file.c 64.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32
#include <linux/marker.h>
33 34

#include <asm/io.h>
35
#include <asm/time.h>
36
#include <asm/spu.h>
37
#include <asm/spu_info.h>
38 39 40 41
#include <asm/uaccess.h>

#include "spufs.h"

42 43
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
static struct file_operations __fops = {				\
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

158

159 160 161 162
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
163
	struct spu_context *ctx = i->i_ctx;
164

165
	mutex_lock(&ctx->mapping_lock);
166
	file->private_data = ctx;
167 168
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
169
	mutex_unlock(&ctx->mapping_lock);
170 171 172 173 174 175 176 177 178
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

179
	mutex_lock(&ctx->mapping_lock);
180 181
	if (!--i->i_openers)
		ctx->local_store = NULL;
182
	mutex_unlock(&ctx->mapping_lock);
183 184 185
	return 0;
}

186 187 188 189 190 191 192 193 194
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

195 196 197 198
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
199
	struct spu_context *ctx = file->private_data;
200
	ssize_t ret;
201

202 203 204
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
205
	ret = __spufs_mem_read(ctx, buffer, size, pos);
206
	spu_release(ctx);
207

208 209 210 211 212
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
213
					size_t size, loff_t *ppos)
214 215
{
	struct spu_context *ctx = file->private_data;
216
	char *local_store;
217
	loff_t pos = *ppos;
218
	int ret;
219

220 221 222
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
223
		return -EFBIG;
224 225
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
226

227 228 229 230
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

231
	local_store = ctx->ops->get_ls(ctx);
232
	ret = copy_from_user(local_store + pos, buffer, size);
233
	spu_release(ctx);
234 235 236 237 238

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
239 240
}

N
Nick Piggin 已提交
241 242
static int
spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243
{
244
	struct spu_context *ctx	= vma->vm_file->private_data;
N
Nick Piggin 已提交
245 246 247
	unsigned long address = (unsigned long)vmf->virtual_address;
	unsigned long pfn, offset;

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
264

N
Nick Piggin 已提交
265
	offset = vmf->pgoff << PAGE_SHIFT;
266
	if (offset >= LS_SIZE)
N
Nick Piggin 已提交
267
		return VM_FAULT_SIGBUS;
268

N
Nick Piggin 已提交
269 270
	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
			address, offset);
271

272
	if (spu_acquire(ctx))
N
Nick Piggin 已提交
273
		return VM_FAULT_NOPAGE;
274

275 276
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
277
							& ~_PAGE_NO_CACHE);
278
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
279 280
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
281 282
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
283
	}
284
	vm_insert_pfn(vma, address, pfn);
285

286
	spu_release(ctx);
287

N
Nick Piggin 已提交
288
	return VM_FAULT_NOPAGE;
289 290
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static int spufs_mem_mmap_access(struct vm_area_struct *vma,
				unsigned long address,
				void *buf, int len, int write)
{
	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	char *local_store;

	if (write && !(vma->vm_flags & VM_WRITE))
		return -EACCES;
	if (spu_acquire(ctx))
		return -EINTR;
	if ((offset + len) > vma->vm_end)
		len = vma->vm_end - offset;
	local_store = ctx->ops->get_ls(ctx);
	if (write)
		memcpy_toio(local_store + offset, buf, len);
	else
		memcpy_fromio(buf, local_store + offset, len);
	spu_release(ctx);
	return len;
}
313

314
static struct vm_operations_struct spufs_mem_mmap_vmops = {
N
Nick Piggin 已提交
315
	.fault = spufs_mem_mmap_fault,
316
	.access = spufs_mem_mmap_access,
317 318
};

319
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
320
{
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

337 338
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
339

340
	vma->vm_flags |= VM_IO | VM_PFNMAP;
341 342 343 344
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
345 346 347
	return 0;
}

348
#ifdef CONFIG_SPU_FS_64K_LS
349 350 351
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

367
static const struct file_operations spufs_mem_fops = {
368 369 370 371 372 373
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
374 375 376
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
377 378
};

N
Nick Piggin 已提交
379 380
static int spufs_ps_fault(struct vm_area_struct *vma,
				    struct vm_fault *vmf,
381
				    unsigned long ps_offs,
382
				    unsigned long ps_size)
383 384
{
	struct spu_context *ctx = vma->vm_file->private_data;
N
Nick Piggin 已提交
385
	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
386
	int ret = 0;
387

N
Nick Piggin 已提交
388
	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
389

390
	if (offset >= ps_size)
N
Nick Piggin 已提交
391
		return VM_FAULT_SIGBUS;
392

393 394 395 396 397 398 399
	/*
	 * Because we release the mmap_sem, the context may be destroyed while
	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
	 * in the meantime.
	 */
	get_spu_context(ctx);

