file.c 64.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32
#include <linux/marker.h>
33 34

#include <asm/io.h>
35
#include <asm/time.h>
36
#include <asm/spu.h>
37
#include <asm/spu_info.h>
38 39 40 41
#include <asm/uaccess.h>

#include "spufs.h"

42 43
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
static struct file_operations __fops = {				\
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

158

159 160 161 162
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
163
	struct spu_context *ctx = i->i_ctx;
164

165
	mutex_lock(&ctx->mapping_lock);
166
	file->private_data = ctx;
167 168
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
169
	mutex_unlock(&ctx->mapping_lock);
170 171 172 173 174 175 176 177 178
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

179
	mutex_lock(&ctx->mapping_lock);
180 181
	if (!--i->i_openers)
		ctx->local_store = NULL;
182
	mutex_unlock(&ctx->mapping_lock);
183 184 185
	return 0;
}

186 187 188 189 190 191 192 193 194
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

195 196 197 198
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
199
	struct spu_context *ctx = file->private_data;
200
	ssize_t ret;
201

202 203 204
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
205
	ret = __spufs_mem_read(ctx, buffer, size, pos);
206
	spu_release(ctx);
207

208 209 210 211 212
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
213
					size_t size, loff_t *ppos)
214 215
{
	struct spu_context *ctx = file->private_data;
216
	char *local_store;
217
	loff_t pos = *ppos;
218
	int ret;
219

220 221 222
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
223
		return -EFBIG;
224 225
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
226

227 228 229 230
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

231
	local_store = ctx->ops->get_ls(ctx);
232
	ret = copy_from_user(local_store + pos, buffer, size);
233
	spu_release(ctx);
234 235 236 237 238

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
239 240
}

N
Nick Piggin 已提交
241 242
static int
spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243
{
244
	struct spu_context *ctx	= vma->vm_file->private_data;
N
Nick Piggin 已提交
245 246 247
	unsigned long address = (unsigned long)vmf->virtual_address;
	unsigned long pfn, offset;

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
264

N
Nick Piggin 已提交
265
	offset = vmf->pgoff << PAGE_SHIFT;
266
	if (offset >= LS_SIZE)
N
Nick Piggin 已提交
267
		return VM_FAULT_SIGBUS;
268

N
Nick Piggin 已提交
269 270
	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
			address, offset);
271

272
	if (spu_acquire(ctx))
N
Nick Piggin 已提交
273
		return VM_FAULT_NOPAGE;
274

275 276
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
277
							& ~_PAGE_NO_CACHE);
278
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
279 280
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
281 282
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
283
	}
284
	vm_insert_pfn(vma, address, pfn);
285

286
	spu_release(ctx);
287

N
Nick Piggin 已提交
288
	return VM_FAULT_NOPAGE;
289 290
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static int spufs_mem_mmap_access(struct vm_area_struct *vma,
				unsigned long address,
				void *buf, int len, int write)
{
	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	char *local_store;

	if (write && !(vma->vm_flags & VM_WRITE))
		return -EACCES;
	if (spu_acquire(ctx))
		return -EINTR;
	if ((offset + len) > vma->vm_end)
		len = vma->vm_end - offset;
	local_store = ctx->ops->get_ls(ctx);
	if (write)
		memcpy_toio(local_store + offset, buf, len);
	else
		memcpy_fromio(buf, local_store + offset, len);
	spu_release(ctx);
	return len;
}
313

314
static struct vm_operations_struct spufs_mem_mmap_vmops = {
N
Nick Piggin 已提交
315
	.fault = spufs_mem_mmap_fault,
316
	.access = spufs_mem_mmap_access,
317 318
};

319
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
320
{
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

337 338
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
339

340
	vma->vm_flags |= VM_IO | VM_PFNMAP;
341 342 343 344
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
345 346 347
	return 0;
}

348
#ifdef CONFIG_SPU_FS_64K_LS
349 350 351
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

367
static const struct file_operations spufs_mem_fops = {
368 369 370 371 372 373
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
374 375 376
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
377 378
};

N
Nick Piggin 已提交
379 380
static int spufs_ps_fault(struct vm_area_struct *vma,
				    struct vm_fault *vmf,
381
				    unsigned long ps_offs,
382
				    unsigned long ps_size)
383 384
{
	struct spu_context *ctx = vma->vm_file->private_data;
N
Nick Piggin 已提交
385
	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
386
	int ret = 0;
387

N
Nick Piggin 已提交
388
	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
389

390
	if (offset >= ps_size)
N
Nick Piggin 已提交
391
		return VM_FAULT_SIGBUS;
392

393 394 395
	if (fatal_signal_pending(current))
		return VM_FAULT_SIGBUS;

