file.c 63.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31
#include <linux/seq_file.h>
32
#include <linux/marker.h>
33 34

#include <asm/io.h>
35
#include <asm/time.h>
36
#include <asm/spu.h>
37
#include <asm/spu_info.h>
38 39 40 41
#include <asm/uaccess.h>

#include "spufs.h"

42 43
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* Simple attribute files */
struct spufs_attr {
	int (*get)(void *, u64 *);
	int (*set)(void *, u64);
	char get_buf[24];       /* enough to store a u64 and "\n\0" */
	char set_buf[24];
	void *data;
	const char *fmt;        /* format for read operation */
	struct mutex mutex;     /* protects access to these buffers */
};

static int spufs_attr_open(struct inode *inode, struct file *file,
		int (*get)(void *, u64 *), int (*set)(void *, u64),
		const char *fmt)
{
	struct spufs_attr *attr;

	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

	attr->get = get;
	attr->set = set;
	attr->data = inode->i_private;
	attr->fmt = fmt;
	mutex_init(&attr->mutex);
	file->private_data = attr;

	return nonseekable_open(inode, file);
}

static int spufs_attr_release(struct inode *inode, struct file *file)
{
       kfree(file->private_data);
	return 0;
}

static ssize_t spufs_attr_read(struct file *file, char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->get)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	if (*ppos) {		/* continued read */
		size = strlen(attr->get_buf);
	} else {		/* first read */
		u64 val;
		ret = attr->get(attr->data, &val);
		if (ret)
			goto out;

		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
				 attr->fmt, (unsigned long long)val);
	}

	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
		size_t len, loff_t *ppos)
{
	struct spufs_attr *attr;
	u64 val;
	size_t size;
	ssize_t ret;

	attr = file->private_data;
	if (!attr->set)
		return -EACCES;

	ret = mutex_lock_interruptible(&attr->mutex);
	if (ret)
		return ret;

	ret = -EFAULT;
	size = min(sizeof(attr->set_buf) - 1, len);
	if (copy_from_user(attr->set_buf, buf, size))
		goto out;

	ret = len; /* claim we got the whole input */
	attr->set_buf[size] = '\0';
	val = simple_strtol(attr->set_buf, NULL, 0);
	attr->set(attr->data, val);
out:
	mutex_unlock(&attr->mutex);
	return ret;
}

#define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt)	\
static int __fops ## _open(struct inode *inode, struct file *file)	\
{									\
	__simple_attr_check_format(__fmt, 0ull);			\
	return spufs_attr_open(inode, file, __get, __set, __fmt);	\
}									\
static struct file_operations __fops = {				\
	.owner	 = THIS_MODULE,						\
	.open	 = __fops ## _open,					\
	.release = spufs_attr_release,					\
	.read	 = spufs_attr_read,					\
	.write	 = spufs_attr_write,					\
};

158

159 160 161 162
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
163
	struct spu_context *ctx = i->i_ctx;
164

165
	mutex_lock(&ctx->mapping_lock);
166
	file->private_data = ctx;
167 168
	if (!i->i_openers++)
		ctx->local_store = inode->i_mapping;
169
	mutex_unlock(&ctx->mapping_lock);
170 171 172 173 174 175 176 177 178
	return 0;
}

static int
spufs_mem_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

179
	mutex_lock(&ctx->mapping_lock);
180 181
	if (!--i->i_openers)
		ctx->local_store = NULL;
182
	mutex_unlock(&ctx->mapping_lock);
183 184 185
	return 0;
}

186 187 188 189 190 191 192 193 194
static ssize_t
__spufs_mem_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	char *local_store = ctx->ops->get_ls(ctx);
	return simple_read_from_buffer(buffer, size, pos, local_store,
					LS_SIZE);
}

195 196 197 198
static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
199
	struct spu_context *ctx = file->private_data;
200
	ssize_t ret;
201

202 203 204
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
205
	ret = __spufs_mem_read(ctx, buffer, size, pos);
206
	spu_release(ctx);
207

208 209 210 211 212
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
213
					size_t size, loff_t *ppos)
214 215
{
	struct spu_context *ctx = file->private_data;
216
	char *local_store;
217
	loff_t pos = *ppos;
218
	int ret;
219