400 401 402 403 404
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
N
Nick Piggin 已提交
405
	 * to return VM_FAULT_NOPAGE because the mappings may have
406
	 * hanged.
407
	 */
408
	if (spu_acquire(ctx))
409
		goto refault;
410

411 412
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
N
Nick Piggin 已提交
413
		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
414
		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
N
Nick Piggin 已提交
415
		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
416
		down_read(&current->mm->mmap_sem);
417 418
	} else {
		area = ctx->spu->problem_phys + ps_offs;
N
Nick Piggin 已提交
419 420 421
		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
					(area + offset) >> PAGE_SHIFT);
		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
422
	}
423

424 425
	if (!ret)
		spu_release(ctx);
426 427 428

refault:
	put_spu_context(ctx);
N
Nick Piggin 已提交
429
	return VM_FAULT_NOPAGE;
430 431
}

432
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
433 434
static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
					   struct vm_fault *vmf)
435
{
436
	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
437 438 439
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
N
Nick Piggin 已提交
440
	.fault = spufs_cntl_mmap_fault,
441 442 443 444 445 446 447 448 449 450
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

451
	vma->vm_flags |= VM_IO | VM_PFNMAP;
452
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
453
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
454 455 456 457

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
458 459 460
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
461

462
static int spufs_cntl_get(void *data, u64 *val)
463
{
464
	struct spu_context *ctx = data;
465
	int ret;
466

467 468 469
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
470
	*val = ctx->ops->status_read(ctx);
471 472
	spu_release(ctx);

473
	return 0;
474 475
}

476
static int spufs_cntl_set(void *data, u64 val)
477
{
478
	struct spu_context *ctx = data;
479
	int ret;
480

481 482 483
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
484 485
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
486 487

	return 0;
488 489
}

490
static int spufs_cntl_open(struct inode *inode, struct file *file)
491
{
492 493 494
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

495
	mutex_lock(&ctx->mapping_lock);
496
	file->private_data = ctx;
497 498
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
499
	mutex_unlock(&ctx->mapping_lock);
500
	return simple_attr_open(inode, file, spufs_cntl_get,
501
					spufs_cntl_set, "0x%08lx");
502 503
}

504 505 506 507 508 509
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

510
	simple_attr_release(inode, file);
511

512
	mutex_lock(&ctx->mapping_lock);
513 514
	if (!--i->i_openers)
		ctx->cntl = NULL;
515
	mutex_unlock(&ctx->mapping_lock);
516 517 518
	return 0;
}

519
static const struct file_operations spufs_cntl_fops = {
520
	.open = spufs_cntl_open,
521
	.release = spufs_cntl_release,
522 523
	.read = simple_attr_read,
	.write = simple_attr_write,
524 525 526
	.mmap = spufs_cntl_mmap,
};

527 528 529 530 531 532 533 534
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

535 536 537 538 539 540 541 542 543
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

544 545 546 547 548
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
549
	struct spu_context *ctx = file->private_data;
550

551 552 553 554 555
	/* pre-check for file position: if we'd return EOF, there's no point
	 * causing a deschedule */
	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
		return 0;

556 557 558
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
559
	ret = __spufs_regs_read(ctx, buffer, size, pos);
560
	spu_release_saved(ctx);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

577 578 579
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
580 581 582 583

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

584
	spu_release_saved(ctx);
585 586 587
	return ret;
}

588
static const struct file_operations spufs_regs_fops = {
589 590 591
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
592 593 594
	.llseek  = generic_file_llseek,
};

595 596 597 598 599 600 601 602 603
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

604 605 606 607 608
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
609
	struct spu_context *ctx = file->private_data;
610

611 612 613
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
614
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
615
	spu_release_saved(ctx);
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;

631 632 633
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
634

635
	*pos += size;
636 637 638
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

639
	spu_release_saved(ctx);
640 641 642
	return ret;
}

643
static const struct file_operations spufs_fpcr_fops = {
644 645 646 647 648 649
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

650 651 652 653 654 655 656 657 658
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

659 660 661 662 663 664 665 666
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
667 668 669
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
670
	struct spu_context *ctx = file->private_data;
671 672
	u32 mbox_data, __user *udata;
	ssize_t count;
673 674 675 676

	if (len < 4)
		return -EINVAL;

677 678 679 680 681
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

682 683 684 685
	count = spu_acquire(ctx);
	if (count)
		return count;

686
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
704
	spu_release(ctx);
705

706 707
	if (!count)
		count = -EAGAIN;
708

709
	return count;
710 711
}

712
static const struct file_operations spufs_mbox_fops = {
713 714 715 716 717 718 719
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
720
	struct spu_context *ctx = file->private_data;
721
	ssize_t ret;
722 723 724 725 726
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

