file.c 61.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32
#include <linux/marker.h>
33 34 35

#include <asm/io.h>
#include <asm/spu.h>
36
#include <asm/spu_info.h>
37 38 39 40
#include <asm/uaccess.h>

#include "spufs.h"

41 42
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
static struct file_operations __fops = {				\
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

157

158 159 160 161
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
162
	struct spu_context *ctx = i->i_ctx;
163

164
	mutex_lock(&ctx->mapping_lock);
165
	file->private_data = ctx;
166 167
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
168
	mutex_unlock(&ctx->mapping_lock);
169 170 171 172 173 174 175 176 177
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

178
	mutex_lock(&ctx->mapping_lock);
179 180
	if (!--i->i_openers)
		ctx->local_store = NULL;
181
	mutex_unlock(&ctx->mapping_lock);
182 183 184
	return 0;
}

185 186 187 188 189 190 191 192 193
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

194 195 196 197
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
198
	struct spu_context *ctx = file->private_data;
199
	ssize_t ret;
200

201 202 203
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
204
	ret = __spufs_mem_read(ctx, buffer, size, pos);
205
	spu_release(ctx);
206

207 208 209 210 211
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
212
					size_t size, loff_t *ppos)
213 214
{
	struct spu_context *ctx = file->private_data;
215
	char *local_store;
216
	loff_t pos = *ppos;
217
	int ret;
218

219 220 221
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
222
		return -EFBIG;
223 224
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
225

226 227 228 229
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

230
	local_store = ctx->ops->get_ls(ctx);
231
	ret = copy_from_user(local_store + pos, buffer, size);
232
	spu_release(ctx);
233 234 235 236 237

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
238 239
}

240 241
static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
242
{
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	struct spu_context *ctx	= vma->vm_file->private_data;
	unsigned long pfn, offset, addr0 = address;
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
261

262
	offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
263 264 265
	if (offset >= LS_SIZE)
		return NOPFN_SIGBUS;

266 267 268
	pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
		 addr0, address, offset);

269 270
	if (spu_acquire(ctx))
		return NOPFN_REFAULT;
271

272 273
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
274
							& ~_PAGE_NO_CACHE);
275
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
276 277
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
278 279
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
280
	}
281
	vm_insert_pfn(vma, address, pfn);
282

283
	spu_release(ctx);
284

285
	return NOPFN_REFAULT;
286 287
}

288

289
static struct vm_operations_struct spufs_mem_mmap_vmops = {
290
	.nopfn = spufs_mem_mmap_nopfn,
291 292
};

293
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
294
{
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

311 312
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
313

314
	vma->vm_flags |= VM_IO | VM_PFNMAP;
315 316 317 318
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
319 320 321
	return 0;
}

322
#ifdef CONFIG_SPU_FS_64K_LS
323 324 325
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

341
static const struct file_operations spufs_mem_fops = {
342 343 344 345 346 347
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
348 349 350
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
351 352
};

353
static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
354
				    unsigned long address,
355
				    unsigned long ps_offs,
356
				    unsigned long ps_size)
357 358
{
	struct spu_context *ctx = vma->vm_file->private_data;
359
	unsigned long area, offset = address - vma->vm_start;
360
	int ret = 0;
361

362 363
	spu_context_nospu_trace(spufs_ps_nopfn__enter, ctx);

364
	offset += vma->vm_pgoff << PAGE_SHIFT;
365
	if (offset >= ps_size)
366
		return NOPFN_SIGBUS;
367

368 369 370 371 372 373 374
	/*
	 * Because we release the mmap_sem, the context may be destroyed while
	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
	 * in the meantime.
	 */
	get_spu_context(ctx);

375 376 377 378 379 380 381
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
	 * to return NOPFN_REFAULT because the mappings may have
	 * hanged.
382
	 */
383
	if (spu_acquire(ctx))
384
		goto refault;
385

386 387
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
388
		spu_context_nospu_trace(spufs_ps_nopfn__sleep, ctx);
389
		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
390
		spu_context_trace(spufs_ps_nopfn__wake, ctx, ctx->spu);
391
		down_read(&current->mm->mmap_sem);
392 393 394
	} else {
		area = ctx->spu->problem_phys + ps_offs;
		vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
395
		spu_context_trace(spufs_ps_nopfn__insert, ctx, ctx->spu);
396
	}
397