220 221 222
	if (pos < 0)
		return -EINVAL;
	if (pos > LS_SIZE)
223
		return -EFBIG;
224 225
	if (size > LS_SIZE - pos)
		size = LS_SIZE - pos;
226

227 228 229 230
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

231
	local_store = ctx->ops->get_ls(ctx);
232
	ret = copy_from_user(local_store + pos, buffer, size);
233
	spu_release(ctx);
234 235 236 237 238

	if (ret)
		return -EFAULT;
	*ppos = pos + size;
	return size;
239 240
}

N
Nick Piggin 已提交
241 242
static int
spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243
{
244
	struct spu_context *ctx	= vma->vm_file->private_data;
N
Nick Piggin 已提交
245 246 247
	unsigned long address = (unsigned long)vmf->virtual_address;
	unsigned long pfn, offset;

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_state *csa = &ctx->csa;
	int psize;

	/* Check what page size we are using */
	psize = get_slice_psize(vma->vm_mm, address);

	/* Some sanity checking */
	BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));

	/* Wow, 64K, cool, we need to align the address though */
	if (csa->use_big_pages) {
		BUG_ON(vma->vm_start & 0xffff);
		address &= ~0xfffful;
	}
#endif /* CONFIG_SPU_FS_64K_LS */
264

N
Nick Piggin 已提交
265
	offset = vmf->pgoff << PAGE_SHIFT;
266
	if (offset >= LS_SIZE)
N
Nick Piggin 已提交
267
		return VM_FAULT_SIGBUS;
268

N
Nick Piggin 已提交
269 270
	pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
			address, offset);
271

272
	if (spu_acquire(ctx))
N
Nick Piggin 已提交
273
		return VM_FAULT_NOPAGE;
274

275 276
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
277
							& ~_PAGE_NO_CACHE);
278
		pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
279 280
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
281 282
					     | _PAGE_NO_CACHE);
		pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
283
	}
284
	vm_insert_pfn(vma, address, pfn);
285

286
	spu_release(ctx);
287

N
Nick Piggin 已提交
288
	return VM_FAULT_NOPAGE;
289 290
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static int spufs_mem_mmap_access(struct vm_area_struct *vma,
				unsigned long address,
				void *buf, int len, int write)
{
	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	char *local_store;

	if (write && !(vma->vm_flags & VM_WRITE))
		return -EACCES;
	if (spu_acquire(ctx))
		return -EINTR;
	if ((offset + len) > vma->vm_end)
		len = vma->vm_end - offset;
	local_store = ctx->ops->get_ls(ctx);
	if (write)
		memcpy_toio(local_store + offset, buf, len);
	else
		memcpy_fromio(buf, local_store + offset, len);
	spu_release(ctx);
	return len;
}
313

314
static struct vm_operations_struct spufs_mem_mmap_vmops = {
N
Nick Piggin 已提交
315
	.fault = spufs_mem_mmap_fault,
316
	.access = spufs_mem_mmap_access,
317 318
};

319
static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
320
{
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
#ifdef CONFIG_SPU_FS_64K_LS
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* Sanity check VMA alignment */
	if (csa->use_big_pages) {
		pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
			 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
			 vma->vm_pgoff);
		if (vma->vm_start & 0xffff)
			return -EINVAL;
		if (vma->vm_pgoff & 0xf)
			return -EINVAL;
	}
#endif /* CONFIG_SPU_FS_64K_LS */

337 338
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
339

340
	vma->vm_flags |= VM_IO | VM_PFNMAP;
341 342 343 344
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
345 346 347
	return 0;
}

348
#ifdef CONFIG_SPU_FS_64K_LS
349 350 351
static unsigned long spufs_get_unmapped_area(struct file *file,
		unsigned long addr, unsigned long len, unsigned long pgoff,
		unsigned long flags)
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
{
	struct spu_context	*ctx = file->private_data;
	struct spu_state	*csa = &ctx->csa;

