file.c 63.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32
#include <linux/marker.h>
33 34

#include <asm/io.h>
35
#include <asm/time.h>
36
#include <asm/spu.h>
37
#include <asm/spu_info.h>
38 39 40 41
#include <asm/uaccess.h>

#include "spufs.h"

42 43
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
static struct file_operations __fops = {				\
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

158

159 160 161 162
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
163
	struct spu_context *ctx = i->i_ctx;
164

165
	mutex_lock(&ctx->mapping_lock);
166
	file->private_data = ctx;
167 168
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
169
	mutex_unlock(&ctx->mapping_lock);
170 171 172 173 174 175 176 177 178
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

179
	mutex_lock(&ctx->mapping_lock);
180 181
	if (!--i->i_openers)
		ctx->local_store = NULL;
182
	mutex_unlock(&ctx->mapping_lock);
183 184 185
	return 0;
}

186 187 188 189 190 191 192 193 194
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

195 196 197 198
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
199
	struct spu_context *ctx = file->private_data;
200
	ssize_t ret;
201

202 203 204
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
205
	ret = __spufs_mem_read(ctx, buffer, size, pos);
206
	spu_release(ctx);
207

208 209 210 211 212
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
213
					size_t size, loff_t *ppos)
214 215
{
	struct spu_context *ctx = file->private_data;
216
	char *local_store;
217
	loff_t pos = *ppos;
218
	int ret;
219

220 221 222
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
223
		return -EFBIG;
224 225
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
226

227 228 229 230
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

231
	local_store = ctx->ops->get_ls(ctx);
232
	ret = copy_from_user(local_store + pos, buffer, size);
233
	spu_release(ctx);
234 235 236 237 238

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
239 240
}

N
Nick Piggin 已提交
241 242
static int
spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243
{
244
	struct spu_context *ctx	= vma->vm_file->private_data;
N
Nick Piggin 已提交
245 246 247
	unsigned long address = (unsigned long)vmf->virtual_address;
	unsigned long pfn, offset;

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
264

N
Nick Piggin 已提交
265
	offset = vmf->pgoff << PAGE_SHIFT;
266
	if (offset >= LS_SIZE)
N
Nick Piggin 已提交
267
		return VM_FAULT_SIGBUS;
268

N
Nick Piggin 已提交
269 270
	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
			address, offset);
271

272
	if (spu_acquire(ctx))
N
Nick Piggin 已提交
273
		return VM_FAULT_NOPAGE;
274

275 276
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
277
							& ~_PAGE_NO_CACHE);
278
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
279 280
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
281 282
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
283
	}
284
	vm_insert_pfn(vma, address, pfn);
285

286
	spu_release(ctx);
287

N
Nick Piggin 已提交
288
	return VM_FAULT_NOPAGE;
289 290
}

291

292
static struct vm_operations_struct spufs_mem_mmap_vmops = {
N
Nick Piggin 已提交
293
	.fault = spufs_mem_mmap_fault,
294 295
};

296
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
297
{
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

314 315
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
316

317
	vma->vm_flags |= VM_IO | VM_PFNMAP;
318 319 320 321
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
322 323 324
	return 0;
}

325
#ifdef CONFIG_SPU_FS_64K_LS
326 327 328
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

344
static const struct file_operations spufs_mem_fops = {
345 346 347 348 349 350
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
351 352 353
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
354 355
};

N
Nick Piggin 已提交
356 357
static int spufs_ps_fault(struct vm_area_struct *vma,
				    struct vm_fault *vmf,
358
				    unsigned long ps_offs,
359
				    unsigned long ps_size)
360 361
{
	struct spu_context *ctx = vma->vm_file->private_data;
N
Nick Piggin 已提交
362
	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
363
	int ret = 0;
364

N
Nick Piggin 已提交
365
	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
366

367
	if (offset >= ps_size)
N
Nick Piggin 已提交
368
		return VM_FAULT_SIGBUS;
369

370 371 372 373 374 375 376
	/*
	 * Because we release the mmap_sem, the context may be destroyed while
	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
	 * in the meantime.
	 */
	get_spu_context(ctx);

377 378 379 380 381
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
N
Nick Piggin 已提交
382
	 * to return VM_FAULT_NOPAGE because the mappings may have
383
	 * hanged.
384
	 */
385
	if (spu_acquire(ctx))
386
		goto refault;
387