727 728 729
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
730 731 732 733

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
734 735 736 737 738 739 740

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

741
static const struct file_operations spufs_mbox_stat_fops = {
742 743 744 745 746
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
747
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
748
{
749 750
	return ctx->ops->ibox_read(ctx, data);
}
751

752 753 754
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
755

756
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
757 758
}

759 760
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
761
{
762 763
	struct spu_context *ctx = spu->ctx;

764 765 766
	if (!ctx)
		return;

767 768
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
769 770
}

771 772 773 774 775 776 777 778 779 780 781 782
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
783 784 785
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
786
	struct spu_context *ctx = file->private_data;
787 788
	u32 ibox_data, __user *udata;
	ssize_t count;
789 790 791 792

	if (len < 4)
		return -EINVAL;

793 794 795 796 797
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

798 799
	count = spu_acquire(ctx);
	if (count)
800
		goto out;
801

802 803
	/* wait only for the first element */
	count = 0;
804
	if (file->f_flags & O_NONBLOCK) {
805
		if (!spu_ibox_read(ctx, &ibox_data)) {
806
			count = -EAGAIN;
807 808
			goto out_unlock;
		}
809
	} else {
810
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
811 812
		if (count)
			goto out;
813 814
	}

815 816 817
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
818
		goto out_unlock;
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
834

835
out_unlock:
836
	spu_release(ctx);
837
out:
838
	return count;
839 840 841 842
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
843
	struct spu_context *ctx = file->private_data;
844 845
	unsigned int mask;

846
	poll_wait(file, &ctx->ibox_wq, wait);
847

848 849 850 851 852
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
853 854
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
855 856 857 858

	return mask;
}

859
static const struct file_operations spufs_ibox_fops = {
860 861 862 863 864 865 866 867 868
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
869
	struct spu_context *ctx = file->private_data;
870
	ssize_t ret;
871 872 873 874 875
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

876 877 878
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
879 880
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
881 882 883 884 885 886 887

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

888
static const struct file_operations spufs_ibox_stat_fops = {
889 890 891 892 893
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
894
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
895
{
896 897
	return ctx->ops->wbox_write(ctx, data);
}
898

899 900 901 902
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
903

904
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
905 906 907 908

	return ret;
}

909 910
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
911
{
912 913
	struct spu_context *ctx = spu->ctx;

914 915 916
	if (!ctx)
		return;

917 918
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
919 920
}

921 922 923 924 925 926 927 928 929 930 931 932
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
933 934 935
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
936
	struct spu_context *ctx = file->private_data;
937 938
	u32 wbox_data, __user *udata;
	ssize_t count;
939 940 941 942

	if (len < 4)
		return -EINVAL;

943 944 945 946 947
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
948 949
		return -EFAULT;

950 951
	count = spu_acquire(ctx);
	if (count)
952
		goto out;
953

954 955 956 957 958
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
959
	if (file->f_flags & O_NONBLOCK) {
960
		if (!spu_wbox_write(ctx, wbox_data)) {
961
			count = -EAGAIN;
962 963
			goto out_unlock;
		}
964
	} else {
965
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
966 967
		if (count)
			goto out;
968 969
	}

970

971
	/* write as much as possible */
972 973 974 975 976 977 978 979 980 981 982
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

983
out_unlock:
984
	spu_release(ctx);
985
out:
986
	return count;
987 988 989 990
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
991
	struct spu_context *ctx = file->private_data;
992 993
	unsigned int mask;

994
	poll_wait(file, &ctx->wbox_wq, wait);
995

996 997 998 999 1000
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1001 1002
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
1003 1004 1005 1006

	return mask;
}

1007
static const struct file_operations spufs_wbox_fops = {
1008 1009 1010 1011 1012 1013 1014 1015 1016
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
1017
	struct spu_context *ctx = file->private_data;
1018
	ssize_t ret;
1019 1020 1021 1022 1023
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

1024 1025 1026
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1027 1028
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
1029 1030 1031 1032 1033 1034 1035

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

1036
static const struct file_operations spufs_wbox_stat_fops = {
1037 1038 1039 1040
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

1041 1042 1043 1044
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1045

1046
	mutex_lock(&ctx->mapping_lock);
1047
	file->private_data = ctx;
1048 1049
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1050
	mutex_unlock(&ctx->mapping_lock);
1051 1052 1053
	return nonseekable_open(inode, file);
}

1054 1055 1056 1057 1058 1059
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1060
	mutex_lock(&ctx->mapping_lock);
1061 1062
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1063
	mutex_unlock(&ctx->mapping_lock);
1064 1065 1066
	return 0;
}