398 399
	if (!ret)
		spu_release(ctx);
400 401 402

refault:
	put_spu_context(ctx);
403
	return NOPFN_REFAULT;
404 405
}

406
#if SPUFS_MMAP_4K
407 408
static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
					   unsigned long address)
409
{
410
	return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
411 412 413
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
414
	.nopfn = spufs_cntl_mmap_nopfn,
415 416 417 418 419 420 421 422 423 424
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

425
	vma->vm_flags |= VM_IO | VM_PFNMAP;
426
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
427
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
428 429 430 431

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
432 433 434
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
435

436
static int spufs_cntl_get(void *data, u64 *val)
437
{
438
	struct spu_context *ctx = data;
439
	int ret;
440

441 442 443
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
444
	*val = ctx->ops->status_read(ctx);
445 446
	spu_release(ctx);

447
	return 0;
448 449
}

450
static int spufs_cntl_set(void *data, u64 val)
451
{
452
	struct spu_context *ctx = data;
453
	int ret;
454

455 456 457
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
458 459
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
460 461

	return 0;
462 463
}

464
static int spufs_cntl_open(struct inode *inode, struct file *file)
465
{
466 467 468
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

469
	mutex_lock(&ctx->mapping_lock);
470
	file->private_data = ctx;
471 472
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
473
	mutex_unlock(&ctx->mapping_lock);
474
	return simple_attr_open(inode, file, spufs_cntl_get,
475
					spufs_cntl_set, "0x%08lx");
476 477
}

478 479 480 481 482 483
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

484
	simple_attr_release(inode, file);
485

486
	mutex_lock(&ctx->mapping_lock);
487 488
	if (!--i->i_openers)
		ctx->cntl = NULL;
489
	mutex_unlock(&ctx->mapping_lock);
490 491 492
	return 0;
}

493
static const struct file_operations spufs_cntl_fops = {
494
	.open = spufs_cntl_open,
495
	.release = spufs_cntl_release,
496 497
	.read = simple_attr_read,
	.write = simple_attr_write,
498 499 500
	.mmap = spufs_cntl_mmap,
};

501 502 503 504 505 506 507 508
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

509 510 511 512 513 514 515 516 517
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

518 519 520 521 522
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
523
	struct spu_context *ctx = file->private_data;
524

525 526 527
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
528
	ret = __spufs_regs_read(ctx, buffer, size, pos);
529
	spu_release_saved(ctx);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

546 547 548
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
549 550 551 552

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

553
	spu_release_saved(ctx);
554 555 556
	return ret;
}

557
static const struct file_operations spufs_regs_fops = {
558 559 560
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
561 562 563
	.llseek  = generic_file_llseek,
};

564 565 566 567 568 569 570 571 572
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

573 574 575 576 577
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
578
	struct spu_context *ctx = file->private_data;
579

580 581 582
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
583
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
584
	spu_release_saved(ctx);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;

600 601 602
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
603

604
	*pos += size;
605 606 607
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

608
	spu_release_saved(ctx);
609 610 611
	return ret;
}

612
static const struct file_operations spufs_fpcr_fops = {
613 614 615 616 617 618
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

619 620 621 622 623 624 625 626 627
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

628 629 630 631 632 633 634 635
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
636 637 638
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
639
	struct spu_context *ctx = file->private_data;
640 641
	u32 mbox_data, __user *udata;
	ssize_t count;
642 643 644 645

	if (len < 4)
		return -EINVAL;

646 647 648 649 650
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

651 652 653 654
	count = spu_acquire(ctx);
	if (count)
		return count;

655
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
673
	spu_release(ctx);
674

675 676
	if (!count)
		count = -EAGAIN;
677

678
	return count;
679 680
}

681
static const struct file_operations spufs_mbox_fops = {
682 683 684 685 686 687 688
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
689
	struct spu_context *ctx = file->private_data;
690
	ssize_t ret;
691 692 693 694 695
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

696 697 698
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
699 700 701 702

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
703 704 705 706 707 708 709

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

710
static const struct file_operations spufs_mbox_stat_fops = {
711 712 713 714 715
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
716
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
717
{
718 719
	return ctx->ops->ibox_read(ctx, data);
}
720

721 722 723
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
724

725
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
726 727
}

728 729
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
730
{
731 732
	struct spu_context *ctx = spu->ctx;

