825 826 827 828 829 830 831 832 833 834
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
835

836
out_unlock:
837
	spu_release(ctx);
838
out:
839
	return count;
840 841 842 843
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
844
	struct spu_context *ctx = file->private_data;
845 846
	unsigned int mask;

847
	poll_wait(file, &ctx->ibox_wq, wait);
848

849 850 851 852 853
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
854 855
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
856 857 858 859

	return mask;
}

860
static const struct file_operations spufs_ibox_fops = {
861 862 863 864 865 866 867 868 869
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
870
	struct spu_context *ctx = file->private_data;
871
	ssize_t ret;
872 873 874 875 876
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

877 878 879
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
880 881
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
882 883 884 885 886 887 888

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

889
static const struct file_operations spufs_ibox_stat_fops = {
890 891 892 893 894
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
895
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
896
{
897 898
	return ctx->ops->wbox_write(ctx, data);
}
899

900 901 902 903
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
904

905
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
906 907 908 909

	return ret;
}

910 911
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
912
{
913 914
	struct spu_context *ctx = spu->ctx;

915 916 917
	if (!ctx)
		return;

918 919
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
934 935 936
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
937
	struct spu_context *ctx = file->private_data;
938 939
	u32 wbox_data, __user *udata;
	ssize_t count;
940 941 942 943

	if (len < 4)
		return -EINVAL;

944 945 946 947 948
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
949 950
		return -EFAULT;

951 952
	count = spu_acquire(ctx);
	if (count)
953
		goto out;
954

955 956 957 958 959
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
960
	if (file->f_flags & O_NONBLOCK) {
961
		if (!spu_wbox_write(ctx, wbox_data)) {
962
			count = -EAGAIN;
963 964
			goto out_unlock;
		}
965
	} else {
966
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
967 968
		if (count)
			goto out;
969 970
	}

971

972
	/* write as much as possible */
973 974 975 976 977 978 979 980 981 982 983
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

984
out_unlock:
985
	spu_release(ctx);
986
out:
987
	return count;
988 989 990 991
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
992
	struct spu_context *ctx = file->private_data;
993 994
	unsigned int mask;

995
	poll_wait(file, &ctx->wbox_wq, wait);
996

997 998 999 1000 1001
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1002 1003
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
1004 1005 1006 1007

	return mask;
}

1008
static const struct file_operations spufs_wbox_fops = {
1009 1010 1011 1012 1013 1014 1015 1016 1017
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
1018
	struct spu_context *ctx = file->private_data;
1019
	ssize_t ret;
1020 1021 1022 1023 1024
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

1025 1026 1027
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1028 1029
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
1030 1031 1032 1033 1034 1035 1036

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

1037
static const struct file_operations spufs_wbox_stat_fops = {
1038 1039 1040 1041
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

1042 1043 1044 1045
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1046

1047
	mutex_lock(&ctx->mapping_lock);
1048
	file->private_data = ctx;
1049 1050
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1051
	mutex_unlock(&ctx->mapping_lock);
1052 1053 1054
	return nonseekable_open(inode, file);
}

1055 1056 1057 1058 1059 1060
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1061
	mutex_lock(&ctx->mapping_lock);
1062 1063
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1064
	mutex_unlock(&ctx->mapping_lock);
1065 1066 1067
	return 0;
}

1068
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1069 1070
			size_t len, loff_t *pos)
{
1071
	int ret = 0;
1072 1073 1074 1075 1076
	u32 data;

	if (len < 4)
		return -EINVAL;

1077 1078 1079 1080
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1081

1082 1083 1084
	if (!ret)
		goto out;

1085 1086 1087
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1088 1089
out:
	return ret;
1090 1091
}