1067
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1068 1069
			size_t len, loff_t *pos)
{
1070
	int ret = 0;
1071 1072 1073 1074 1075
	u32 data;

	if (len < 4)
		return -EINVAL;

1076 1077 1078 1079
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1080

1081 1082 1083
	if (!ret)
		goto out;

1084 1085 1086
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1087 1088
out:
	return ret;
1089 1090
}

1091 1092 1093 1094 1095 1096
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1097 1098 1099
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1100
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1101
	spu_release_saved(ctx);
1102 1103 1104 1105

	return ret;
}

1106 1107 1108 1109
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1110
	ssize_t ret;
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1121 1122 1123
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1124 1125
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1126 1127 1128 1129

	return 4;
}

N
Nick Piggin 已提交
1130 1131
static int
spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1132
{
1133 1134 1135
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1136 1137 1138
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1139
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1140 1141 1142
#else
#error unsupported page size
#endif
1143 1144 1145
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
N
Nick Piggin 已提交
1146
	.fault = spufs_signal1_mmap_fault,
1147 1148 1149 1150 1151 1152 1153
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1154
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1155
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1156
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1157 1158 1159 1160 1161

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1162
static const struct file_operations spufs_signal1_fops = {
1163
	.open = spufs_signal1_open,
1164
	.release = spufs_signal1_release,
1165 1166
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1167
	.mmap = spufs_signal1_mmap,
1168 1169
};

1170 1171 1172 1173 1174 1175 1176
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1177 1178 1179 1180
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1181

1182
	mutex_lock(&ctx->mapping_lock);
1183
	file->private_data = ctx;
1184 1185
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1186
	mutex_unlock(&ctx->mapping_lock);
1187 1188 1189
	return nonseekable_open(inode, file);
}

1190 1191 1192 1193 1194 1195
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1196
	mutex_lock(&ctx->mapping_lock);
1197 1198
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1199
	mutex_unlock(&ctx->mapping_lock);
1200 1201 1202
	return 0;
}

1203
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1204 1205
			size_t len, loff_t *pos)
{
1206
	int ret = 0;
1207 1208 1209 1210 1211
	u32 data;

	if (len < 4)
		return -EINVAL;

1212 1213 1214 1215
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1216

1217 1218 1219
	if (!ret)
		goto out;

1220 1221 1222
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1223
out:
1224 1225 1226 1227 1228 1229 1230 1231 1232
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1233 1234 1235
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1236
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1237
	spu_release_saved(ctx);
1238 1239

	return ret;
1240 1241 1242 1243 1244 1245
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1246
	ssize_t ret;
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1257 1258 1259
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1260 1261
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1262 1263 1264 1265

	return 4;
}

1266
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1267 1268
static int
spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1269
{
1270 1271 1272
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1273 1274 1275
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1276
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1277 1278 1279
#else
#error unsupported page size
#endif
1280 1281 1282
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
N
Nick Piggin 已提交
1283
	.fault = spufs_signal2_mmap_fault,
1284 1285 1286 1287 1288 1289 1290
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1291
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1292
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1293
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1294 1295 1296 1297

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1298 1299 1300
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1301

1302
static const struct file_operations spufs_signal2_fops = {
1303
	.open = spufs_signal2_open,
1304
	.release = spufs_signal2_release,
1305 1306
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1307
	.mmap = spufs_signal2_mmap,
1308 1309
};

1310 1311 1312 1313 1314 1315 1316
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1327
static int __##__get(void *data, u64 *val)				\
1328 1329
{									\
	struct spu_context *ctx = data;					\
1330
	int ret = 0;							\
1331 1332
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1333 1334 1335
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1336
		*val = __get(ctx);					\
1337 1338
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1339 1340 1341
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1342
		*val = __get(ctx);					\
1343 1344
		spu_release_saved(ctx);					\
	} else								\
1345
		*val = __get(ctx);					\
1346
									\
1347
	return 0;							\
1348
}									\
1349
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1350

1351
static int spufs_signal1_type_set(void *data, u64 val)
1352 1353
{
	struct spu_context *ctx = data;
1354
	int ret;
1355

1356 1357 1358
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1359 1360
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1361 1362

	return 0;
1363 1364
}

1365
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1366 1367 1368
{
	return ctx->ops->signal1_type_get(ctx);
}
1369
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1370
		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1371

1372

1373
static int spufs_signal2_type_set(void *data, u64 val)
1374 1375
{
	struct spu_context *ctx = data;
1376
	int ret;
1377

1378 1379 1380
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1381 1382
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1383 1384

	return 0;
1385 1386
}

1387
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1388 1389 1390
{
	return ctx->ops->signal2_type_get(ctx);
}
1391
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1392
		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1393