388 389
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
N
Nick Piggin 已提交
390
		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
391
		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
N
Nick Piggin 已提交
392
		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
393
		down_read(&current->mm->mmap_sem);
394 395
	} else {
		area = ctx->spu->problem_phys + ps_offs;
N
Nick Piggin 已提交
396 397 398
		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
					(area + offset) >> PAGE_SHIFT);
		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
399
	}
400

401 402
	if (!ret)
		spu_release(ctx);
403 404 405

refault:
	put_spu_context(ctx);
N
Nick Piggin 已提交
406
	return VM_FAULT_NOPAGE;
407 408
}

409
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
410 411
static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
					   struct vm_fault *vmf)
412
{
413
	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
414 415 416
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
N
Nick Piggin 已提交
417
	.fault = spufs_cntl_mmap_fault,
418 419 420 421 422 423 424 425 426 427
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

428
	vma->vm_flags |= VM_IO | VM_PFNMAP;
429
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
430
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
431 432 433 434

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
435 436 437
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
438

439
static int spufs_cntl_get(void *data, u64 *val)
440
{
441
	struct spu_context *ctx = data;
442
	int ret;
443

444 445 446
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
447
	*val = ctx->ops->status_read(ctx);
448 449
	spu_release(ctx);

450
	return 0;
451 452
}

453
static int spufs_cntl_set(void *data, u64 val)
454
{
455
	struct spu_context *ctx = data;
456
	int ret;
457

458 459 460
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
461 462
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
463 464

	return 0;
465 466
}

467
static int spufs_cntl_open(struct inode *inode, struct file *file)
468
{
469 470 471
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

472
	mutex_lock(&ctx->mapping_lock);
473
	file->private_data = ctx;
474 475
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
476
	mutex_unlock(&ctx->mapping_lock);
477
	return simple_attr_open(inode, file, spufs_cntl_get,
478
					spufs_cntl_set, "0x%08lx");
479 480
}

481 482 483 484 485 486
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

487
	simple_attr_release(inode, file);
488

489
	mutex_lock(&ctx->mapping_lock);
490 491
	if (!--i->i_openers)
		ctx->cntl = NULL;
492
	mutex_unlock(&ctx->mapping_lock);
493 494 495
	return 0;
}

496
static const struct file_operations spufs_cntl_fops = {
497
	.open = spufs_cntl_open,
498
	.release = spufs_cntl_release,
499 500
	.read = simple_attr_read,
	.write = simple_attr_write,
501 502 503
	.mmap = spufs_cntl_mmap,
};

504 505 506 507 508 509 510 511
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

512 513 514 515 516 517 518 519 520
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

521 522 523 524 525
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
526
	struct spu_context *ctx = file->private_data;
527

528 529 530
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
531
	ret = __spufs_regs_read(ctx, buffer, size, pos);
532
	spu_release_saved(ctx);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

549 550 551
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
552 553 554 555

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

556
	spu_release_saved(ctx);
557 558 559
	return ret;
}

560
static const struct file_operations spufs_regs_fops = {
561 562 563
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
564 565 566
	.llseek  = generic_file_llseek,
};

567 568 569 570 571 572 573 574 575
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

576 577 578 579 580
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
581
	struct spu_context *ctx = file->private_data;
582

583 584 585
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
586
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
587
	spu_release_saved(ctx);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;

603 604 605
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
606

607
	*pos += size;
608 609 610
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

611
	spu_release_saved(ctx);
612 613 614
	return ret;
}

615
static const struct file_operations spufs_fpcr_fops = {
616 617 618 619 620 621
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

622 623 624 625 626 627 628 629 630
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

631 632 633 634 635 636 637 638
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
639 640 641
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
642
	struct spu_context *ctx = file->private_data;
643 644
	u32 mbox_data, __user *udata;
	ssize_t count;
645 646 647 648

	if (len < 4)
		return -EINVAL;

649 650 651 652 653
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

654 655 656 657
	count = spu_acquire(ctx);
	if (count)
		return count;

658
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
676
	spu_release(ctx);
677

678 679
	if (!count)
		count = -EAGAIN;
680

681
	return count;
682 683
}

684
static const struct file_operations spufs_mbox_fops = {
685 686 687 688 689 690 691
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
692
	struct spu_context *ctx = file->private_data;
693
	ssize_t ret;
694 695 696 697 698
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

699 700 701
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
702 703 704 705

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
706 707 708 709 710 711 712

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

713
static const struct file_operations spufs_mbox_stat_fops = {
714 715 716 717 718
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
719
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
720
{
721 722
	return ctx->ops->ibox_read(ctx, data);
}
723