1092 1093 1094 1095 1096 1097
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1098 1099 1100
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1101
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1102
	spu_release_saved(ctx);
1103 1104 1105 1106

	return ret;
}

1107 1108 1109 1110
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1111
	ssize_t ret;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1122 1123 1124
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1125 1126
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1127 1128 1129 1130

	return 4;
}

N
Nick Piggin 已提交
1131 1132
static int
spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1133
{
1134 1135 1136
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1137 1138 1139
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1140
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1141 1142 1143
#else
#error unsupported page size
#endif
1144 1145
}

1146
static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
N
Nick Piggin 已提交
1147
	.fault = spufs_signal1_mmap_fault,
1148 1149 1150 1151 1152 1153 1154
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1155
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1156
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1157 1158 1159 1160 1161

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1162
static const struct file_operations spufs_signal1_fops = {
1163
	.open = spufs_signal1_open,
1164
	.release = spufs_signal1_release,
1165 1166
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1167
	.mmap = spufs_signal1_mmap,
1168 1169
};

1170 1171 1172 1173 1174 1175 1176
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1177 1178 1179 1180
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1181

1182
	mutex_lock(&ctx->mapping_lock);
1183
	file->private_data = ctx;
1184 1185
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1186
	mutex_unlock(&ctx->mapping_lock);
1187 1188 1189
	return nonseekable_open(inode, file);
}

1190 1191 1192 1193 1194 1195
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1196
	mutex_lock(&ctx->mapping_lock);
1197 1198
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1199
	mutex_unlock(&ctx->mapping_lock);
1200 1201 1202
	return 0;
}

1203
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1204 1205
			size_t len, loff_t *pos)
{
1206
	int ret = 0;
1207 1208 1209 1210 1211
	u32 data;

	if (len < 4)
		return -EINVAL;

1212 1213 1214 1215
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1216

1217 1218 1219
	if (!ret)
		goto out;

1220 1221 1222
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1223
out:
1224 1225 1226 1227 1228 1229 1230 1231 1232
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1233 1234 1235
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1236
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1237
	spu_release_saved(ctx);
1238 1239

	return ret;
1240 1241 1242 1243 1244 1245
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1246
	ssize_t ret;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1257 1258 1259
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1260 1261
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1262 1263 1264 1265

	return 4;
}

1266
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1267 1268
static int
spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1269
{
1270 1271 1272
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1273 1274 1275
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1276
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1277 1278 1279
#else
#error unsupported page size
#endif
1280 1281
}

1282
static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
N
Nick Piggin 已提交
1283
	.fault = spufs_signal2_mmap_fault,
1284 1285 1286 1287 1288 1289 1290
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1291
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1292
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1293 1294 1295 1296

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1297 1298 1299
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1300

1301
static const struct file_operations spufs_signal2_fops = {
1302
	.open = spufs_signal2_open,
1303
	.release = spufs_signal2_release,
1304 1305
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1306
	.mmap = spufs_signal2_mmap,
1307 1308
};

1309 1310 1311 1312 1313 1314 1315
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1326
static int __##__get(void *data, u64 *val)				\
1327 1328
{									\
	struct spu_context *ctx = data;					\
1329
	int ret = 0;							\
1330 1331
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1332 1333 1334
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1335
		*val = __get(ctx);					\
1336 1337
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1338 1339 1340
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1341
		*val = __get(ctx);					\
1342 1343
		spu_release_saved(ctx);					\
	} else								\
1344
		*val = __get(ctx);					\
1345
									\
1346
	return 0;							\
1347
}									\
1348
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1349

1350
static int spufs_signal1_type_set(void *data, u64 val)
1351 1352
{
	struct spu_context *ctx = data;
1353
	int ret;
1354

1355 1356 1357
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1358 1359
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1360 1361

	return 0;
1362 1363
}

1364
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1365 1366 1367
{
	return ctx->ops->signal1_type_get(ctx);
}
1368
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1369
		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1370

1371

1372
static int spufs_signal2_type_set(void *data, u64 val)
1373 1374
{
	struct spu_context *ctx = data;
1375
	int ret;
1376