	/* If not using big pages, fallback to normal MM g_u_a */
	if (!csa->use_big_pages)
		return current->mm->get_unmapped_area(file, addr, len,
						      pgoff, flags);

	/* Else, try to obtain a 64K pages slice */
	return slice_get_unmapped_area(addr, len, flags,
				       MMU_PAGE_64K, 1, 0);
}
#endif /* CONFIG_SPU_FS_64K_LS */

367
static const struct file_operations spufs_mem_fops = {
368 369 370 371 372 373
	.open			= spufs_mem_open,
	.release		= spufs_mem_release,
	.read			= spufs_mem_read,
	.write			= spufs_mem_write,
	.llseek			= generic_file_llseek,
	.mmap			= spufs_mem_mmap,
374 375 376
#ifdef CONFIG_SPU_FS_64K_LS
	.get_unmapped_area	= spufs_get_unmapped_area,
#endif
377 378
};

N
Nick Piggin 已提交
379 380
static int spufs_ps_fault(struct vm_area_struct *vma,
				    struct vm_fault *vmf,
381
				    unsigned long ps_offs,
382
				    unsigned long ps_size)
383 384
{
	struct spu_context *ctx = vma->vm_file->private_data;
N
Nick Piggin 已提交
385
	unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
386
	int ret = 0;
387

N
Nick Piggin 已提交
388
	spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
389

390
	if (offset >= ps_size)
N
Nick Piggin 已提交
391
		return VM_FAULT_SIGBUS;
392

393 394 395 396 397 398 399
	/*
	 * Because we release the mmap_sem, the context may be destroyed while
	 * we're in spu_wait. Grab an extra reference so it isn't destroyed
	 * in the meantime.
	 */
	get_spu_context(ctx);

400 401 402 403 404
	/*
	 * We have to wait for context to be loaded before we have
	 * pages to hand out to the user, but we don't want to wait
	 * with the mmap_sem held.
	 * It is possible to drop the mmap_sem here, but then we need
N
Nick Piggin 已提交
405
	 * to return VM_FAULT_NOPAGE because the mappings may have
406
	 * hanged.
407
	 */
408
	if (spu_acquire(ctx))
409
		goto refault;
410

411 412
	if (ctx->state == SPU_STATE_SAVED) {
		up_read(&current->mm->mmap_sem);
N
Nick Piggin 已提交
413
		spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
414
		ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
N
Nick Piggin 已提交
415
		spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
416
		down_read(&current->mm->mmap_sem);
417 418
	} else {
		area = ctx->spu->problem_phys + ps_offs;
N
Nick Piggin 已提交
419 420 421
		vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
					(area + offset) >> PAGE_SHIFT);
		spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
422
	}
423

424 425
	if (!ret)
		spu_release(ctx);
426 427 428

refault:
	put_spu_context(ctx);
N
Nick Piggin 已提交
429
	return VM_FAULT_NOPAGE;
430 431
}

432
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
433 434
static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
					   struct vm_fault *vmf)
435
{
436
	return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
437 438 439
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
N
Nick Piggin 已提交
440
	.fault = spufs_cntl_mmap_fault,
441 442 443 444 445 446 447 448 449 450
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

451
	vma->vm_flags |= VM_IO | VM_PFNMAP;
452
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
453
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
454 455 456 457

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
458 459 460
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
461

462
static int spufs_cntl_get(void *data, u64 *val)
463
{
464
	struct spu_context *ctx = data;
465
	int ret;
466

467 468 469
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
470
	*val = ctx->ops->status_read(ctx);
471 472
	spu_release(ctx);

473
	return 0;
474 475
}

476
static int spufs_cntl_set(void *data, u64 val)
477
{
478
	struct spu_context *ctx = data;
479
	int ret;
480

481 482 483
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
484 485
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
486 487

	return 0;
488 489
}

490
static int spufs_cntl_open(struct inode *inode, struct file *file)
491
{
492 493 494
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

495
	mutex_lock(&ctx->mapping_lock);
496
	file->private_data = ctx;
497 498
	if (!i->i_openers++)
		ctx->cntl = inode->i_mapping;
499
	mutex_unlock(&ctx->mapping_lock);
500
	return simple_attr_open(inode, file, spufs_cntl_get,
501
					spufs_cntl_set, "0x%08lx");
502 503
}