1394
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1395 1396
static int
spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1397
{
1398
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1399 1400 1401
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
N
Nick Piggin 已提交
1402
	.fault = spufs_mss_mmap_fault,
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1413
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1414
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1415
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1416 1417 1418 1419

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1420 1421 1422
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1423 1424 1425 1426

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1427
	struct spu_context *ctx = i->i_ctx;
1428 1429

	file->private_data = i->i_ctx;
1430

1431
	mutex_lock(&ctx->mapping_lock);
1432 1433
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1434
	mutex_unlock(&ctx->mapping_lock);
1435 1436 1437
	return nonseekable_open(inode, file);
}

1438 1439 1440 1441 1442 1443
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1444
	mutex_lock(&ctx->mapping_lock);
1445 1446
	if (!--i->i_openers)
		ctx->mss = NULL;
1447
	mutex_unlock(&ctx->mapping_lock);
1448 1449 1450
	return 0;
}

1451
static const struct file_operations spufs_mss_fops = {
1452
	.open	 = spufs_mss_open,
1453
	.release = spufs_mss_release,
1454
	.mmap	 = spufs_mss_mmap,
1455 1456
};

N
Nick Piggin 已提交
1457 1458
static int
spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1459
{
1460
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1461 1462 1463
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
N
Nick Piggin 已提交
1464
	.fault = spufs_psmap_mmap_fault,
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1475
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1486
	struct spu_context *ctx = i->i_ctx;
1487

1488
	mutex_lock(&ctx->mapping_lock);
1489
	file->private_data = i->i_ctx;
1490 1491
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1492
	mutex_unlock(&ctx->mapping_lock);
1493 1494 1495
	return nonseekable_open(inode, file);
}

1496 1497 1498 1499 1500 1501
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1502
	mutex_lock(&ctx->mapping_lock);
1503 1504
	if (!--i->i_openers)
		ctx->psmap = NULL;
1505
	mutex_unlock(&ctx->mapping_lock);
1506 1507 1508
	return 0;
}

1509
static const struct file_operations spufs_psmap_fops = {
1510
	.open	 = spufs_psmap_open,
1511
	.release = spufs_psmap_release,
1512
	.mmap	 = spufs_psmap_mmap,
1513 1514 1515
};


1516
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1517 1518
static int
spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1519
{
1520
	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1521 1522 1523
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
N
Nick Piggin 已提交
1524
	.fault = spufs_mfc_mmap_fault,
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1535
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1536
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1537
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1538 1539 1540 1541

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1542 1543 1544
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1558
	mutex_lock(&ctx->mapping_lock);
1559
	file->private_data = ctx;
1560 1561
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1562
	mutex_unlock(&ctx->mapping_lock);
1563 1564 1565
	return nonseekable_open(inode, file);
}

1566 1567 1568 1569 1570 1571
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1572
	mutex_lock(&ctx->mapping_lock);
1573 1574
	if (!--i->i_openers)
		ctx->mfc = NULL;
1575
	mutex_unlock(&ctx->mapping_lock);
1576 1577 1578
	return 0;
}

1579 1580 1581 1582 1583
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1584 1585 1586
	if (!ctx)
		return;

1587 1588
	wake_up_all(&ctx->mfc_wq);

1589
	pr_debug("%s %s\n", __func__, spu->name);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1633 1634 1635 1636 1637
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1638 1639 1640 1641 1642
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1643
			/* XXX(hch): shouldn't we clear ret here? */
1644 1645 1646 1647
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
1648 1649
		if (ret)
			goto out;
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	}
	spu_release(ctx);

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1767 1768 1769 1770
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1771
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1772 1773 1774
	if (ret)
		goto out;

1775 1776 1777 1778 1779 1780
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
1781 1782
		if (ret)
			goto out;
1783 1784 1785 1786 1787
		if (status)
			ret = status;
	}

	if (ret)
1788
		goto out_unlock;
1789 1790

	ctx->tagwait |= 1 << cmd.tag;
1791
	ret = size;
1792

1793 1794
out_unlock:
	spu_release(ctx);
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1805 1806
	poll_wait(file, &ctx->mfc_wq, wait);

1807 1808 1809 1810 1811
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

1823
	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1824 1825 1826 1827 1828
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1829
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1830 1831 1832 1833
{
	struct spu_context *ctx = file->private_data;
	int ret;