1377 1378 1379
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1380 1381
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1382 1383

	return 0;
1384 1385
}

1386
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1387 1388 1389
{
	return ctx->ops->signal2_type_get(ctx);
}
1390
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1391
		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1392

1393
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1394 1395
static int
spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1396
{
1397
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1398 1399
}

1400
static const struct vm_operations_struct spufs_mss_mmap_vmops = {
N
Nick Piggin 已提交
1401
	.fault = spufs_mss_mmap_fault,
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1412
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1413
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1414 1415 1416 1417

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1418 1419 1420
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1421 1422 1423 1424

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1425
	struct spu_context *ctx = i->i_ctx;
1426 1427

	file->private_data = i->i_ctx;
1428

1429
	mutex_lock(&ctx->mapping_lock);
1430 1431
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1432
	mutex_unlock(&ctx->mapping_lock);
1433 1434 1435
	return nonseekable_open(inode, file);
}

1436 1437 1438 1439 1440 1441
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1442
	mutex_lock(&ctx->mapping_lock);
1443 1444
	if (!--i->i_openers)
		ctx->mss = NULL;
1445
	mutex_unlock(&ctx->mapping_lock);
1446 1447 1448
	return 0;
}

1449
static const struct file_operations spufs_mss_fops = {
1450
	.open	 = spufs_mss_open,
1451
	.release = spufs_mss_release,
1452
	.mmap	 = spufs_mss_mmap,
1453 1454
};

N
Nick Piggin 已提交
1455 1456
static int
spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1457
{
1458
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1459 1460
}

1461
static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
N
Nick Piggin 已提交
1462
	.fault = spufs_psmap_mmap_fault,
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1473
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1474
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1475 1476 1477 1478 1479 1480 1481 1482

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1483
	struct spu_context *ctx = i->i_ctx;
1484

1485
	mutex_lock(&ctx->mapping_lock);
1486
	file->private_data = i->i_ctx;
1487 1488
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1489
	mutex_unlock(&ctx->mapping_lock);
1490 1491 1492
	return nonseekable_open(inode, file);
}

1493 1494 1495 1496 1497 1498
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1499
	mutex_lock(&ctx->mapping_lock);
1500 1501
	if (!--i->i_openers)
		ctx->psmap = NULL;
1502
	mutex_unlock(&ctx->mapping_lock);
1503 1504 1505
	return 0;
}

1506
static const struct file_operations spufs_psmap_fops = {
1507
	.open	 = spufs_psmap_open,
1508
	.release = spufs_psmap_release,
1509
	.mmap	 = spufs_psmap_mmap,
1510 1511 1512
};


1513
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1514 1515
static int
spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1516
{
1517
	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1518 1519
}

1520
static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
N
Nick Piggin 已提交
1521
	.fault = spufs_mfc_mmap_fault,
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1532
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1533
	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1534 1535 1536 1537

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1538 1539 1540
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1554
	mutex_lock(&ctx->mapping_lock);
1555
	file->private_data = ctx;
1556 1557
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1558
	mutex_unlock(&ctx->mapping_lock);
1559 1560 1561
	return nonseekable_open(inode, file);
}

1562 1563 1564 1565 1566 1567
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1568
	mutex_lock(&ctx->mapping_lock);
1569 1570
	if (!--i->i_openers)
		ctx->mfc = NULL;
1571
	mutex_unlock(&ctx->mapping_lock);
1572 1573 1574
	return 0;
}

1575 1576 1577 1578 1579
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1580 1581 1582
	if (!ctx)
		return;

1583 1584
	wake_up_all(&ctx->mfc_wq);

1585
	pr_debug("%s %s\n", __func__, spu->name);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1629 1630 1631 1632 1633
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1634 1635 1636 1637 1638
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1639
			/* XXX(hch): shouldn't we clear ret here? */
1640 1641 1642 1643
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
1644 1645
		if (ret)
			goto out;
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
	}
	spu_release(ctx);