733 734 735
	if (!ctx)
		return;

736 737
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
738 739
}

740 741 742 743 744 745 746 747 748 749 750 751
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
752 753 754
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
755
	struct spu_context *ctx = file->private_data;
756 757
	u32 ibox_data, __user *udata;
	ssize_t count;
758 759 760 761

	if (len < 4)
		return -EINVAL;

762 763 764 765 766
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

767 768
	count = spu_acquire(ctx);
	if (count)
769
		goto out;
770

771 772
	/* wait only for the first element */
	count = 0;
773
	if (file->f_flags & O_NONBLOCK) {
774
		if (!spu_ibox_read(ctx, &ibox_data)) {
775
			count = -EAGAIN;
776 777
			goto out_unlock;
		}
778
	} else {
779
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
780 781
		if (count)
			goto out;
782 783
	}

784 785 786
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
787
		goto out_unlock;
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
803

804
out_unlock:
805
	spu_release(ctx);
806
out:
807
	return count;
808 809 810 811
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
812
	struct spu_context *ctx = file->private_data;
813 814
	unsigned int mask;

815
	poll_wait(file, &ctx->ibox_wq, wait);
816

817 818 819 820 821
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
822 823
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
824 825 826 827

	return mask;
}

828
static const struct file_operations spufs_ibox_fops = {
829 830 831 832 833 834 835 836 837
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
838
	struct spu_context *ctx = file->private_data;
839
	ssize_t ret;
840 841 842 843 844
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

845 846 847
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
848 849
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
850 851 852 853 854 855 856

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

857
static const struct file_operations spufs_ibox_stat_fops = {
858 859 860 861 862
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
863
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
864
{
865 866
	return ctx->ops->wbox_write(ctx, data);
}
867

868 869 870 871
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
872

873
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
874 875 876 877

	return ret;
}

878 879
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
880
{
881 882
	struct spu_context *ctx = spu->ctx;

883 884 885
	if (!ctx)
		return;

886 887
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
888 889
}

890 891 892 893 894 895 896 897 898 899 900 901
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
902 903 904
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
905
	struct spu_context *ctx = file->private_data;
906 907
	u32 wbox_data, __user *udata;
	ssize_t count;
908 909 910 911

	if (len < 4)
		return -EINVAL;

912 913 914 915 916
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
917 918
		return -EFAULT;

919 920
	count = spu_acquire(ctx);
	if (count)
921
		goto out;
922

923 924 925 926 927
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
928
	if (file->f_flags & O_NONBLOCK) {
929
		if (!spu_wbox_write(ctx, wbox_data)) {
930
			count = -EAGAIN;
931 932
			goto out_unlock;
		}
933
	} else {
934
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
935 936
		if (count)
			goto out;
937 938
	}

939

940
	/* write as much as possible */
941 942 943 944 945 946 947 948 949 950 951
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

952
out_unlock:
953
	spu_release(ctx);
954
out:
955
	return count;
956 957 958 959
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
960
	struct spu_context *ctx = file->private_data;
961 962
	unsigned int mask;

963
	poll_wait(file, &ctx->wbox_wq, wait);
964

965 966 967 968 969
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
970 971
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
972 973 974 975

	return mask;
}

976
static const struct file_operations spufs_wbox_fops = {
977 978 979 980 981 982 983 984 985
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
986
	struct spu_context *ctx = file->private_data;
987
	ssize_t ret;
988 989 990 991 992
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

993 994 995
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
996 997
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
998 999 1000 1001 1002 1003 1004

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

1005
static const struct file_operations spufs_wbox_stat_fops = {
1006 1007 1008 1009
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

1010 1011 1012 1013
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1014

1015
	mutex_lock(&ctx->mapping_lock);
1016
	file->private_data = ctx;
1017 1018
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1019
	mutex_unlock(&ctx->mapping_lock);
1020 1021 1022
	return nonseekable_open(inode, file);
}

1023 1024 1025 1026 1027 1028
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1029
	mutex_lock(&ctx->mapping_lock);
1030 1031
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1032
	mutex_unlock(&ctx->mapping_lock);
1033 1034 1035
	return 0;
}

1036
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1037 1038
			size_t len, loff_t *pos)
{
1039
	int ret = 0;
1040 1041 1042 1043 1044
	u32 data;

	if (len < 4)
		return -EINVAL;