724 725 726
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
727

728
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
729 730
}

731 732
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
733
{
734 735
	struct spu_context *ctx = spu->ctx;

736 737 738
	if (!ctx)
		return;

739 740
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
741 742
}

743 744 745 746 747 748 749 750 751 752 753 754
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
755 756 757
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
758
	struct spu_context *ctx = file->private_data;
759 760
	u32 ibox_data, __user *udata;
	ssize_t count;
761 762 763 764

	if (len < 4)
		return -EINVAL;

765 766 767 768 769
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

770 771
	count = spu_acquire(ctx);
	if (count)
772
		goto out;
773

774 775
	/* wait only for the first element */
	count = 0;
776
	if (file->f_flags & O_NONBLOCK) {
777
		if (!spu_ibox_read(ctx, &ibox_data)) {
778
			count = -EAGAIN;
779 780
			goto out_unlock;
		}
781
	} else {
782
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
783 784
		if (count)
			goto out;
785 786
	}

787 788 789
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
790
		goto out_unlock;
791

792 793 794 795 796 797 798 799 800 801 802 803 804 805
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
806

807
out_unlock:
808
	spu_release(ctx);
809
out:
810
	return count;
811 812 813 814
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
815
	struct spu_context *ctx = file->private_data;
816 817
	unsigned int mask;

818
	poll_wait(file, &ctx->ibox_wq, wait);
819

820 821 822 823 824
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
825 826
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
827 828 829 830

	return mask;
}

831
static const struct file_operations spufs_ibox_fops = {
832 833 834 835 836 837 838 839 840
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
841
	struct spu_context *ctx = file->private_data;
842
	ssize_t ret;
843 844 845 846 847
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

848 849 850
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
851 852
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
853 854 855 856 857 858 859

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

860
static const struct file_operations spufs_ibox_stat_fops = {
861 862 863 864 865
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
866
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
867
{
868 869
	return ctx->ops->wbox_write(ctx, data);
}
870

871 872 873 874
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
875

876
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
877 878 879 880

	return ret;
}

881 882
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
883
{
884 885
	struct spu_context *ctx = spu->ctx;

886 887 888
	if (!ctx)
		return;

889 890
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
891 892
}

893 894 895 896 897 898 899 900 901 902 903 904
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
905 906 907
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
908
	struct spu_context *ctx = file->private_data;
909 910
	u32 wbox_data, __user *udata;
	ssize_t count;
911 912 913 914

	if (len < 4)
		return -EINVAL;

915 916 917 918 919
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
920 921
		return -EFAULT;

922 923
	count = spu_acquire(ctx);
	if (count)
924
		goto out;
925

926 927 928 929 930
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
931
	if (file->f_flags & O_NONBLOCK) {
932
		if (!spu_wbox_write(ctx, wbox_data)) {
933
			count = -EAGAIN;
934 935
			goto out_unlock;
		}
936
	} else {
937
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
938 939
		if (count)
			goto out;
940 941
	}

942

943
	/* write as much as possible */
944 945 946 947 948 949 950 951 952 953 954
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

955
out_unlock:
956
	spu_release(ctx);
957
out:
958
	return count;
959 960 961 962
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
963
	struct spu_context *ctx = file->private_data;
964 965
	unsigned int mask;

966
	poll_wait(file, &ctx->wbox_wq, wait);
967

968 969 970 971 972
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
973 974
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
975 976 977 978

	return mask;
}

979
static const struct file_operations spufs_wbox_fops = {
980 981 982 983 984 985 986 987 988
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
989
	struct spu_context *ctx = file->private_data;
990
	ssize_t ret;
991 992 993 994 995
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

996 997 998
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
999 1000
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
1001 1002 1003 1004 1005 1006 1007

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

1008
static const struct file_operations spufs_wbox_stat_fops = {
1009 1010 1011 1012
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

1013 1014 1015 1016
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1017

1018
	mutex_lock(&ctx->mapping_lock);
1019
	file->private_data = ctx;
1020 1021
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1022
	mutex_unlock(&ctx->mapping_lock);
1023 1024 1025
	return nonseekable_open(inode, file);
}

1026 1027 1028 1029 1030 1031
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1032
	mutex_lock(&ctx->mapping_lock);
1033 1034
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1035
	mutex_unlock(&ctx->mapping_lock);
1036 1037 1038
	return 0;
}

1039
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1040 1041
			size_t len, loff_t *pos)
{
1042
	int ret = 0;
1043 1044 1045 1046 1047
	u32 data;

	if (len < 4)
		return -EINVAL;