396 397 398 399 400 401 402
	/*
	 * Because we release the mmap_sem, the context may be destroyed while
	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
	 * in the meantime.
	 */
	get_spu_context(ctx);

403 404 405 406 407
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
N
Nick Piggin 已提交
408
	 * to return VM_FAULT_NOPAGE because the mappings may have
409
	 * hanged.
410
	 */
411
	if (spu_acquire(ctx))
412
		goto refault;
413

414 415
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
N
Nick Piggin 已提交
416
		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
417
		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
N
Nick Piggin 已提交
418
		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
419
		down_read(&current->mm->mmap_sem);
420 421
	} else {
		area = ctx->spu->problem_phys + ps_offs;
N
Nick Piggin 已提交
422 423 424
		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
					(area + offset) >> PAGE_SHIFT);
		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
425
	}
426

427 428
	if (!ret)
		spu_release(ctx);
429 430 431

refault:
	put_spu_context(ctx);
N
Nick Piggin 已提交
432
	return VM_FAULT_NOPAGE;
433 434
}

435
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
436 437
static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
					   struct vm_fault *vmf)
438
{
439
	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
440 441 442
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
N
Nick Piggin 已提交
443
	.fault = spufs_cntl_mmap_fault,
444 445 446 447 448 449 450 451 452 453
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

454
	vma->vm_flags |= VM_IO | VM_PFNMAP;
455
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
456
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
457 458 459 460

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
461 462 463
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
464

465
static int spufs_cntl_get(void *data, u64 *val)
466
{
467
	struct spu_context *ctx = data;
468
	int ret;
469

470 471 472
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
473
	*val = ctx->ops->status_read(ctx);
474 475
	spu_release(ctx);

476
	return 0;
477 478
}

479
static int spufs_cntl_set(void *data, u64 val)
480
{
481
	struct spu_context *ctx = data;
482
	int ret;
483

484 485 486
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
487 488
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
489 490

	return 0;
491 492
}

493
static int spufs_cntl_open(struct inode *inode, struct file *file)
494
{
495 496 497
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

498
	mutex_lock(&ctx->mapping_lock);
499
	file->private_data = ctx;
500 501
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
502
	mutex_unlock(&ctx->mapping_lock);
503
	return simple_attr_open(inode, file, spufs_cntl_get,
504
					spufs_cntl_set, "0x%08lx");
505 506
}

507 508 509 510 511 512
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

513
	simple_attr_release(inode, file);
514

515
	mutex_lock(&ctx->mapping_lock);
516 517
	if (!--i->i_openers)
		ctx->cntl = NULL;
518
	mutex_unlock(&ctx->mapping_lock);
519 520 521
	return 0;
}

522
static const struct file_operations spufs_cntl_fops = {
523
	.open = spufs_cntl_open,
524
	.release = spufs_cntl_release,
525 526
	.read = simple_attr_read,
	.write = simple_attr_write,
527 528 529
	.mmap = spufs_cntl_mmap,
};

530 531 532 533 534 535 536 537
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

538 539 540 541 542 543 544 545 546
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

547 548 549 550 551
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
552
	struct spu_context *ctx = file->private_data;
553

554 555 556 557 558
	/* pre-check for file position: if we'd return EOF, there's no point
	 * causing a deschedule */
	if (*pos >= sizeof(ctx->csa.lscsa->gprs))
		return 0;

559 560 561
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
562
	ret = __spufs_regs_read(ctx, buffer, size, pos);
563
	spu_release_saved(ctx);
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

580 581 582
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
583 584 585 586

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

587
	spu_release_saved(ctx);
588 589 590
	return ret;
}

591
static const struct file_operations spufs_regs_fops = {
592 593 594
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
595 596 597
	.llseek  = generic_file_llseek,
};

598 599 600 601 602 603 604 605 606
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

607 608 609 610 611
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
612
	struct spu_context *ctx = file->private_data;
613

614 615 616
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
617
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
618
	spu_release_saved(ctx);
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;

634 635 636
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
637

638
	*pos += size;
639 640 641
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

642
	spu_release_saved(ctx);
643 644 645
	return ret;
}

646
static const struct file_operations spufs_fpcr_fops = {
647 648 649 650 651 652
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

653 654 655 656 657 658 659 660 661
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

662 663 664 665 666 667 668 669
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
670 671 672
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
673
	struct spu_context *ctx = file->private_data;
674 675
	u32 mbox_data, __user *udata;
	ssize_t count;
676 677 678 679

	if (len < 4)
		return -EINVAL;

680 681 682 683 684
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

685 686 687 688
	count = spu_acquire(ctx);
	if (count)
		return count;

689
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
707
	spu_release(ctx);
708