504 505 506 507 508 509
static int
spufs_cntl_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

510
	simple_attr_release(inode, file);
511

512
	mutex_lock(&ctx->mapping_lock);
513 514
	if (!--i->i_openers)
		ctx->cntl = NULL;
515
	mutex_unlock(&ctx->mapping_lock);
516 517 518
	return 0;
}

519
static const struct file_operations spufs_cntl_fops = {
520
	.open = spufs_cntl_open,
521
	.release = spufs_cntl_release,
522 523
	.read = simple_attr_read,
	.write = simple_attr_write,
524 525 526
	.mmap = spufs_cntl_mmap,
};

527 528 529 530 531 532 533 534
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

535 536 537 538 539 540 541 542 543
static ssize_t
__spufs_regs_read(struct spu_context *ctx, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);
}

544 545 546 547 548
static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	int ret;
549
	struct spu_context *ctx = file->private_data;
550

551 552 553
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
554
	ret = __spufs_regs_read(ctx, buffer, size, pos);
555
	spu_release_saved(ctx);
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

572 573 574
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
575 576 577 578

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

579
	spu_release_saved(ctx);
580 581 582
	return ret;
}

583
static const struct file_operations spufs_regs_fops = {
584 585 586
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
587 588 589
	.llseek  = generic_file_llseek,
};

590 591 592 593 594 595 596 597 598
static ssize_t
__spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
			size_t size, loff_t * pos)
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	return simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));
}

599 600 601 602 603
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	int ret;
604
	struct spu_context *ctx = file->private_data;
605

606 607 608
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
609
	ret = __spufs_fpcr_read(ctx, buffer, size, pos);
610
	spu_release_saved(ctx);
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;

626 627 628
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
629

630
	*pos += size;
631 632 633
	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

634
	spu_release_saved(ctx);
635 636 637
	return ret;
}

638
static const struct file_operations spufs_fpcr_fops = {
639 640 641 642 643 644
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

645 646 647 648 649 650 651 652 653
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

654 655 656 657 658 659 660 661
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
662 663 664
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
665
	struct spu_context *ctx = file->private_data;
666 667
	u32 mbox_data, __user *udata;
	ssize_t count;
668 669 670 671

	if (len < 4)
		return -EINVAL;

672 673 674 675 676
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

677 678 679 680
	count = spu_acquire(ctx);
	if (count)
		return count;

681
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
699
	spu_release(ctx);
700

701 702
	if (!count)
		count = -EAGAIN;
703

704
	return count;
705 706
}

707
static const struct file_operations spufs_mbox_fops = {
708 709 710 711 712 713 714
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
715
	struct spu_context *ctx = file->private_data;
716
	ssize_t ret;
717 718 719 720 721
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

722 723 724
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
725 726 727 728

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
729 730 731 732 733 734 735

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

736
static const struct file_operations spufs_mbox_stat_fops = {
737 738 739 740 741
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
742
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
743
{
744 745
	return ctx->ops->ibox_read(ctx, data);
}
746

747 748 749
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
750

751
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
752 753
}

754 755
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
756
{
757 758
	struct spu_context *ctx = spu->ctx;

759 760 761
	if (!ctx)
		return;

762 763
	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
764 765
}

766 767 768 769 770 771 772 773 774 775 776 777
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
778 779 780
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
781
	struct spu_context *ctx = file->private_data;
782 783
	u32 ibox_data, __user *udata;
	ssize_t count;
784 785 786 787

	if (len < 4)
		return -EINVAL;

788 789 790 791 792
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

793 794
	count = spu_acquire(ctx);
	if (count)
795
		goto out;
796

797 798
	/* wait only for the first element */
	count = 0;
799
	if (file->f_flags & O_NONBLOCK) {
800
		if (!spu_ibox_read(ctx, &ibox_data)) {
801
			count = -EAGAIN;
802 803
			goto out_unlock;
		}
804
	} else {
805
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
806 807
		if (count)
			goto out;
808 809
	}