1045 1046 1047 1048
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1049

1050 1051 1052
	if (!ret)
		goto out;

1053 1054 1055
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1056 1057
out:
	return ret;
1058 1059
}

1060 1061 1062 1063 1064 1065
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1066 1067 1068
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1069
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1070
	spu_release_saved(ctx);
1071 1072 1073 1074

	return ret;
}

1075 1076 1077 1078
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1079
	ssize_t ret;
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1090 1091 1092
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1093 1094
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1095 1096 1097 1098

	return 4;
}

1099 1100
static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1101
{
1102
#if PAGE_SIZE == 0x1000
1103
	return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
1104 1105 1106 1107
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1108
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1109 1110 1111
#else
#error unsupported page size
#endif
1112 1113 1114
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
1115
	.nopfn = spufs_signal1_mmap_nopfn,
1116 1117 1118 1119 1120 1121 1122
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1123
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1124
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1125
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1126 1127 1128 1129 1130

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1131
static const struct file_operations spufs_signal1_fops = {
1132
	.open = spufs_signal1_open,
1133
	.release = spufs_signal1_release,
1134 1135
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1136
	.mmap = spufs_signal1_mmap,
1137 1138
};

1139 1140 1141 1142 1143 1144 1145
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1146 1147 1148 1149
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1150

1151
	mutex_lock(&ctx->mapping_lock);
1152
	file->private_data = ctx;
1153 1154
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1155
	mutex_unlock(&ctx->mapping_lock);
1156 1157 1158
	return nonseekable_open(inode, file);
}

1159 1160 1161 1162 1163 1164
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1165
	mutex_lock(&ctx->mapping_lock);
1166 1167
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1168
	mutex_unlock(&ctx->mapping_lock);
1169 1170 1171
	return 0;
}

1172
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1173 1174
			size_t len, loff_t *pos)
{
1175
	int ret = 0;
1176 1177 1178 1179 1180
	u32 data;

	if (len < 4)
		return -EINVAL;

1181 1182 1183 1184
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1185

1186 1187 1188
	if (!ret)
		goto out;

1189 1190 1191
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1192
out:
1193 1194 1195 1196 1197 1198 1199 1200 1201
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1202 1203 1204
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1205
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1206
	spu_release_saved(ctx);
1207 1208

	return ret;
1209 1210 1211 1212 1213 1214
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1215
	ssize_t ret;
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1226 1227 1228
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1229 1230
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1231 1232 1233 1234

	return 4;
}

1235
#if SPUFS_MMAP_4K
1236 1237
static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
					      unsigned long address)
1238
{
1239
#if PAGE_SIZE == 0x1000
1240
	return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1241 1242 1243 1244
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1245
	return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1246 1247 1248
#else
#error unsupported page size
#endif
1249 1250 1251
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1252
	.nopfn = spufs_signal2_mmap_nopfn,
1253 1254 1255 1256 1257 1258 1259
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1260
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1261
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1262
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1263 1264 1265 1266

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1267 1268 1269
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1270

1271
static const struct file_operations spufs_signal2_fops = {
1272
	.open = spufs_signal2_open,
1273
	.release = spufs_signal2_release,
1274 1275
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1276
	.mmap = spufs_signal2_mmap,
1277 1278
};

1279 1280 1281 1282 1283 1284 1285
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1296
static int __##__get(void *data, u64 *val)				\
1297 1298
{									\
	struct spu_context *ctx = data;					\
1299
	int ret = 0;							\
1300 1301
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1302 1303 1304
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1305
		*val = __get(ctx);					\
1306 1307
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1308 1309 1310
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1311
		*val = __get(ctx);					\
1312 1313
		spu_release_saved(ctx);					\
	} else								\
1314
		*val = __get(ctx);					\
1315
									\
1316
	return 0;							\
1317
}									\
1318
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1319

1320
static int spufs_signal1_type_set(void *data, u64 val)
1321 1322
{
	struct spu_context *ctx = data;
1323
	int ret;
1324

1325 1326 1327
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1328 1329
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1330 1331

	return 0;
1332 1333
}

1334
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1335 1336 1337
{
	return ctx->ops->signal1_type_get(ctx);
}
1338
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1339
		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1340