709 710
	if (!count)
		count = -EAGAIN;
711

712
	return count;
713 714
}

715
static const struct file_operations spufs_mbox_fops = {
716 717 718 719 720 721 722
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
723
	struct spu_context *ctx = file->private_data;
724
	ssize_t ret;
725 726 727 728 729
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

730 731 732
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
733 734 735 736

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
737 738 739 740 741 742 743

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

744
static const struct file_operations spufs_mbox_stat_fops = {
745 746 747 748 749
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
750
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
751
{
752 753
	return ctx->ops->ibox_read(ctx, data);
}
754

755 756 757
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
758

759
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
760 761
}

762 763
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
764
{
765 766
	struct spu_context *ctx = spu->ctx;

767 768 769
	if (!ctx)
		return;

770 771
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
772 773
}

774 775 776 777 778 779 780 781 782 783 784 785
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
786 787 788
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
789
	struct spu_context *ctx = file->private_data;
790 791
	u32 ibox_data, __user *udata;
	ssize_t count;
792 793 794 795

	if (len < 4)
		return -EINVAL;

796 797 798 799 800
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

801 802
	count = spu_acquire(ctx);
	if (count)
803
		goto out;
804

805 806
	/* wait only for the first element */
	count = 0;
807
	if (file->f_flags & O_NONBLOCK) {
808
		if (!spu_ibox_read(ctx, &ibox_data)) {
809
			count = -EAGAIN;
810 811
			goto out_unlock;
		}
812
	} else {
813
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
814 815
		if (count)
			goto out;
816 817
	}

818 819 820
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
821
		goto out_unlock;
822

823 824 825 826 827 828 829 830 831 832 833 834 835 836
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
837

838
out_unlock:
839
	spu_release(ctx);
840
out:
841
	return count;
842 843 844 845
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
846
	struct spu_context *ctx = file->private_data;
847 848
	unsigned int mask;

849
	poll_wait(file, &ctx->ibox_wq, wait);
850

851 852 853 854 855
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
856 857
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
858 859 860 861

	return mask;
}

862
static const struct file_operations spufs_ibox_fops = {
863 864 865 866 867 868 869 870 871
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
872
	struct spu_context *ctx = file->private_data;
873
	ssize_t ret;
874 875 876 877 878
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

879 880 881
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
882 883
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
884 885 886 887 888 889 890

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

891
static const struct file_operations spufs_ibox_stat_fops = {
892 893 894 895 896
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
897
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
898
{
899 900
	return ctx->ops->wbox_write(ctx, data);
}
901

902 903 904 905
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
906

907
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
908 909 910 911

	return ret;
}

912 913
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
914
{
915 916
	struct spu_context *ctx = spu->ctx;

917 918 919
	if (!ctx)
		return;

920 921
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
922 923
}

924 925 926 927 928 929 930 931 932 933 934 935
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
936 937 938
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
939
	struct spu_context *ctx = file->private_data;
940 941
	u32 wbox_data, __user *udata;
	ssize_t count;
942 943 944 945

	if (len < 4)
		return -EINVAL;

946 947 948 949 950
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
951 952
		return -EFAULT;

953 954
	count = spu_acquire(ctx);
	if (count)
955
		goto out;
956

957 958 959 960 961
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
962
	if (file->f_flags & O_NONBLOCK) {
963
		if (!spu_wbox_write(ctx, wbox_data)) {
964
			count = -EAGAIN;
965 966
			goto out_unlock;
		}
967
	} else {
968
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
969 970
		if (count)
			goto out;
971 972
	}

973

974
	/* write as much as possible */
975 976 977 978 979 980 981 982 983 984 985
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

986
out_unlock:
987
	spu_release(ctx);
988
out:
989
	return count;
990 991 992 993
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
994
	struct spu_context *ctx = file->private_data;
995 996
	unsigned int mask;

997
	poll_wait(file, &ctx->wbox_wq, wait);
998

999 1000 1001 1002 1003
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1004 1005
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
1006 1007 1008 1009

	return mask;
}

1010
static const struct file_operations spufs_wbox_fops = {
1011 1012 1013 1014 1015 1016 1017 1018 1019
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
1020
	struct spu_context *ctx = file->private_data;
1021
	ssize_t ret;
1022 1023 1024 1025 1026
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

1027 1028 1029
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1030 1031
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
1032 1033 1034 1035 1036 1037 1038

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

1039
static const struct file_operations spufs_wbox_stat_fops = {
1040 1041 1042 1043
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

1044 1045 1046 1047
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1048

1049
	mutex_lock(&ctx->mapping_lock);
1050
	file->private_data = ctx;
1051 1052
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1053
	mutex_unlock(&ctx->mapping_lock);
1054 1055 1056
	return nonseekable_open(inode, file);
}

1057 1058 1059 1060 1061 1062
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1063
	mutex_lock(&ctx->mapping_lock);
1064 1065
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1066
	mutex_unlock(&ctx->mapping_lock);
1067 1068 1069
	return 0;
}