1834 1835
	ret = spu_acquire(ctx);
	if (ret)
1836
		goto out;
1837 1838 1839 1840 1841 1842 1843 1844
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1845 1846
	if (ret)
		goto out;
1847 1848 1849 1850
#else
	ret = 0;
#endif
	spu_release(ctx);
1851
out:
1852 1853 1854 1855 1856 1857
	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1858
	return spufs_mfc_flush(file, NULL);
1859 1860 1861 1862 1863 1864 1865 1866 1867
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1868
static const struct file_operations spufs_mfc_fops = {
1869
	.open	 = spufs_mfc_open,
1870
	.release = spufs_mfc_release,
1871 1872 1873 1874 1875 1876
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1877
	.mmap	 = spufs_mfc_mmap,
1878 1879
};

1880
static int spufs_npc_set(void *data, u64 val)
1881 1882
{
	struct spu_context *ctx = data;
1883 1884 1885 1886 1887
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1888 1889
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1890 1891

	return 0;
1892 1893
}

1894
static u64 spufs_npc_get(struct spu_context *ctx)
1895 1896 1897
{
	return ctx->ops->npc_read(ctx);
}
1898 1899
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1900

1901
static int spufs_decr_set(void *data, u64 val)
1902 1903 1904
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1905 1906 1907 1908 1909
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1910
	lscsa->decr.slot[0] = (u32) val;
1911
	spu_release_saved(ctx);
1912 1913

	return 0;
1914 1915
}

1916
static u64 spufs_decr_get(struct spu_context *ctx)
1917 1918
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1919 1920
	return lscsa->decr.slot[0];
}
1921 1922
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1923

1924
static int spufs_decr_status_set(void *data, u64 val)
1925 1926
{
	struct spu_context *ctx = data;
1927 1928 1929 1930 1931
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1932 1933 1934 1935
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1936
	spu_release_saved(ctx);
1937 1938

	return 0;
1939 1940
}

1941
static u64 spufs_decr_status_get(struct spu_context *ctx)
1942
{
1943 1944 1945 1946
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1947
}
1948 1949 1950
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1951

1952
static int spufs_event_mask_set(void *data, u64 val)
1953 1954 1955
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1956 1957 1958 1959 1960
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1961
	lscsa->event_mask.slot[0] = (u32) val;
1962
	spu_release_saved(ctx);
1963 1964

	return 0;
1965 1966
}

1967
static u64 spufs_event_mask_get(struct spu_context *ctx)
1968 1969
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1970 1971 1972
	return lscsa->event_mask.slot[0];
}

1973 1974 1975
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1976

1977
static u64 spufs_event_status_get(struct spu_context *ctx)
1978 1979 1980 1981 1982
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1983 1984 1985
		return state->spu_chnldata_RW[0];
	return 0;
}
1986 1987
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1988

1989
static int spufs_srr0_set(void *data, u64 val)
1990 1991 1992
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1993 1994 1995 1996 1997
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1998
	lscsa->srr0.slot[0] = (u32) val;
1999
	spu_release_saved(ctx);
2000 2001

	return 0;
2002 2003
}

2004
static u64 spufs_srr0_get(struct spu_context *ctx)
2005 2006
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2007
	return lscsa->srr0.slot[0];
2008
}
2009 2010
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2011

2012
static u64 spufs_id_get(struct spu_context *ctx)
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
2023 2024
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
2025

2026
static u64 spufs_object_id_get(struct spu_context *ctx)
2027 2028
{
	/* FIXME: Should there really be no locking here? */
2029
	return ctx->object_id;
2030 2031
}

2032
static int spufs_object_id_set(void *data, u64 id)
2033 2034 2035
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
2036 2037

	return 0;
2038 2039
}

2040 2041
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2042

2043
static u64 spufs_lslr_get(struct spu_context *ctx)
2044 2045 2046
{
	return ctx->csa.priv2.spu_lslr_RW;
}
2047 2048
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2049 2050 2051 2052 2053 2054 2055 2056 2057

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2081 2082 2083 2084 2085
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2086 2087 2088 2089 2090
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2091 2092 2093 2094

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2095 2096 2097
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2098
	int ret;
2099 2100 2101 2102 2103
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2104 2105 2106
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2107
	spin_lock(&ctx->csa.register_lock);
2108
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2109
	spin_unlock(&ctx->csa.register_lock);
2110
	spu_release_saved(ctx);
2111

2112
	return ret;
2113 2114
}

2115
static const struct file_operations spufs_mbox_info_fops = {
2116 2117 2118 2119 2120
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2121 2122 2123 2124 2125
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2126 2127 2128 2129 2130
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2131 2132 2133 2134

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2135 2136 2137 2138
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2139
	int ret;
2140 2141 2142 2143

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2144 2145 2146
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2147
	spin_lock(&ctx->csa.register_lock);
2148
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2149
	spin_unlock(&ctx->csa.register_lock);
2150
	spu_release_saved(ctx);
2151