1048 1049 1050 1051
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1052

1053 1054 1055
	if (!ret)
		goto out;

1056 1057 1058
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1059 1060
out:
	return ret;
1061 1062
}

1063 1064 1065 1066 1067 1068
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1069 1070 1071
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1072
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1073
	spu_release_saved(ctx);
1074 1075 1076 1077

	return ret;
}

1078 1079 1080 1081
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1082
	ssize_t ret;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1093 1094 1095
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1096 1097
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1098 1099 1100 1101

	return 4;
}

N
Nick Piggin 已提交
1102 1103
static int
spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1104
{
1105 1106 1107
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1108 1109 1110
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1111
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1112 1113 1114
#else
#error unsupported page size
#endif
1115 1116 1117
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
N
Nick Piggin 已提交
1118
	.fault = spufs_signal1_mmap_fault,
1119 1120 1121 1122 1123 1124 1125
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1126
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1127
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1128
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1129 1130 1131 1132 1133

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1134
static const struct file_operations spufs_signal1_fops = {
1135
	.open = spufs_signal1_open,
1136
	.release = spufs_signal1_release,
1137 1138
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1139
	.mmap = spufs_signal1_mmap,
1140 1141
};

1142 1143 1144 1145 1146 1147 1148
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1149 1150 1151 1152
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1153

1154
	mutex_lock(&ctx->mapping_lock);
1155
	file->private_data = ctx;
1156 1157
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1158
	mutex_unlock(&ctx->mapping_lock);
1159 1160 1161
	return nonseekable_open(inode, file);
}

1162 1163 1164 1165 1166 1167
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1168
	mutex_lock(&ctx->mapping_lock);
1169 1170
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1171
	mutex_unlock(&ctx->mapping_lock);
1172 1173 1174
	return 0;
}

1175
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1176 1177
			size_t len, loff_t *pos)
{
1178
	int ret = 0;
1179 1180 1181 1182 1183
	u32 data;

	if (len < 4)
		return -EINVAL;

1184 1185 1186 1187
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1188

1189 1190 1191
	if (!ret)
		goto out;

1192 1193 1194
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1195
out:
1196 1197 1198 1199 1200 1201 1202 1203 1204
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1205 1206 1207
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1208
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1209
	spu_release_saved(ctx);
1210 1211

	return ret;
1212 1213 1214 1215 1216 1217
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1218
	ssize_t ret;
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1229 1230 1231
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1232 1233
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1234 1235 1236 1237

	return 4;
}

1238
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1239 1240
static int
spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1241
{
1242 1243 1244
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1245 1246 1247
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1248
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1249 1250 1251
#else
#error unsupported page size
#endif
1252 1253 1254
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
N
Nick Piggin 已提交
1255
	.fault = spufs_signal2_mmap_fault,
1256 1257 1258 1259 1260 1261 1262
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1263
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1264
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1265
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1266 1267 1268 1269

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1270 1271 1272
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1273

1274
static const struct file_operations spufs_signal2_fops = {
1275
	.open = spufs_signal2_open,
1276
	.release = spufs_signal2_release,
1277 1278
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1279
	.mmap = spufs_signal2_mmap,
1280 1281
};

1282 1283 1284 1285 1286 1287 1288
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1299
static int __##__get(void *data, u64 *val)				\
1300 1301
{									\
	struct spu_context *ctx = data;					\
1302
	int ret = 0;							\
1303 1304
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1305 1306 1307
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1308
		*val = __get(ctx);					\
1309 1310
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1311 1312 1313
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1314
		*val = __get(ctx);					\
1315 1316
		spu_release_saved(ctx);					\
	} else								\
1317
		*val = __get(ctx);					\
1318
									\
1319
	return 0;							\
1320
}									\
1321
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1322

1323
static int spufs_signal1_type_set(void *data, u64 val)
1324 1325
{
	struct spu_context *ctx = data;
1326
	int ret;
1327

1328 1329 1330
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1331 1332
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1333 1334

	return 0;
1335 1336
}

1337
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1338 1339 1340
{
	return ctx->ops->signal1_type_get(ctx);
}
1341
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1342
		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1343

1344

1345
static int spufs_signal2_type_set(void *data, u64 val)
1346 1347
{
	struct spu_context *ctx = data;
1348
	int ret;
1349

1350 1351 1352
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1353 1354
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1355 1356

	return 0;
1357 1358
}

1359
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1360 1361 1362
{
	return ctx->ops->signal2_type_get(ctx);
}
1363
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1364
		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1365