1070
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1071 1072
			size_t len, loff_t *pos)
{
1073
	int ret = 0;
1074 1075 1076 1077 1078
	u32 data;

	if (len < 4)
		return -EINVAL;

1079 1080 1081 1082
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1083

1084 1085 1086
	if (!ret)
		goto out;

1087 1088 1089
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1090 1091
out:
	return ret;
1092 1093
}

1094 1095 1096 1097 1098 1099
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1100 1101 1102
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1103
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1104
	spu_release_saved(ctx);
1105 1106 1107 1108

	return ret;
}

1109 1110 1111 1112
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1113
	ssize_t ret;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1124 1125 1126
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1127 1128
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1129 1130 1131 1132

	return 4;
}

N
Nick Piggin 已提交
1133 1134
static int
spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1135
{
1136 1137 1138
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1139 1140 1141
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1142
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1143 1144 1145
#else
#error unsupported page size
#endif
1146 1147 1148
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
N
Nick Piggin 已提交
1149
	.fault = spufs_signal1_mmap_fault,
1150 1151 1152 1153 1154 1155 1156
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1157
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1158
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1159
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1160 1161 1162 1163 1164

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1165
static const struct file_operations spufs_signal1_fops = {
1166
	.open = spufs_signal1_open,
1167
	.release = spufs_signal1_release,
1168 1169
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1170
	.mmap = spufs_signal1_mmap,
1171 1172
};

1173 1174 1175 1176 1177 1178 1179
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1180 1181 1182 1183
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1184

1185
	mutex_lock(&ctx->mapping_lock);
1186
	file->private_data = ctx;
1187 1188
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1189
	mutex_unlock(&ctx->mapping_lock);
1190 1191 1192
	return nonseekable_open(inode, file);
}

1193 1194 1195 1196 1197 1198
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1199
	mutex_lock(&ctx->mapping_lock);
1200 1201
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1202
	mutex_unlock(&ctx->mapping_lock);
1203 1204 1205
	return 0;
}

1206
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1207 1208
			size_t len, loff_t *pos)
{
1209
	int ret = 0;
1210 1211 1212 1213 1214
	u32 data;

	if (len < 4)
		return -EINVAL;

1215 1216 1217 1218
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1219

1220 1221 1222
	if (!ret)
		goto out;

1223 1224 1225
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1226
out:
1227 1228 1229 1230 1231 1232 1233 1234 1235
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1236 1237 1238
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1239
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1240
	spu_release_saved(ctx);
1241 1242

	return ret;
1243 1244 1245 1246 1247 1248
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1249
	ssize_t ret;
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1260 1261 1262
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1263 1264
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1265 1266 1267 1268

	return 4;
}

1269
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1270 1271
static int
spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1272
{
1273 1274 1275
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1276 1277 1278
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1279
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1280 1281 1282
#else
#error unsupported page size
#endif
1283 1284 1285
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
N
Nick Piggin 已提交
1286
	.fault = spufs_signal2_mmap_fault,
1287 1288 1289 1290 1291 1292 1293
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1294
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1295
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1296
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1297 1298 1299 1300

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1301 1302 1303
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1304

1305
static const struct file_operations spufs_signal2_fops = {
1306
	.open = spufs_signal2_open,
1307
	.release = spufs_signal2_release,
1308 1309
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1310
	.mmap = spufs_signal2_mmap,
1311 1312
};

1313 1314 1315 1316 1317 1318 1319
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1330
static int __##__get(void *data, u64 *val)				\
1331 1332
{									\
	struct spu_context *ctx = data;					\
1333
	int ret = 0;							\
1334 1335
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1336 1337 1338
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1339
		*val = __get(ctx);					\
1340 1341
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1342 1343 1344
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1345
		*val = __get(ctx);					\
1346 1347
		spu_release_saved(ctx);					\
	} else								\
1348
		*val = __get(ctx);					\
1349
									\
1350
	return 0;							\
1351
}									\
1352
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1353

1354
static int spufs_signal1_type_set(void *data, u64 val)
1355 1356
{
	struct spu_context *ctx = data;
1357
	int ret;
1358

1359 1360 1361
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1362 1363
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1364 1365

	return 0;
1366 1367
}

1368
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1369 1370 1371
{
	return ctx->ops->signal1_type_get(ctx);
}
1372
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1373
		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1374

1375

1376
static int spufs_signal2_type_set(void *data, u64 val)
1377 1378
{
	struct spu_context *ctx = data;
1379
	int ret;
1380

1381 1382 1383
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1384 1385
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1386 1387

	return 0;
1388 1389
}

1390
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1391 1392 1393
{
	return ctx->ops->signal2_type_get(ctx);
}
1394
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1395
		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1396