2152
	return ret;
2153 2154
}

2155
static const struct file_operations spufs_ibox_info_fops = {
2156 2157 2158 2159 2160
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2161 2162
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2163 2164 2165 2166 2167
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2184 2185 2186
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2187 2188 2189
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2190
	spin_lock(&ctx->csa.register_lock);
2191
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2192
	spin_unlock(&ctx->csa.register_lock);
2193
	spu_release_saved(ctx);
2194

2195
	return ret;
2196 2197
}

2198
static const struct file_operations spufs_wbox_info_fops = {
2199 2200 2201 2202 2203
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2204 2205
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2230 2231 2232 2233 2234 2235 2236 2237 2238
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2239 2240 2241
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2242 2243 2244
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2245
	spu_release_saved(ctx);
2246 2247 2248 2249

	return ret;
}

2250
static const struct file_operations spufs_dma_info_fops = {
2251 2252 2253 2254
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2255 2256
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2257 2258 2259
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2260
	int ret = sizeof info;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2292 2293 2294
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2295 2296
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2297
	spin_unlock(&ctx->csa.register_lock);
2298
	spu_release_saved(ctx);
2299 2300 2301 2302

	return ret;
}

2303
static const struct file_operations spufs_proxydma_info_fops = {
2304 2305 2306 2307
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2328 2329 2330 2331 2332
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2333
		enum spu_utilization_state state)
2334
{
2335 2336
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2337

2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2351

2352
	return time / NSEC_PER_MSEC;
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2383 2384 2385 2386 2387
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2388 2389 2390

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2391 2392 2393 2394 2395
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
static inline int spufs_switch_log_used(struct spu_context *ctx)
{
	return (ctx->switch_log->head - ctx->switch_log->tail) %
		SWITCH_LOG_BUFSIZE;
}

static inline int spufs_switch_log_avail(struct spu_context *ctx)
{
	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
}

static int spufs_switch_log_open(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2434 2435 2436 2437 2438
	int rc;

	rc = spu_acquire(ctx);
	if (rc)
		return rc;
2439 2440

	if (ctx->switch_log) {
2441 2442
		rc = -EBUSY;
		goto out;
2443
	}
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473

	ctx->switch_log = kzalloc(sizeof(struct switch_log) +
		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
		GFP_KERNEL);

	if (!ctx->switch_log) {
		rc = -ENOMEM;
		goto out;
	}

	init_waitqueue_head(&ctx->switch_log->wait);
	rc = 0;

out:
	spu_release(ctx);
	return rc;
}

static int spufs_switch_log_release(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int rc;

	rc = spu_acquire(ctx);
	if (rc)
		return rc;

	kfree(ctx->switch_log);
	ctx->switch_log = NULL;
	spu_release(ctx);
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	return 0;
}

static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
{
	struct switch_log_entry *p;

	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;

	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
			(unsigned int) p->tstamp.tv_sec,
			(unsigned int) p->tstamp.tv_nsec,
			p->spu_id,
			(unsigned int) p->type,
			(unsigned int) p->val,
			(unsigned long long) p->timebase);
}

static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
			     size_t len, loff_t *ppos)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int error = 0, cnt = 0;

	if (!buf || len < 0)
		return -EINVAL;

2503 2504 2505 2506
	error = spu_acquire(ctx);
	if (error)
		return error;

2507 2508 2509 2510
	while (cnt < len) {
		char tbuf[128];
		int width;

2511 2512 2513 2514 2515 2516 2517
		if (spufs_switch_log_used(ctx) == 0) {
			if (cnt > 0) {
				/* If there's data ready to go, we can
				 * just return straight away */
				break;

			} else if (file->f_flags & O_NONBLOCK) {
2518 2519
				error = -EAGAIN;
				break;
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

			} else {
				/* spufs_wait will drop the mutex and
				 * re-acquire, but since we're in read(), the
				 * file cannot be _released (and so
				 * ctx->switch_log is stable).
				 */
				error = spufs_wait(ctx->switch_log->wait,
						spufs_switch_log_used(ctx) > 0);

				/* On error, spufs_wait returns without the
				 * state mutex held */
				if (error)
					return error;

				/* We may have had entries read from underneath
				 * us while we dropped the mutex in spufs_wait,
				 * so re-check */
				if (spufs_switch_log_used(ctx) == 0)
					continue;
2540
			}
2541 2542 2543
		}

		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2544
		if (width < len)
2545 2546 2547
			ctx->switch_log->tail =
				(ctx->switch_log->tail + 1) %
				 SWITCH_LOG_BUFSIZE;
2548 2549 2550
		else
			/* If the record is greater than space available return
			 * partial buffer (so far) */
2551 2552 2553 2554 2555 2556 2557 2558
			break;

		error = copy_to_user(buf + cnt, tbuf, width);
		if (error)
			break;
		cnt += width;
	}