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
1659
	pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1676
		pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1763 1764 1765 1766
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1767
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1768 1769 1770
	if (ret)
		goto out;

1771 1772 1773 1774 1775 1776
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
1777 1778
		if (ret)
			goto out;
1779 1780 1781 1782 1783
		if (status)
			ret = status;
	}

	if (ret)
1784
		goto out_unlock;
1785 1786

	ctx->tagwait |= 1 << cmd.tag;
1787
	ret = size;
1788

1789 1790
out_unlock:
	spu_release(ctx);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1801 1802
	poll_wait(file, &ctx->mfc_wq, wait);

1803 1804 1805 1806 1807
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

1819
	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1820 1821 1822 1823 1824
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1825
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1826 1827 1828 1829
{
	struct spu_context *ctx = file->private_data;
	int ret;

1830 1831
	ret = spu_acquire(ctx);
	if (ret)
1832
		goto out;
1833 1834 1835 1836 1837 1838 1839 1840
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1841 1842
	if (ret)
		goto out;
1843 1844 1845 1846
#else
	ret = 0;
#endif
	spu_release(ctx);
1847
out:
1848 1849 1850 1851 1852 1853
	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1854
	return spufs_mfc_flush(file, NULL);
1855 1856 1857 1858 1859 1860 1861 1862 1863
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1864
static const struct file_operations spufs_mfc_fops = {
1865
	.open	 = spufs_mfc_open,
1866
	.release = spufs_mfc_release,
1867 1868 1869 1870 1871 1872
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1873
	.mmap	 = spufs_mfc_mmap,
1874 1875
};

1876
static int spufs_npc_set(void *data, u64 val)
1877 1878
{
	struct spu_context *ctx = data;
1879 1880 1881 1882 1883
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1884 1885
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1886 1887

	return 0;
1888 1889
}

1890
static u64 spufs_npc_get(struct spu_context *ctx)
1891 1892 1893
{
	return ctx->ops->npc_read(ctx);
}
1894 1895
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1896

1897
static int spufs_decr_set(void *data, u64 val)
1898 1899 1900
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1901 1902 1903 1904 1905
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1906
	lscsa->decr.slot[0] = (u32) val;
1907
	spu_release_saved(ctx);
1908 1909

	return 0;
1910 1911
}

1912
static u64 spufs_decr_get(struct spu_context *ctx)
1913 1914
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1915 1916
	return lscsa->decr.slot[0];
}
1917 1918
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1919

1920
static int spufs_decr_status_set(void *data, u64 val)
1921 1922
{
	struct spu_context *ctx = data;
1923 1924 1925 1926 1927
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1928 1929 1930 1931
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1932
	spu_release_saved(ctx);
1933 1934

	return 0;
1935 1936
}

1937
static u64 spufs_decr_status_get(struct spu_context *ctx)
1938
{
1939 1940 1941 1942
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1943
}
1944 1945 1946
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1947

1948
static int spufs_event_mask_set(void *data, u64 val)
1949 1950 1951
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1952 1953 1954 1955 1956
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1957
	lscsa->event_mask.slot[0] = (u32) val;
1958
	spu_release_saved(ctx);
1959 1960

	return 0;
1961 1962
}

1963
static u64 spufs_event_mask_get(struct spu_context *ctx)
1964 1965
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1966 1967 1968
	return lscsa->event_mask.slot[0];
}

1969 1970 1971
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1972

1973
static u64 spufs_event_status_get(struct spu_context *ctx)
1974 1975 1976 1977 1978
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1979 1980 1981
		return state->spu_chnldata_RW[0];
	return 0;
}
1982 1983
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1984