1397
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1398 1399
static int
spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1400
{
1401
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1402 1403 1404
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
N
Nick Piggin 已提交
1405
	.fault = spufs_mss_mmap_fault,
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1416
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1417
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1418
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1419 1420 1421 1422

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1423 1424 1425
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1426 1427 1428 1429

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1430
	struct spu_context *ctx = i->i_ctx;
1431 1432

	file->private_data = i->i_ctx;
1433

1434
	mutex_lock(&ctx->mapping_lock);
1435 1436
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1437
	mutex_unlock(&ctx->mapping_lock);
1438 1439 1440
	return nonseekable_open(inode, file);
}

1441 1442 1443 1444 1445 1446
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1447
	mutex_lock(&ctx->mapping_lock);
1448 1449
	if (!--i->i_openers)
		ctx->mss = NULL;
1450
	mutex_unlock(&ctx->mapping_lock);
1451 1452 1453
	return 0;
}

1454
static const struct file_operations spufs_mss_fops = {
1455
	.open	 = spufs_mss_open,
1456
	.release = spufs_mss_release,
1457
	.mmap	 = spufs_mss_mmap,
1458 1459
};

N
Nick Piggin 已提交
1460 1461
static int
spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1462
{
1463
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1464 1465 1466
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
N
Nick Piggin 已提交
1467
	.fault = spufs_psmap_mmap_fault,
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1478
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1489
	struct spu_context *ctx = i->i_ctx;
1490

1491
	mutex_lock(&ctx->mapping_lock);
1492
	file->private_data = i->i_ctx;
1493 1494
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1495
	mutex_unlock(&ctx->mapping_lock);
1496 1497 1498
	return nonseekable_open(inode, file);
}

1499 1500 1501 1502 1503 1504
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1505
	mutex_lock(&ctx->mapping_lock);
1506 1507
	if (!--i->i_openers)
		ctx->psmap = NULL;
1508
	mutex_unlock(&ctx->mapping_lock);
1509 1510 1511
	return 0;
}

1512
static const struct file_operations spufs_psmap_fops = {
1513
	.open	 = spufs_psmap_open,
1514
	.release = spufs_psmap_release,
1515
	.mmap	 = spufs_psmap_mmap,
1516 1517 1518
};


1519
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1520 1521
static int
spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1522
{
1523
	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1524 1525 1526
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
N
Nick Piggin 已提交
1527
	.fault = spufs_mfc_mmap_fault,
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1538
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1539
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1540
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1541 1542 1543 1544

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1545 1546 1547
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1561
	mutex_lock(&ctx->mapping_lock);
1562
	file->private_data = ctx;
1563 1564
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1565
	mutex_unlock(&ctx->mapping_lock);
1566 1567 1568
	return nonseekable_open(inode, file);
}

1569 1570 1571 1572 1573 1574
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1575
	mutex_lock(&ctx->mapping_lock);
1576 1577
	if (!--i->i_openers)
		ctx->mfc = NULL;
1578
	mutex_unlock(&ctx->mapping_lock);
1579 1580 1581
	return 0;
}

1582 1583 1584 1585 1586
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1587 1588 1589
	if (!ctx)
		return;

1590 1591
	wake_up_all(&ctx->mfc_wq);

1592
	pr_debug("%s %s\n", __func__, spu->name);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1636 1637 1638 1639 1640
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1641 1642 1643 1644 1645
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1646
			/* XXX(hch): shouldn't we clear ret here? */
1647 1648 1649 1650
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
1651 1652
		if (ret)
			goto out;
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	}
	spu_release(ctx);

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1770 1771 1772 1773
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1774
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1775 1776 1777
	if (ret)
		goto out;

1778 1779 1780 1781 1782 1783
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
1784 1785
		if (ret)
			goto out;
1786 1787 1788 1789 1790
		if (status)
			ret = status;
	}

	if (ret)
1791
		goto out_unlock;
1792 1793

	ctx->tagwait |= 1 << cmd.tag;
1794
	ret = size;
1795

1796 1797
out_unlock:
	spu_release(ctx);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1808 1809
	poll_wait(file, &ctx->mfc_wq, wait);

1810 1811 1812 1813 1814
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

1826
	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1827 1828 1829 1830 1831
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1832
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1833 1834 1835 1836
{
	struct spu_context *ctx = file->private_data;
	int ret;