1341

1342
static int spufs_signal2_type_set(void *data, u64 val)
1343 1344
{
	struct spu_context *ctx = data;
1345
	int ret;
1346

1347 1348 1349
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1350 1351
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1352 1353

	return 0;
1354 1355
}

1356
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1357 1358 1359
{
	return ctx->ops->signal2_type_get(ctx);
}
1360
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1361
		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1362

1363
#if SPUFS_MMAP_4K
1364 1365
static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1366
{
1367
	return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1368 1369 1370
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
1371
	.nopfn = spufs_mss_mmap_nopfn,
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1382
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1383
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1384
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1385 1386 1387 1388

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1389 1390 1391
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1392 1393 1394 1395

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1396
	struct spu_context *ctx = i->i_ctx;
1397 1398

	file->private_data = i->i_ctx;
1399

1400
	mutex_lock(&ctx->mapping_lock);
1401 1402
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1403
	mutex_unlock(&ctx->mapping_lock);
1404 1405 1406
	return nonseekable_open(inode, file);
}

1407 1408 1409 1410 1411 1412
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1413
	mutex_lock(&ctx->mapping_lock);
1414 1415
	if (!--i->i_openers)
		ctx->mss = NULL;
1416
	mutex_unlock(&ctx->mapping_lock);
1417 1418 1419
	return 0;
}

1420
static const struct file_operations spufs_mss_fops = {
1421
	.open	 = spufs_mss_open,
1422
	.release = spufs_mss_release,
1423
	.mmap	 = spufs_mss_mmap,
1424 1425
};

1426 1427
static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
					    unsigned long address)
1428
{
1429
	return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1430 1431 1432
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1433
	.nopfn = spufs_psmap_mmap_nopfn,
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1444
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1455
	struct spu_context *ctx = i->i_ctx;
1456

1457
	mutex_lock(&ctx->mapping_lock);
1458
	file->private_data = i->i_ctx;
1459 1460
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1461
	mutex_unlock(&ctx->mapping_lock);
1462 1463 1464
	return nonseekable_open(inode, file);
}

1465 1466 1467 1468 1469 1470
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1471
	mutex_lock(&ctx->mapping_lock);
1472 1473
	if (!--i->i_openers)
		ctx->psmap = NULL;
1474
	mutex_unlock(&ctx->mapping_lock);
1475 1476 1477
	return 0;
}

1478
static const struct file_operations spufs_psmap_fops = {
1479
	.open	 = spufs_psmap_open,
1480
	.release = spufs_psmap_release,
1481
	.mmap	 = spufs_psmap_mmap,
1482 1483 1484
};


1485
#if SPUFS_MMAP_4K
1486 1487
static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
					  unsigned long address)
1488
{
1489
	return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1490 1491 1492
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1493
	.nopfn = spufs_mfc_mmap_nopfn,
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1504
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1505
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1506
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1507 1508 1509 1510

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1511 1512 1513
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1527
	mutex_lock(&ctx->mapping_lock);
1528
	file->private_data = ctx;
1529 1530
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1531
	mutex_unlock(&ctx->mapping_lock);
1532 1533 1534
	return nonseekable_open(inode, file);
}

1535 1536 1537 1538 1539 1540
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1541
	mutex_lock(&ctx->mapping_lock);
1542 1543
	if (!--i->i_openers)
		ctx->mfc = NULL;
1544
	mutex_unlock(&ctx->mapping_lock);
1545 1546 1547
	return 0;
}

1548 1549 1550 1551 1552
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1553 1554 1555
	if (!ctx)
		return;

1556 1557
	wake_up_all(&ctx->mfc_wq);

1558
	pr_debug("%s %s\n", __func__, spu->name);
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1602 1603 1604 1605 1606
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1607 1608 1609 1610 1611
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1612
			/* XXX(hch): shouldn't we clear ret here? */
1613 1614 1615 1616
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
1617 1618
		if (ret)
			goto out;
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	}
	spu_release(ctx);

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1736 1737 1738 1739
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1740
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1741 1742 1743
	if (ret)
		goto out;

1744 1745 1746 1747 1748 1749
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
1750 1751
		if (ret)
			goto out;
1752 1753 1754 1755 1756
		if (status)
			ret = status;
	}

	if (ret)
1757
		goto out_unlock;
1758 1759

	ctx->tagwait |= 1 << cmd.tag;
1760
	ret = size;
1761

1762 1763
out_unlock:
	spu_release(ctx);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1774 1775
	poll_wait(file, &ctx->mfc_wq, wait);