1985
static int spufs_srr0_set(void *data, u64 val)
1986 1987 1988
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1989 1990 1991 1992 1993
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1994
	lscsa->srr0.slot[0] = (u32) val;
1995
	spu_release_saved(ctx);
1996 1997

	return 0;
1998 1999
}

2000
static u64 spufs_srr0_get(struct spu_context *ctx)
2001 2002
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2003
	return lscsa->srr0.slot[0];
2004
}
2005 2006
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2007

2008
static u64 spufs_id_get(struct spu_context *ctx)
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
2019 2020
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
2021

2022
static u64 spufs_object_id_get(struct spu_context *ctx)
2023 2024
{
	/* FIXME: Should there really be no locking here? */
2025
	return ctx->object_id;
2026 2027
}

2028
static int spufs_object_id_set(void *data, u64 id)
2029 2030 2031
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
2032 2033

	return 0;
2034 2035
}

2036 2037
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2038

2039
static u64 spufs_lslr_get(struct spu_context *ctx)
2040 2041 2042
{
	return ctx->csa.priv2.spu_lslr_RW;
}
2043 2044
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2045 2046 2047 2048 2049 2050 2051 2052 2053

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2077 2078 2079 2080 2081
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2082 2083 2084 2085 2086
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2087 2088 2089 2090

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2091 2092 2093
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2094
	int ret;
2095 2096 2097 2098 2099
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2100 2101 2102
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2103
	spin_lock(&ctx->csa.register_lock);
2104
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2105
	spin_unlock(&ctx->csa.register_lock);
2106
	spu_release_saved(ctx);
2107

2108
	return ret;
2109 2110
}

2111
static const struct file_operations spufs_mbox_info_fops = {
2112 2113 2114 2115 2116
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2117 2118 2119 2120 2121
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2122 2123 2124 2125 2126
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2127 2128 2129 2130

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2131 2132 2133 2134
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2135
	int ret;
2136 2137 2138 2139

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2140 2141 2142
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2143
	spin_lock(&ctx->csa.register_lock);
2144
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2145
	spin_unlock(&ctx->csa.register_lock);
2146
	spu_release_saved(ctx);
2147

2148
	return ret;
2149 2150
}

2151
static const struct file_operations spufs_ibox_info_fops = {
2152 2153 2154 2155 2156
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2157 2158
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2159 2160 2161 2162 2163
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2180 2181 2182
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2183 2184 2185
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2186
	spin_lock(&ctx->csa.register_lock);
2187
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2188
	spin_unlock(&ctx->csa.register_lock);
2189
	spu_release_saved(ctx);
2190

2191
	return ret;
2192 2193
}

2194
static const struct file_operations spufs_wbox_info_fops = {
2195 2196 2197 2198 2199
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2200 2201
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2226 2227 2228 2229 2230 2231 2232 2233 2234
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2235 2236 2237
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2238 2239 2240
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2241
	spu_release_saved(ctx);
2242 2243 2244 2245

	return ret;
}

2246
static const struct file_operations spufs_dma_info_fops = {
2247 2248 2249 2250
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2251 2252
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2253 2254 2255
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2256
	int ret = sizeof info;
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2288 2289 2290
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2291 2292
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2293
	spin_unlock(&ctx->csa.register_lock);
2294
	spu_release_saved(ctx);
2295 2296 2297 2298

	return ret;
}

2299
static const struct file_operations spufs_proxydma_info_fops = {
2300 2301 2302 2303
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2324 2325 2326 2327 2328
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2329
		enum spu_utilization_state state)
2330
{
2331 2332
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2333

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2347

2348
	return time / NSEC_PER_MSEC;
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2379 2380 2381 2382 2383
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2384 2385 2386