1837 1838
	ret = spu_acquire(ctx);
	if (ret)
1839
		goto out;
1840 1841 1842 1843 1844 1845 1846 1847
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1848 1849
	if (ret)
		goto out;
1850 1851 1852 1853
#else
	ret = 0;
#endif
	spu_release(ctx);
1854
out:
1855 1856 1857 1858 1859 1860
	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1861
	return spufs_mfc_flush(file, NULL);
1862 1863 1864 1865 1866 1867 1868 1869 1870
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1871
static const struct file_operations spufs_mfc_fops = {
1872
	.open	 = spufs_mfc_open,
1873
	.release = spufs_mfc_release,
1874 1875 1876 1877 1878 1879
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1880
	.mmap	 = spufs_mfc_mmap,
1881 1882
};

1883
static int spufs_npc_set(void *data, u64 val)
1884 1885
{
	struct spu_context *ctx = data;
1886 1887 1888 1889 1890
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1891 1892
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1893 1894

	return 0;
1895 1896
}

1897
static u64 spufs_npc_get(struct spu_context *ctx)
1898 1899 1900
{
	return ctx->ops->npc_read(ctx);
}
1901 1902
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1903

1904
static int spufs_decr_set(void *data, u64 val)
1905 1906 1907
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1908 1909 1910 1911 1912
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1913
	lscsa->decr.slot[0] = (u32) val;
1914
	spu_release_saved(ctx);
1915 1916

	return 0;
1917 1918
}

1919
static u64 spufs_decr_get(struct spu_context *ctx)
1920 1921
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1922 1923
	return lscsa->decr.slot[0];
}
1924 1925
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1926

1927
static int spufs_decr_status_set(void *data, u64 val)
1928 1929
{
	struct spu_context *ctx = data;
1930 1931 1932 1933 1934
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1935 1936 1937 1938
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1939
	spu_release_saved(ctx);
1940 1941

	return 0;
1942 1943
}

1944
static u64 spufs_decr_status_get(struct spu_context *ctx)
1945
{
1946 1947 1948 1949
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1950
}
1951 1952 1953
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1954

1955
static int spufs_event_mask_set(void *data, u64 val)
1956 1957 1958
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1959 1960 1961 1962 1963
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1964
	lscsa->event_mask.slot[0] = (u32) val;
1965
	spu_release_saved(ctx);
1966 1967

	return 0;
1968 1969
}

1970
static u64 spufs_event_mask_get(struct spu_context *ctx)
1971 1972
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1973 1974 1975
	return lscsa->event_mask.slot[0];
}

1976 1977 1978
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1979

1980
static u64 spufs_event_status_get(struct spu_context *ctx)
1981 1982 1983 1984 1985
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1986 1987 1988
		return state->spu_chnldata_RW[0];
	return 0;
}
1989 1990
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1991

1992
static int spufs_srr0_set(void *data, u64 val)
1993 1994 1995
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1996 1997 1998 1999 2000
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2001
	lscsa->srr0.slot[0] = (u32) val;
2002
	spu_release_saved(ctx);
2003 2004

	return 0;
2005 2006
}

2007
static u64 spufs_srr0_get(struct spu_context *ctx)
2008 2009
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2010
	return lscsa->srr0.slot[0];
2011
}
2012 2013
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2014

2015
static u64 spufs_id_get(struct spu_context *ctx)
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
2026 2027
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
2028

2029
static u64 spufs_object_id_get(struct spu_context *ctx)
2030 2031
{
	/* FIXME: Should there really be no locking here? */
2032
	return ctx->object_id;
2033 2034
}

2035
static int spufs_object_id_set(void *data, u64 id)
2036 2037 2038
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
2039 2040

	return 0;
2041 2042
}

2043 2044
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2045

2046
static u64 spufs_lslr_get(struct spu_context *ctx)
2047 2048 2049
{
	return ctx->csa.priv2.spu_lslr_RW;
}
2050 2051
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2052 2053 2054 2055 2056 2057 2058 2059 2060

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2084 2085 2086 2087 2088
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2089 2090 2091 2092 2093
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2094 2095 2096 2097

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2098 2099 2100
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2101
	int ret;
2102 2103 2104 2105 2106
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2107 2108 2109
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2110
	spin_lock(&ctx->csa.register_lock);
2111
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2112
	spin_unlock(&ctx->csa.register_lock);
2113
	spu_release_saved(ctx);
2114

2115
	return ret;
2116 2117
}

2118
static const struct file_operations spufs_mbox_info_fops = {
2119 2120 2121 2122 2123
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2124 2125 2126 2127 2128
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2129 2130 2131 2132 2133
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2134 2135 2136 2137

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2138 2139 2140 2141
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2142
	int ret;
2143 2144 2145 2146

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2147 2148 2149
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2150
	spin_lock(&ctx->csa.register_lock);
2151
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2152
	spin_unlock(&ctx->csa.register_lock);
2153
	spu_release_saved(ctx);
2154