1366
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1367 1368
static int
spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1369
{
1370
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1371 1372 1373
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
N
Nick Piggin 已提交
1374
	.fault = spufs_mss_mmap_fault,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1385
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1386
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1387
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1388 1389 1390 1391

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1392 1393 1394
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1395 1396 1397 1398

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1399
	struct spu_context *ctx = i->i_ctx;
1400 1401

	file->private_data = i->i_ctx;
1402

1403
	mutex_lock(&ctx->mapping_lock);
1404 1405
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1406
	mutex_unlock(&ctx->mapping_lock);
1407 1408 1409
	return nonseekable_open(inode, file);
}

1410 1411 1412 1413 1414 1415
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1416
	mutex_lock(&ctx->mapping_lock);
1417 1418
	if (!--i->i_openers)
		ctx->mss = NULL;
1419
	mutex_unlock(&ctx->mapping_lock);
1420 1421 1422
	return 0;
}

1423
static const struct file_operations spufs_mss_fops = {
1424
	.open	 = spufs_mss_open,
1425
	.release = spufs_mss_release,
1426
	.mmap	 = spufs_mss_mmap,
1427 1428
};

N
Nick Piggin 已提交
1429 1430
static int
spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1431
{
1432
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1433 1434 1435
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
N
Nick Piggin 已提交
1436
	.fault = spufs_psmap_mmap_fault,
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1447
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1458
	struct spu_context *ctx = i->i_ctx;
1459

1460
	mutex_lock(&ctx->mapping_lock);
1461
	file->private_data = i->i_ctx;
1462 1463
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1464
	mutex_unlock(&ctx->mapping_lock);
1465 1466 1467
	return nonseekable_open(inode, file);
}

1468 1469 1470 1471 1472 1473
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1474
	mutex_lock(&ctx->mapping_lock);
1475 1476
	if (!--i->i_openers)
		ctx->psmap = NULL;
1477
	mutex_unlock(&ctx->mapping_lock);
1478 1479 1480
	return 0;
}

1481
static const struct file_operations spufs_psmap_fops = {
1482
	.open	 = spufs_psmap_open,
1483
	.release = spufs_psmap_release,
1484
	.mmap	 = spufs_psmap_mmap,
1485 1486 1487
};


1488
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1489 1490
static int
spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1491
{
1492
	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1493 1494 1495
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
N
Nick Piggin 已提交
1496
	.fault = spufs_mfc_mmap_fault,
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1507
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1508
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1509
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1510 1511 1512 1513

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1514 1515 1516
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1530
	mutex_lock(&ctx->mapping_lock);
1531
	file->private_data = ctx;
1532 1533
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1534
	mutex_unlock(&ctx->mapping_lock);
1535 1536 1537
	return nonseekable_open(inode, file);
}

1538 1539 1540 1541 1542 1543
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1544
	mutex_lock(&ctx->mapping_lock);
1545 1546
	if (!--i->i_openers)
		ctx->mfc = NULL;
1547
	mutex_unlock(&ctx->mapping_lock);
1548 1549 1550
	return 0;
}

1551 1552 1553 1554 1555
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1556 1557 1558
	if (!ctx)
		return;

1559 1560
	wake_up_all(&ctx->mfc_wq);

1561
	pr_debug("%s %s\n", __func__, spu->name);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1605 1606 1607 1608 1609
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1610 1611 1612 1613 1614
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1615
			/* XXX(hch): shouldn't we clear ret here? */
1616 1617 1618 1619
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
1620 1621
		if (ret)
			goto out;
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	}
	spu_release(ctx);

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1739 1740 1741 1742
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1743
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1744 1745 1746
	if (ret)
		goto out;

1747 1748 1749 1750 1751 1752
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
1753 1754
		if (ret)
			goto out;
1755 1756 1757 1758 1759
		if (status)
			ret = status;
	}

	if (ret)
1760
		goto out_unlock;
1761 1762

	ctx->tagwait |= 1 << cmd.tag;
1763
	ret = size;
1764

1765 1766
out_unlock:
	spu_release(ctx);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1777 1778
	poll_wait(file, &ctx->mfc_wq, wait);

1779 1780 1781 1782 1783
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

1795
	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1796 1797 1798 1799 1800
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1801
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1802 1803 1804 1805
{
	struct spu_context *ctx = file->private_data;
	int ret;