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2387 2388 2389 2390 2391
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
static inline int spufs_switch_log_used(struct spu_context *ctx)
{
	return (ctx->switch_log->head - ctx->switch_log->tail) %
		SWITCH_LOG_BUFSIZE;
}

static inline int spufs_switch_log_avail(struct spu_context *ctx)
{
	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
}

static int spufs_switch_log_open(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2430 2431 2432 2433 2434
	int rc;

	rc = spu_acquire(ctx);
	if (rc)
		return rc;
2435 2436

	if (ctx->switch_log) {
2437 2438
		rc = -EBUSY;
		goto out;
2439
	}
2440

2441
	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2442 2443 2444 2445 2446 2447 2448 2449
		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
		GFP_KERNEL);

	if (!ctx->switch_log) {
		rc = -ENOMEM;
		goto out;
	}

2450
	ctx->switch_log->head = ctx->switch_log->tail = 0;
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	init_waitqueue_head(&ctx->switch_log->wait);
	rc = 0;

out:
	spu_release(ctx);
	return rc;
}

static int spufs_switch_log_release(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int rc;

	rc = spu_acquire(ctx);
	if (rc)
		return rc;

	kfree(ctx->switch_log);
	ctx->switch_log = NULL;
	spu_release(ctx);
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499

	return 0;
}

static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
{
	struct switch_log_entry *p;

	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;

	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
			(unsigned int) p->tstamp.tv_sec,
			(unsigned int) p->tstamp.tv_nsec,
			p->spu_id,
			(unsigned int) p->type,
			(unsigned int) p->val,
			(unsigned long long) p->timebase);
}

static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
			     size_t len, loff_t *ppos)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int error = 0, cnt = 0;

	if (!buf || len < 0)
		return -EINVAL;

2500 2501 2502 2503
	error = spu_acquire(ctx);
	if (error)
		return error;

2504 2505 2506 2507
	while (cnt < len) {
		char tbuf[128];
		int width;

2508 2509 2510 2511 2512 2513 2514
		if (spufs_switch_log_used(ctx) == 0) {
			if (cnt > 0) {
				/* If there's data ready to go, we can
				 * just return straight away */
				break;

			} else if (file->f_flags & O_NONBLOCK) {
2515 2516
				error = -EAGAIN;
				break;
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

			} else {
				/* spufs_wait will drop the mutex and
				 * re-acquire, but since we're in read(), the
				 * file cannot be _released (and so
				 * ctx->switch_log is stable).
				 */
				error = spufs_wait(ctx->switch_log->wait,
						spufs_switch_log_used(ctx) > 0);

				/* On error, spufs_wait returns without the
				 * state mutex held */
				if (error)
					return error;

				/* We may have had entries read from underneath
				 * us while we dropped the mutex in spufs_wait,
				 * so re-check */
				if (spufs_switch_log_used(ctx) == 0)
					continue;
2537
			}
2538 2539 2540
		}

		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2541
		if (width < len)
2542 2543 2544
			ctx->switch_log->tail =
				(ctx->switch_log->tail + 1) %
				 SWITCH_LOG_BUFSIZE;
2545 2546 2547
		else
			/* If the record is greater than space available return
			 * partial buffer (so far) */
2548 2549 2550 2551 2552 2553 2554 2555
			break;

		error = copy_to_user(buf + cnt, tbuf, width);
		if (error)
			break;
		cnt += width;
	}

2556 2557
	spu_release(ctx);

2558 2559 2560 2561 2562 2563 2564 2565
	return cnt == 0 ? error : cnt;
}

static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	unsigned int mask = 0;
2566
	int rc;
2567 2568 2569

	poll_wait(file, &ctx->switch_log->wait, wait);

2570 2571 2572 2573
	rc = spu_acquire(ctx);
	if (rc)
		return rc;

2574 2575 2576
	if (spufs_switch_log_used(ctx) > 0)
		mask |= POLLIN;

2577 2578
	spu_release(ctx);

2579 2580 2581 2582
	return mask;
}

static const struct file_operations spufs_switch_log_fops = {
2583 2584 2585 2586 2587
	.owner		= THIS_MODULE,
	.open		= spufs_switch_log_open,
	.read		= spufs_switch_log_read,
	.poll		= spufs_switch_log_poll,
	.release	= spufs_switch_log_release,
2588 2589
};