2155
	return ret;
2156 2157
}

2158
static const struct file_operations spufs_ibox_info_fops = {
2159 2160 2161 2162 2163
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2164 2165
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2166 2167 2168 2169 2170
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2187 2188 2189
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2190 2191 2192
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2193
	spin_lock(&ctx->csa.register_lock);
2194
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2195
	spin_unlock(&ctx->csa.register_lock);
2196
	spu_release_saved(ctx);
2197

2198
	return ret;
2199 2200
}

2201
static const struct file_operations spufs_wbox_info_fops = {
2202 2203 2204 2205 2206
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2207 2208
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2233 2234 2235 2236 2237 2238 2239 2240 2241
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2242 2243 2244
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2245 2246 2247
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2248
	spu_release_saved(ctx);
2249 2250 2251 2252

	return ret;
}

2253
static const struct file_operations spufs_dma_info_fops = {
2254 2255 2256 2257
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2258 2259
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2260 2261 2262
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2263
	int ret = sizeof info;
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2295 2296 2297
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2298 2299
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2300
	spin_unlock(&ctx->csa.register_lock);
2301
	spu_release_saved(ctx);
2302 2303 2304 2305

	return ret;
}

2306
static const struct file_operations spufs_proxydma_info_fops = {
2307 2308 2309 2310
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2331 2332 2333 2334 2335
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2336
		enum spu_utilization_state state)
2337
{
2338 2339
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2340

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2354

2355
	return time / NSEC_PER_MSEC;
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2386 2387 2388 2389 2390
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2391 2392 2393

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2394 2395 2396 2397 2398
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
static inline int spufs_switch_log_used(struct spu_context *ctx)
{
	return (ctx->switch_log->head - ctx->switch_log->tail) %
		SWITCH_LOG_BUFSIZE;
}

static inline int spufs_switch_log_avail(struct spu_context *ctx)
{
	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
}

static int spufs_switch_log_open(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2437 2438 2439 2440 2441
	int rc;

	rc = spu_acquire(ctx);
	if (rc)
		return rc;
2442 2443

	if (ctx->switch_log) {
2444 2445
		rc = -EBUSY;
		goto out;
2446
	}
2447

2448
	ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2449 2450 2451 2452 2453 2454 2455 2456
		SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
		GFP_KERNEL);

	if (!ctx->switch_log) {
		rc = -ENOMEM;
		goto out;
	}

2457
	ctx->switch_log->head = ctx->switch_log->tail = 0;
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	init_waitqueue_head(&ctx->switch_log->wait);
	rc = 0;

out:
	spu_release(ctx);
	return rc;
}

static int spufs_switch_log_release(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int rc;

	rc = spu_acquire(ctx);
	if (rc)
		return rc;

	kfree(ctx->switch_log);
	ctx->switch_log = NULL;
	spu_release(ctx);
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

	return 0;
}

static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
{
	struct switch_log_entry *p;

	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;

	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
			(unsigned int) p->tstamp.tv_sec,
			(unsigned int) p->tstamp.tv_nsec,
			p->spu_id,
			(unsigned int) p->type,
			(unsigned int) p->val,
			(unsigned long long) p->timebase);
}

static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
			     size_t len, loff_t *ppos)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int error = 0, cnt = 0;

	if (!buf || len < 0)
		return -EINVAL;

2507 2508 2509 2510
	error = spu_acquire(ctx);
	if (error)
		return error;

2511 2512 2513 2514
	while (cnt < len) {
		char tbuf[128];
		int width;

2515 2516 2517 2518 2519 2520 2521
		if (spufs_switch_log_used(ctx) == 0) {
			if (cnt > 0) {
				/* If there's data ready to go, we can
				 * just return straight away */
				break;

			} else if (file->f_flags & O_NONBLOCK) {
2522 2523
				error = -EAGAIN;
				break;
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

			} else {
				/* spufs_wait will drop the mutex and
				 * re-acquire, but since we're in read(), the
				 * file cannot be _released (and so
				 * ctx->switch_log is stable).
				 */
				error = spufs_wait(ctx->switch_log->wait,
						spufs_switch_log_used(ctx) > 0);

				/* On error, spufs_wait returns without the
				 * state mutex held */
				if (error)
					return error;

				/* We may have had entries read from underneath
				 * us while we dropped the mutex in spufs_wait,
				 * so re-check */
				if (spufs_switch_log_used(ctx) == 0)
					continue;
2544
			}
2545 2546 2547
		}

		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2548
		if (width < len)
2549 2550 2551
			ctx->switch_log->tail =
				(ctx->switch_log->tail + 1) %
				 SWITCH_LOG_BUFSIZE;
2552 2553 2554
		else
			/* If the record is greater than space available return
			 * partial buffer (so far) */
2555 2556 2557 2558 2559 2560 2561 2562
			break;

		error = copy_to_user(buf + cnt, tbuf, width);
		if (error)
			break;
		cnt += width;
	}