1776 1777 1778 1779 1780
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

1792
	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1793 1794 1795 1796 1797
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1798
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1799 1800 1801 1802
{
	struct spu_context *ctx = file->private_data;
	int ret;

1803 1804
	ret = spu_acquire(ctx);
	if (ret)
1805
		goto out;
1806 1807 1808 1809 1810 1811 1812 1813
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1814 1815
	if (ret)
		goto out;
1816 1817 1818 1819
#else
	ret = 0;
#endif
	spu_release(ctx);
1820
out:
1821 1822 1823 1824 1825 1826
	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1827
	return spufs_mfc_flush(file, NULL);
1828 1829 1830 1831 1832 1833 1834 1835 1836
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1837
static const struct file_operations spufs_mfc_fops = {
1838
	.open	 = spufs_mfc_open,
1839
	.release = spufs_mfc_release,
1840 1841 1842 1843 1844 1845
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1846
	.mmap	 = spufs_mfc_mmap,
1847 1848
};

1849
static int spufs_npc_set(void *data, u64 val)
1850 1851
{
	struct spu_context *ctx = data;
1852 1853 1854 1855 1856
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1857 1858
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1859 1860

	return 0;
1861 1862
}

1863
static u64 spufs_npc_get(struct spu_context *ctx)
1864 1865 1866
{
	return ctx->ops->npc_read(ctx);
}
1867 1868
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1869

1870
static int spufs_decr_set(void *data, u64 val)
1871 1872 1873
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1874 1875 1876 1877 1878
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1879
	lscsa->decr.slot[0] = (u32) val;
1880
	spu_release_saved(ctx);
1881 1882

	return 0;
1883 1884
}

1885
static u64 spufs_decr_get(struct spu_context *ctx)
1886 1887
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1888 1889
	return lscsa->decr.slot[0];
}
1890 1891
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1892

1893
static int spufs_decr_status_set(void *data, u64 val)
1894 1895
{
	struct spu_context *ctx = data;
1896 1897 1898 1899 1900
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1901 1902 1903 1904
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1905
	spu_release_saved(ctx);
1906 1907

	return 0;
1908 1909
}

1910
static u64 spufs_decr_status_get(struct spu_context *ctx)
1911
{
1912 1913 1914 1915
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1916
}
1917 1918 1919
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1920

1921
static int spufs_event_mask_set(void *data, u64 val)
1922 1923 1924
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1925 1926 1927 1928 1929
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1930
	lscsa->event_mask.slot[0] = (u32) val;
1931
	spu_release_saved(ctx);
1932 1933

	return 0;
1934 1935
}

1936
static u64 spufs_event_mask_get(struct spu_context *ctx)
1937 1938
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1939 1940 1941
	return lscsa->event_mask.slot[0];
}

1942 1943 1944
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1945

1946
static u64 spufs_event_status_get(struct spu_context *ctx)
1947 1948 1949 1950 1951
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1952 1953 1954
		return state->spu_chnldata_RW[0];
	return 0;
}
1955 1956
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1957

1958
static int spufs_srr0_set(void *data, u64 val)
1959 1960 1961
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1962 1963 1964 1965 1966
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1967
	lscsa->srr0.slot[0] = (u32) val;
1968
	spu_release_saved(ctx);
1969 1970

	return 0;
1971 1972
}

1973
static u64 spufs_srr0_get(struct spu_context *ctx)
1974 1975
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1976
	return lscsa->srr0.slot[0];
1977
}
1978 1979
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1980

1981
static u64 spufs_id_get(struct spu_context *ctx)
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
1992 1993
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
1994

1995
static u64 spufs_object_id_get(struct spu_context *ctx)
1996 1997
{
	/* FIXME: Should there really be no locking here? */
1998
	return ctx->object_id;
1999 2000
}

2001
static int spufs_object_id_set(void *data, u64 id)
2002 2003 2004
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
2005 2006

	return 0;
2007 2008
}

2009 2010
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2011

2012
static u64 spufs_lslr_get(struct spu_context *ctx)
2013 2014 2015
{
	return ctx->csa.priv2.spu_lslr_RW;
}
2016 2017
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2018 2019 2020 2021 2022 2023 2024 2025 2026