2590 2591 2592 2593 2594
/**
 * Log a context switch event to a switch log reader.
 *
 * Must be called with ctx->state_mutex held.
 */
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
		u32 type, u32 val)
{
	if (!ctx->switch_log)
		return;

	if (spufs_switch_log_avail(ctx) > 1) {
		struct switch_log_entry *p;

		p = ctx->switch_log->log + ctx->switch_log->head;
		ktime_get_ts(&p->tstamp);
		p->timebase = get_tb();
		p->spu_id = spu ? spu->number : -1;
		p->type = type;
		p->val = val;

		ctx->switch_log->head =
			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
	}

	wake_up(&ctx->switch_log->wait);
}
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
static int spufs_show_ctx(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
	u64 mfc_control_RW;

	mutex_lock(&ctx->state_mutex);
	if (ctx->spu) {
		struct spu *spu = ctx->spu;
		struct spu_priv2 __iomem *priv2 = spu->priv2;

		spin_lock_irq(&spu->register_lock);
		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
		spin_unlock_irq(&spu->register_lock);
	} else {
		struct spu_state *csa = &ctx->csa;

		mfc_control_RW = csa->priv2.mfc_control_RW;
	}

	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2638
		" %c %llx %llx %llx %llx %x %x\n",
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
		ctx->flags,
		ctx->sched_flags,
		ctx->prio,
		ctx->time_slice,
		ctx->spu ? ctx->spu->number : -1,
		!list_empty(&ctx->rq) ? 'q' : ' ',
		ctx->csa.class_0_pending,
		ctx->csa.class_0_dar,
		ctx->csa.class_1_dsisr,
		mfc_control_RW,
		ctx->ops->runcntl_read(ctx),
		ctx->ops->status_read(ctx));

	mutex_unlock(&ctx->state_mutex);

	return 0;
}

static int spufs_ctx_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_ctx_fops = {
	.open           = spufs_ctx_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

2670
const struct spufs_tree_descr spufs_dir_contents[] = {
2671
	{ "capabilities", &spufs_caps_fops, 0444, },
2672 2673
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2674 2675 2676
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2677 2678 2679
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2680 2681
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2682 2683
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2684
	{ "cntl", &spufs_cntl_fops,  0666, },
2685
	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2686 2687 2688 2689 2690
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2691 2692 2693
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2694
	{ "event_status", &spufs_event_status_ops, 0444, },
2695
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2696 2697
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2698 2699 2700 2701 2702 2703 2704
	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
	{ "dma_info", &spufs_dma_info_fops, 0444,
		sizeof(struct spu_dma_info), },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
		sizeof(struct spu_proxydma_info)},
2705
	{ "tid", &spufs_tid_fops, 0444, },
2706
	{ "stat", &spufs_stat_fops, 0444, },
2707
	{ "switch_log", &spufs_switch_log_fops, 0444 },
2708 2709
	{},
};
2710

2711
const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2712
	{ "capabilities", &spufs_caps_fops, 0444, },
2713
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2714 2715 2716
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2717 2718 2719
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2720 2721
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2722 2723 2724 2725 2726 2727
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
2728
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2729 2730
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2731
	{ "tid", &spufs_tid_fops, 0444, },
2732
	{ "stat", &spufs_stat_fops, 0444, },
2733 2734 2735
	{},
};

2736
const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2737
	{ ".ctx", &spufs_ctx_fops, 0444, },
2738 2739
	{},
};
2740

2741
const struct spufs_coredump_reader spufs_coredump_read[] = {
2742 2743
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2744 2745 2746
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2747 2748
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2749
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2750
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2751 2752 2753
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2754 2755 2756 2757 2758 2759
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2760 2761
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2762
	{ NULL },
2763
};