2563 2564
	spu_release(ctx);

2565 2566 2567 2568 2569 2570 2571 2572
	return cnt == 0 ? error : cnt;
}

static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	unsigned int mask = 0;
2573
	int rc;
2574 2575 2576

	poll_wait(file, &ctx->switch_log->wait, wait);

2577 2578 2579 2580
	rc = spu_acquire(ctx);
	if (rc)
		return rc;

2581 2582 2583
	if (spufs_switch_log_used(ctx) > 0)
		mask |= POLLIN;

2584 2585
	spu_release(ctx);

2586 2587 2588 2589
	return mask;
}

static const struct file_operations spufs_switch_log_fops = {
2590 2591 2592 2593 2594
	.owner		= THIS_MODULE,
	.open		= spufs_switch_log_open,
	.read		= spufs_switch_log_read,
	.poll		= spufs_switch_log_poll,
	.release	= spufs_switch_log_release,
2595 2596
};

2597 2598 2599 2600 2601
/**
 * Log a context switch event to a switch log reader.
 *
 * Must be called with ctx->state_mutex held.
 */
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
		u32 type, u32 val)
{
	if (!ctx->switch_log)
		return;

	if (spufs_switch_log_avail(ctx) > 1) {
		struct switch_log_entry *p;

		p = ctx->switch_log->log + ctx->switch_log->head;
		ktime_get_ts(&p->tstamp);
		p->timebase = get_tb();
		p->spu_id = spu ? spu->number : -1;
		p->type = type;
		p->val = val;

		ctx->switch_log->head =
			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
	}

	wake_up(&ctx->switch_log->wait);
}
2624

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
static int spufs_show_ctx(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
	u64 mfc_control_RW;

	mutex_lock(&ctx->state_mutex);
	if (ctx->spu) {
		struct spu *spu = ctx->spu;
		struct spu_priv2 __iomem *priv2 = spu->priv2;

		spin_lock_irq(&spu->register_lock);
		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
		spin_unlock_irq(&spu->register_lock);
	} else {
		struct spu_state *csa = &ctx->csa;

		mfc_control_RW = csa->priv2.mfc_control_RW;
	}

	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
		" %c %lx %lx %lx %lx %x %x\n",
		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
		ctx->flags,
		ctx->sched_flags,
		ctx->prio,
		ctx->time_slice,
		ctx->spu ? ctx->spu->number : -1,
		!list_empty(&ctx->rq) ? 'q' : ' ',
		ctx->csa.class_0_pending,
		ctx->csa.class_0_dar,
		ctx->csa.class_1_dsisr,
		mfc_control_RW,
		ctx->ops->runcntl_read(ctx),
		ctx->ops->status_read(ctx));

	mutex_unlock(&ctx->state_mutex);

	return 0;
}

static int spufs_ctx_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_ctx_fops = {
	.open           = spufs_ctx_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

2677
struct spufs_tree_descr spufs_dir_contents[] = {
2678
	{ "capabilities", &spufs_caps_fops, 0444, },
2679 2680
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2681 2682 2683
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2684 2685 2686
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2687 2688
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2689 2690
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2691
	{ "cntl", &spufs_cntl_fops,  0666, },
2692
	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2693 2694 2695 2696 2697
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2698 2699 2700
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2701
	{ "event_status", &spufs_event_status_ops, 0444, },
2702
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2703 2704
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2705 2706 2707 2708 2709 2710 2711
	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
	{ "dma_info", &spufs_dma_info_fops, 0444,
		sizeof(struct spu_dma_info), },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
		sizeof(struct spu_proxydma_info)},
2712
	{ "tid", &spufs_tid_fops, 0444, },
2713
	{ "stat", &spufs_stat_fops, 0444, },
2714
	{ "switch_log", &spufs_switch_log_fops, 0444 },
2715 2716
	{},
};
2717

2718
struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2719
	{ "capabilities", &spufs_caps_fops, 0444, },
2720
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2721 2722 2723
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2724 2725 2726
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2727 2728
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2729 2730 2731 2732 2733 2734
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
2735
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2736 2737
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2738
	{ "tid", &spufs_tid_fops, 0444, },
2739
	{ "stat", &spufs_stat_fops, 0444, },
2740 2741 2742 2743
	{},
};

struct spufs_tree_descr spufs_dir_debug_contents[] = {
2744
	{ ".ctx", &spufs_ctx_fops, 0444, },
2745 2746
	{},
};
2747 2748

struct spufs_coredump_reader spufs_coredump_read[] = {
2749 2750
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2751 2752 2753
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2754 2755
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2756
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2757
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2758 2759 2760
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2761 2762 2763 2764 2765 2766
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2767 2768
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2769
	{ NULL },
2770
};