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2050 2051 2052 2053 2054
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2055 2056 2057 2058 2059
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2060 2061 2062 2063

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2064 2065 2066
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2067
	int ret;
2068 2069 2070 2071 2072
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2073 2074 2075
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2076
	spin_lock(&ctx->csa.register_lock);
2077
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2078
	spin_unlock(&ctx->csa.register_lock);
2079
	spu_release_saved(ctx);
2080

2081
	return ret;
2082 2083
}

2084
static const struct file_operations spufs_mbox_info_fops = {
2085 2086 2087 2088 2089
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2090 2091 2092 2093 2094
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2095 2096 2097 2098 2099
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2100 2101 2102 2103

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2104 2105 2106 2107
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2108
	int ret;
2109 2110 2111 2112

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2113 2114 2115
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2116
	spin_lock(&ctx->csa.register_lock);
2117
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2118
	spin_unlock(&ctx->csa.register_lock);
2119
	spu_release_saved(ctx);
2120

2121
	return ret;
2122 2123
}

2124
static const struct file_operations spufs_ibox_info_fops = {
2125 2126 2127 2128 2129
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2130 2131
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2132 2133 2134 2135 2136
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2153 2154 2155
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2156 2157 2158
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2159
	spin_lock(&ctx->csa.register_lock);
2160
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2161
	spin_unlock(&ctx->csa.register_lock);
2162
	spu_release_saved(ctx);
2163

2164
	return ret;
2165 2166
}

2167
static const struct file_operations spufs_wbox_info_fops = {
2168 2169 2170 2171 2172
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2173 2174
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2199 2200 2201 2202 2203 2204 2205 2206 2207
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2208 2209 2210
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2211 2212 2213
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2214
	spu_release_saved(ctx);
2215 2216 2217 2218

	return ret;
}

2219
static const struct file_operations spufs_dma_info_fops = {
2220 2221 2222 2223
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2224 2225
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2226 2227 2228
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2229
	int ret = sizeof info;
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2261 2262 2263
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2264 2265
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2266
	spin_unlock(&ctx->csa.register_lock);
2267
	spu_release_saved(ctx);
2268 2269 2270 2271

	return ret;
}

2272
static const struct file_operations spufs_proxydma_info_fops = {
2273 2274 2275 2276
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2297 2298 2299 2300 2301
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2302
		enum spu_utilization_state state)
2303
{
2304 2305
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2306

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2320

2321
	return time / NSEC_PER_MSEC;
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2352 2353 2354 2355 2356
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2357 2358 2359

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2360 2361 2362 2363 2364
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
static inline int spufs_switch_log_used(struct spu_context *ctx)
{
	return (ctx->switch_log->head - ctx->switch_log->tail) %
		SWITCH_LOG_BUFSIZE;
}

static inline int spufs_switch_log_avail(struct spu_context *ctx)
{
	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
}

static int spufs_switch_log_open(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;

	/*
	 * We (ab-)use the mapping_lock here because it serves the similar
	 * purpose for synchronizing open/close elsewhere.  Maybe it should
	 * be renamed eventually.
	 */
	mutex_lock(&ctx->mapping_lock);
	if (ctx->switch_log) {
		spin_lock(&ctx->switch_log->lock);
		ctx->switch_log->head = 0;
		ctx->switch_log->tail = 0;
		spin_unlock(&ctx->switch_log->lock);
	} else {
		/*
		 * We allocate the switch log data structures on first open.
		 * They will never be free because we assume a context will
		 * be traced until it goes away.
		 */
		ctx->switch_log = kzalloc(sizeof(struct switch_log) +
			SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
			GFP_KERNEL);
		if (!ctx->switch_log)
			goto out;
		spin_lock_init(&ctx->switch_log->lock);
		init_waitqueue_head(&ctx->switch_log->wait);
	}
	mutex_unlock(&ctx->mapping_lock);

	return 0;
 out:
	mutex_unlock(&ctx->mapping_lock);
	return -ENOMEM;
}

static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
{
	struct switch_log_entry *p;

	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;