1806 1807
	ret = spu_acquire(ctx);
	if (ret)
1808
		goto out;
1809 1810 1811 1812 1813 1814 1815 1816
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1817 1818
	if (ret)
		goto out;
1819 1820 1821 1822
#else
	ret = 0;
#endif
	spu_release(ctx);
1823
out:
1824 1825 1826 1827 1828 1829
	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1830
	return spufs_mfc_flush(file, NULL);
1831 1832 1833 1834 1835 1836 1837 1838 1839
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1840
static const struct file_operations spufs_mfc_fops = {
1841
	.open	 = spufs_mfc_open,
1842
	.release = spufs_mfc_release,
1843 1844 1845 1846 1847 1848
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1849
	.mmap	 = spufs_mfc_mmap,
1850 1851
};

1852
static int spufs_npc_set(void *data, u64 val)
1853 1854
{
	struct spu_context *ctx = data;
1855 1856 1857 1858 1859
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1860 1861
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1862 1863

	return 0;
1864 1865
}

1866
static u64 spufs_npc_get(struct spu_context *ctx)
1867 1868 1869
{
	return ctx->ops->npc_read(ctx);
}
1870 1871
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1872

1873
static int spufs_decr_set(void *data, u64 val)
1874 1875 1876
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1877 1878 1879 1880 1881
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1882
	lscsa->decr.slot[0] = (u32) val;
1883
	spu_release_saved(ctx);
1884 1885

	return 0;
1886 1887
}

1888
static u64 spufs_decr_get(struct spu_context *ctx)
1889 1890
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1891 1892
	return lscsa->decr.slot[0];
}
1893 1894
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1895

1896
static int spufs_decr_status_set(void *data, u64 val)
1897 1898
{
	struct spu_context *ctx = data;
1899 1900 1901 1902 1903
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1904 1905 1906 1907
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1908
	spu_release_saved(ctx);
1909 1910

	return 0;
1911 1912
}

1913
static u64 spufs_decr_status_get(struct spu_context *ctx)
1914
{
1915 1916 1917 1918
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1919
}
1920 1921 1922
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1923

1924
static int spufs_event_mask_set(void *data, u64 val)
1925 1926 1927
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1928 1929 1930 1931 1932
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1933
	lscsa->event_mask.slot[0] = (u32) val;
1934
	spu_release_saved(ctx);
1935 1936

	return 0;
1937 1938
}

1939
static u64 spufs_event_mask_get(struct spu_context *ctx)
1940 1941
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1942 1943 1944
	return lscsa->event_mask.slot[0];
}

1945 1946 1947
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1948

1949
static u64 spufs_event_status_get(struct spu_context *ctx)
1950 1951 1952 1953 1954
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1955 1956 1957
		return state->spu_chnldata_RW[0];
	return 0;
}
1958 1959
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1960

1961
static int spufs_srr0_set(void *data, u64 val)
1962 1963 1964
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1965 1966 1967 1968 1969
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1970
	lscsa->srr0.slot[0] = (u32) val;
1971
	spu_release_saved(ctx);
1972 1973

	return 0;
1974 1975
}

1976
static u64 spufs_srr0_get(struct spu_context *ctx)
1977 1978
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1979
	return lscsa->srr0.slot[0];
1980
}
1981 1982
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1983

1984
static u64 spufs_id_get(struct spu_context *ctx)
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
1995 1996
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
1997

1998
static u64 spufs_object_id_get(struct spu_context *ctx)
1999 2000
{
	/* FIXME: Should there really be no locking here? */
2001
	return ctx->object_id;
2002 2003
}

2004
static int spufs_object_id_set(void *data, u64 id)
2005 2006 2007
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
2008 2009

	return 0;
2010 2011
}

2012 2013
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2014

2015
static u64 spufs_lslr_get(struct spu_context *ctx)
2016 2017 2018
{
	return ctx->csa.priv2.spu_lslr_RW;
}
2019 2020
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2021 2022 2023 2024 2025 2026 2027 2028 2029

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2053 2054 2055 2056 2057
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2058 2059 2060 2061 2062
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2063 2064 2065 2066

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2067 2068 2069
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2070
	int ret;
2071 2072 2073 2074 2075
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2076 2077 2078
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2079
	spin_lock(&ctx->csa.register_lock);
2080
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2081
	spin_unlock(&ctx->csa.register_lock);
2082
	spu_release_saved(ctx);
2083

2084
	return ret;
2085 2086
}

2087
static const struct file_operations spufs_mbox_info_fops = {
2088 2089 2090 2091 2092
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2093 2094 2095 2096 2097
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2098 2099 2100 2101 2102
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2103 2104 2105 2106

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2107 2108 2109 2110
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2111
	int ret;
2112 2113 2114 2115