2559 2560
	spu_release(ctx);

2561 2562 2563 2564 2565 2566 2567 2568
	return cnt == 0 ? error : cnt;
}

static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	unsigned int mask = 0;
2569
	int rc;
2570 2571 2572

	poll_wait(file, &ctx->switch_log->wait, wait);

2573 2574 2575 2576
	rc = spu_acquire(ctx);
	if (rc)
		return rc;

2577 2578 2579
	if (spufs_switch_log_used(ctx) > 0)
		mask |= POLLIN;

2580 2581
	spu_release(ctx);

2582 2583 2584 2585
	return mask;
}

static const struct file_operations spufs_switch_log_fops = {
2586 2587 2588 2589 2590
	.owner		= THIS_MODULE,
	.open		= spufs_switch_log_open,
	.read		= spufs_switch_log_read,
	.poll		= spufs_switch_log_poll,
	.release	= spufs_switch_log_release,
2591 2592
};

2593 2594 2595 2596 2597
/**
 * Log a context switch event to a switch log reader.
 *
 * Must be called with ctx->state_mutex held.
 */
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
		u32 type, u32 val)
{
	if (!ctx->switch_log)
		return;

	if (spufs_switch_log_avail(ctx) > 1) {
		struct switch_log_entry *p;

		p = ctx->switch_log->log + ctx->switch_log->head;
		ktime_get_ts(&p->tstamp);
		p->timebase = get_tb();
		p->spu_id = spu ? spu->number : -1;
		p->type = type;
		p->val = val;

		ctx->switch_log->head =
			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
	}

	wake_up(&ctx->switch_log->wait);
}
2620

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
static int spufs_show_ctx(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
	u64 mfc_control_RW;

	mutex_lock(&ctx->state_mutex);
	if (ctx->spu) {
		struct spu *spu = ctx->spu;
		struct spu_priv2 __iomem *priv2 = spu->priv2;

		spin_lock_irq(&spu->register_lock);
		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
		spin_unlock_irq(&spu->register_lock);
	} else {
		struct spu_state *csa = &ctx->csa;

		mfc_control_RW = csa->priv2.mfc_control_RW;
	}

	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
		" %c %lx %lx %lx %lx %x %x\n",
		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
		ctx->flags,
		ctx->sched_flags,
		ctx->prio,
		ctx->time_slice,
		ctx->spu ? ctx->spu->number : -1,
		!list_empty(&ctx->rq) ? 'q' : ' ',
		ctx->csa.class_0_pending,
		ctx->csa.class_0_dar,
		ctx->csa.class_1_dsisr,
		mfc_control_RW,
		ctx->ops->runcntl_read(ctx),
		ctx->ops->status_read(ctx));

	mutex_unlock(&ctx->state_mutex);

	return 0;
}

static int spufs_ctx_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_ctx_fops = {
	.open           = spufs_ctx_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

2673
struct spufs_tree_descr spufs_dir_contents[] = {
2674
	{ "capabilities", &spufs_caps_fops, 0444, },
2675 2676
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2677 2678 2679
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2680 2681 2682
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2683 2684
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2685 2686
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2687
	{ "cntl", &spufs_cntl_fops,  0666, },
2688
	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2689 2690 2691 2692 2693
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2694 2695 2696
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2697
	{ "event_status", &spufs_event_status_ops, 0444, },
2698
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2699 2700
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2701 2702 2703 2704 2705 2706 2707
	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
	{ "dma_info", &spufs_dma_info_fops, 0444,
		sizeof(struct spu_dma_info), },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
		sizeof(struct spu_proxydma_info)},
2708
	{ "tid", &spufs_tid_fops, 0444, },
2709
	{ "stat", &spufs_stat_fops, 0444, },
2710
	{ "switch_log", &spufs_switch_log_fops, 0444 },
2711 2712
	{},
};
2713

2714
struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2715
	{ "capabilities", &spufs_caps_fops, 0444, },
2716
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2717 2718 2719
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2720 2721 2722
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2723 2724
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2725 2726 2727 2728 2729 2730
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
2731
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2732 2733
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2734
	{ "tid", &spufs_tid_fops, 0444, },
2735
	{ "stat", &spufs_stat_fops, 0444, },
2736 2737 2738 2739
	{},
};

struct spufs_tree_descr spufs_dir_debug_contents[] = {
2740
	{ ".ctx", &spufs_ctx_fops, 0444, },
2741 2742
	{},
};
2743 2744

struct spufs_coredump_reader spufs_coredump_read[] = {
2745 2746
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2747 2748 2749
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2750 2751
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2752
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2753
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2754 2755 2756
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2757 2758 2759 2760 2761 2762
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2763 2764
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2765
	{ NULL },
2766
};