	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
			(unsigned int) p->tstamp.tv_sec,
			(unsigned int) p->tstamp.tv_nsec,
			p->spu_id,
			(unsigned int) p->type,
			(unsigned int) p->val,
			(unsigned long long) p->timebase);
}

static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
			     size_t len, loff_t *ppos)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int error = 0, cnt = 0;

	if (!buf || len < 0)
		return -EINVAL;

	while (cnt < len) {
		char tbuf[128];
		int width;

		if (file->f_flags & O_NONBLOCK) {
			if (spufs_switch_log_used(ctx) <= 0)
				return cnt ? cnt : -EAGAIN;
		} else {
			/* Wait for data in buffer */
			error = wait_event_interruptible(ctx->switch_log->wait,
					spufs_switch_log_used(ctx) > 0);
			if (error)
				break;
		}

		spin_lock(&ctx->switch_log->lock);
		if (ctx->switch_log->head == ctx->switch_log->tail) {
			/* multiple readers race? */
			spin_unlock(&ctx->switch_log->lock);
			continue;
		}

		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
		if (width < len) {
			ctx->switch_log->tail =
				(ctx->switch_log->tail + 1) %
				 SWITCH_LOG_BUFSIZE;
		}

		spin_unlock(&ctx->switch_log->lock);

		/*
		 * If the record is greater than space available return
		 * partial buffer (so far)
		 */
		if (width >= len)
			break;

		error = copy_to_user(buf + cnt, tbuf, width);
		if (error)
			break;
		cnt += width;
	}

	return cnt == 0 ? error : cnt;
}

static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	unsigned int mask = 0;

	poll_wait(file, &ctx->switch_log->wait, wait);

	if (spufs_switch_log_used(ctx) > 0)
		mask |= POLLIN;

	return mask;
}

static const struct file_operations spufs_switch_log_fops = {
	.owner	= THIS_MODULE,
	.open	= spufs_switch_log_open,
	.read	= spufs_switch_log_read,
	.poll	= spufs_switch_log_poll,
};

void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
		u32 type, u32 val)
{
	if (!ctx->switch_log)
		return;

	spin_lock(&ctx->switch_log->lock);
	if (spufs_switch_log_avail(ctx) > 1) {
		struct switch_log_entry *p;

		p = ctx->switch_log->log + ctx->switch_log->head;
		ktime_get_ts(&p->tstamp);
		p->timebase = get_tb();
		p->spu_id = spu ? spu->number : -1;
		p->type = type;
		p->val = val;

		ctx->switch_log->head =
			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
	}
	spin_unlock(&ctx->switch_log->lock);

	wake_up(&ctx->switch_log->wait);
}
2554

2555
struct tree_descr spufs_dir_contents[] = {
2556
	{ "capabilities", &spufs_caps_fops, 0444, },
2557
	{ "mem",  &spufs_mem_fops,  0666, },
2558
	{ "regs", &spufs_regs_fops,  0666, },
2559 2560 2561 2562 2563 2564
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2565 2566
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2567 2568
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2569
	{ "cntl", &spufs_cntl_fops,  0666, },
2570
	{ "fpcr", &spufs_fpcr_fops, 0666, },
2571 2572 2573 2574 2575
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2576 2577 2578
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2579
	{ "event_status", &spufs_event_status_ops, 0444, },
2580
	{ "psmap", &spufs_psmap_fops, 0666, },
2581 2582
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2583 2584 2585
	{ "mbox_info", &spufs_mbox_info_fops, 0444, },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, },
2586 2587
	{ "dma_info", &spufs_dma_info_fops, 0444, },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2588
	{ "tid", &spufs_tid_fops, 0444, },
2589
	{ "stat", &spufs_stat_fops, 0444, },
2590
	{ "switch_log", &spufs_switch_log_fops, 0444 },
2591 2592
	{},
};
2593 2594

struct tree_descr spufs_dir_nosched_contents[] = {
2595
	{ "capabilities", &spufs_caps_fops, 0444, },
2596 2597 2598 2599 2600 2601 2602
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2603 2604
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2605 2606 2607 2608 2609 2610 2611 2612 2613
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2614
	{ "tid", &spufs_tid_fops, 0444, },
2615
	{ "stat", &spufs_stat_fops, 0444, },
2616 2617
	{},
};
2618 2619

struct spufs_coredump_reader spufs_coredump_read[] = {
2620 2621
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2622 2623 2624
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2625 2626
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2627
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2628
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2629 2630 2631
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2632 2633 2634 2635 2636 2637
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2638 2639
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2640
	{ NULL },
2641
};