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2116 2117 2118
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2119
	spin_lock(&ctx->csa.register_lock);
2120
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2121
	spin_unlock(&ctx->csa.register_lock);
2122
	spu_release_saved(ctx);
2123

2124
	return ret;
2125 2126
}

2127
static const struct file_operations spufs_ibox_info_fops = {
2128 2129 2130 2131 2132
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2133 2134
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2135 2136 2137 2138 2139
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2156 2157 2158
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2159 2160 2161
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2162
	spin_lock(&ctx->csa.register_lock);
2163
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2164
	spin_unlock(&ctx->csa.register_lock);
2165
	spu_release_saved(ctx);
2166

2167
	return ret;
2168 2169
}

2170
static const struct file_operations spufs_wbox_info_fops = {
2171 2172 2173 2174 2175
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2176 2177
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2202 2203 2204 2205 2206 2207 2208 2209 2210
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2211 2212 2213
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2214 2215 2216
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2217
	spu_release_saved(ctx);
2218 2219 2220 2221

	return ret;
}

2222
static const struct file_operations spufs_dma_info_fops = {
2223 2224 2225 2226
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2227 2228
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2229 2230 2231
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2232
	int ret = sizeof info;
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2264 2265 2266
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2267 2268
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2269
	spin_unlock(&ctx->csa.register_lock);
2270
	spu_release_saved(ctx);
2271 2272 2273 2274

	return ret;
}

2275
static const struct file_operations spufs_proxydma_info_fops = {
2276 2277 2278 2279
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2300 2301 2302 2303 2304
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2305
		enum spu_utilization_state state)
2306
{
2307 2308
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2309

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2323

2324
	return time / NSEC_PER_MSEC;
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2355 2356 2357 2358 2359
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2360 2361 2362

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2363 2364 2365 2366 2367
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
static inline int spufs_switch_log_used(struct spu_context *ctx)
{
	return (ctx->switch_log->head - ctx->switch_log->tail) %
		SWITCH_LOG_BUFSIZE;
}

static inline int spufs_switch_log_avail(struct spu_context *ctx)
{
	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
}

static int spufs_switch_log_open(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;

	/*
	 * We (ab-)use the mapping_lock here because it serves the similar
	 * purpose for synchronizing open/close elsewhere.  Maybe it should
	 * be renamed eventually.
	 */
	mutex_lock(&ctx->mapping_lock);
	if (ctx->switch_log) {
		spin_lock(&ctx->switch_log->lock);
		ctx->switch_log->head = 0;
		ctx->switch_log->tail = 0;
		spin_unlock(&ctx->switch_log->lock);
	} else {
		/*
		 * We allocate the switch log data structures on first open.
		 * They will never be free because we assume a context will
		 * be traced until it goes away.
		 */
		ctx->switch_log = kzalloc(sizeof(struct switch_log) +
			SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
			GFP_KERNEL);
		if (!ctx->switch_log)
			goto out;
		spin_lock_init(&ctx->switch_log->lock);
		init_waitqueue_head(&ctx->switch_log->wait);
	}
	mutex_unlock(&ctx->mapping_lock);

	return 0;
 out:
	mutex_unlock(&ctx->mapping_lock);
	return -ENOMEM;
}

static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
{
	struct switch_log_entry *p;

	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;

	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
			(unsigned int) p->tstamp.tv_sec,
			(unsigned int) p->tstamp.tv_nsec,
			p->spu_id,
			(unsigned int) p->type,
			(unsigned int) p->val,
			(unsigned long long) p->timebase);
}

static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
			     size_t len, loff_t *ppos)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int error = 0, cnt = 0;

	if (!buf || len < 0)
		return -EINVAL;

	while (cnt < len) {
		char tbuf[128];
		int width;

		if (file->f_flags & O_NONBLOCK) {
			if (spufs_switch_log_used(ctx) <= 0)
				return cnt ? cnt : -EAGAIN;
		} else {
			/* Wait for data in buffer */
			error = wait_event_interruptible(ctx->switch_log->wait,
					spufs_switch_log_used(ctx) > 0);
			if (error)
				break;
		}

		spin_lock(&ctx->switch_log->lock);
		if (ctx->switch_log->head == ctx->switch_log->tail) {
			/* multiple readers race? */
			spin_unlock(&ctx->switch_log->lock);
			continue;
		}

		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
		if (width < len) {
			ctx->switch_log->tail =
				(ctx->switch_log->tail + 1) %
				 SWITCH_LOG_BUFSIZE;
		}

		spin_unlock(&ctx->switch_log->lock);

		/*
		 * If the record is greater than space available return
		 * partial buffer (so far)
		 */
		if (width >= len)
			break;

		error = copy_to_user(buf + cnt, tbuf, width);
		if (error)
			break;
		cnt += width;
	}

	return cnt == 0 ? error : cnt;
}

static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	unsigned int mask = 0;

	poll_wait(file, &ctx->switch_log->wait, wait);

	if (spufs_switch_log_used(ctx) > 0)
		mask |= POLLIN;

	return mask;
}

static const struct file_operations spufs_switch_log_fops = {
	.owner	= THIS_MODULE,
	.open	= spufs_switch_log_open,
	.read	= spufs_switch_log_read,
	.poll	= spufs_switch_log_poll,
};

void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
		u32 type, u32 val)
{
	if (!ctx->switch_log)
		return;

	spin_lock(&ctx->switch_log->lock);
	if (spufs_switch_log_avail(ctx) > 1) {
		struct switch_log_entry *p;

		p = ctx->switch_log->log + ctx->switch_log->head;
		ktime_get_ts(&p->tstamp);
		p->timebase = get_tb();
		p->spu_id = spu ? spu->number : -1;
		p->type = type;
		p->val = val;

		ctx->switch_log->head =
			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
	}
	spin_unlock(&ctx->switch_log->lock);

	wake_up(&ctx->switch_log->wait);
}
2557

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
static int spufs_show_ctx(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
	u64 mfc_control_RW;

	mutex_lock(&ctx->state_mutex);
	if (ctx->spu) {
		struct spu *spu = ctx->spu;
		struct spu_priv2 __iomem *priv2 = spu->priv2;

		spin_lock_irq(&spu->register_lock);
		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
		spin_unlock_irq(&spu->register_lock);
	} else {
		struct spu_state *csa = &ctx->csa;

		mfc_control_RW = csa->priv2.mfc_control_RW;
	}

	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
		" %c %lx %lx %lx %lx %x %x\n",
		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
		ctx->flags,
		ctx->sched_flags,
		ctx->prio,
		ctx->time_slice,
		ctx->spu ? ctx->spu->number : -1,
		!list_empty(&ctx->rq) ? 'q' : ' ',
		ctx->csa.class_0_pending,
		ctx->csa.class_0_dar,
		ctx->csa.class_1_dsisr,
		mfc_control_RW,
		ctx->ops->runcntl_read(ctx),
		ctx->ops->status_read(ctx));

	mutex_unlock(&ctx->state_mutex);

	return 0;
}

static int spufs_ctx_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_ctx_fops = {
	.open           = spufs_ctx_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

2610
struct spufs_tree_descr spufs_dir_contents[] = {
2611
	{ "capabilities", &spufs_caps_fops, 0444, },
2612 2613
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2614 2615 2616
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2617 2618 2619
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2620 2621
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2622 2623
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2624
	{ "cntl", &spufs_cntl_fops,  0666, },
2625
	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2626 2627 2628 2629 2630
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2631 2632 2633
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2634
	{ "event_status", &spufs_event_status_ops, 0444, },
2635
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2636 2637
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2638 2639 2640 2641 2642 2643 2644
	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
	{ "dma_info", &spufs_dma_info_fops, 0444,
		sizeof(struct spu_dma_info), },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
		sizeof(struct spu_proxydma_info)},
2645
	{ "tid", &spufs_tid_fops, 0444, },
2646
	{ "stat", &spufs_stat_fops, 0444, },
2647
	{ "switch_log", &spufs_switch_log_fops, 0444 },
2648 2649
	{},
};
2650

2651
struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2652
	{ "capabilities", &spufs_caps_fops, 0444, },
2653
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2654 2655 2656
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2657 2658 2659
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2660 2661
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2662 2663 2664 2665 2666 2667
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
2668
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2669 2670
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2671
	{ "tid", &spufs_tid_fops, 0444, },
2672
	{ "stat", &spufs_stat_fops, 0444, },
2673 2674 2675 2676
	{},
};

struct spufs_tree_descr spufs_dir_debug_contents[] = {
2677
	{ ".ctx", &spufs_ctx_fops, 0444, },
2678 2679
	{},
};
2680 2681

struct spufs_coredump_reader spufs_coredump_read[] = {
2682 2683
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2684 2685 2686
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2687 2688
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2689
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2690
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2691 2692 2693
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2694 2695 2696 2697 2698 2699
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2700 2701
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2702
	{ NULL },
2703
};