810 811 812
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
813
		goto out_unlock;
814

815 816 817 818 819 820 821 822 823 824 825 826 827 828
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
829

830
out_unlock:
831
	spu_release(ctx);
832
out:
833
	return count;
834 835 836 837
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
838
	struct spu_context *ctx = file->private_data;
839 840
	unsigned int mask;

841
	poll_wait(file, &ctx->ibox_wq, wait);
842

843 844 845 846 847
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
848 849
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
850 851 852 853

	return mask;
}

854
static const struct file_operations spufs_ibox_fops = {
855 856 857 858 859 860 861 862 863
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
864
	struct spu_context *ctx = file->private_data;
865
	ssize_t ret;
866 867 868 869 870
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

871 872 873
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
874 875
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
876 877 878 879 880 881 882

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

883
static const struct file_operations spufs_ibox_stat_fops = {
884 885 886 887 888
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
889
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
890
{
891 892
	return ctx->ops->wbox_write(ctx, data);
}
893

894 895 896 897
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
898

899
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
900 901 902 903

	return ret;
}

904 905
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
906
{
907 908
	struct spu_context *ctx = spu->ctx;

909 910 911
	if (!ctx)
		return;

912 913
	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
914 915
}

916 917 918 919 920 921 922 923 924 925 926 927
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
928 929 930
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
931
	struct spu_context *ctx = file->private_data;
932 933
	u32 wbox_data, __user *udata;
	ssize_t count;
934 935 936 937

	if (len < 4)
		return -EINVAL;

938 939 940 941 942
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
943 944
		return -EFAULT;

945 946
	count = spu_acquire(ctx);
	if (count)
947
		goto out;
948

949 950 951 952 953
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
954
	if (file->f_flags & O_NONBLOCK) {
955
		if (!spu_wbox_write(ctx, wbox_data)) {
956
			count = -EAGAIN;
957 958
			goto out_unlock;
		}
959
	} else {
960
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
961 962
		if (count)
			goto out;
963 964
	}

965

966
	/* write as much as possible */
967 968 969 970 971 972 973 974 975 976 977
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

978
out_unlock:
979
	spu_release(ctx);
980
out:
981
	return count;
982 983 984 985
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
986
	struct spu_context *ctx = file->private_data;
987 988
	unsigned int mask;

989
	poll_wait(file, &ctx->wbox_wq, wait);
990

991 992 993 994 995
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
996 997
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
998 999 1000 1001

	return mask;
}

1002
static const struct file_operations spufs_wbox_fops = {
1003 1004 1005 1006 1007 1008 1009 1010 1011
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
1012
	struct spu_context *ctx = file->private_data;
1013
	ssize_t ret;
1014 1015 1016 1017 1018
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

1019 1020 1021
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1022 1023
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
1024 1025 1026 1027 1028 1029 1030

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

1031
static const struct file_operations spufs_wbox_stat_fops = {
1032 1033 1034 1035
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

1036 1037 1038 1039
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1040

1041
	mutex_lock(&ctx->mapping_lock);
1042
	file->private_data = ctx;
1043 1044
	if (!i->i_openers++)
		ctx->signal1 = inode->i_mapping;
1045
	mutex_unlock(&ctx->mapping_lock);
1046 1047 1048
	return nonseekable_open(inode, file);
}

1049 1050 1051 1052 1053 1054
static int
spufs_signal1_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1055
	mutex_lock(&ctx->mapping_lock);
1056 1057
	if (!--i->i_openers)
		ctx->signal1 = NULL;
1058
	mutex_unlock(&ctx->mapping_lock);
1059 1060 1061
	return 0;
}

1062
static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1063 1064
			size_t len, loff_t *pos)
{
1065
	int ret = 0;
1066 1067 1068 1069 1070
	u32 data;

	if (len < 4)
		return -EINVAL;

1071 1072 1073 1074
	if (ctx->csa.spu_chnlcnt_RW[3]) {
		data = ctx->csa.spu_chnldata_RW[3];
		ret = 4;
	}
1075

1076 1077 1078
	if (!ret)
		goto out;

1079 1080 1081
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1082 1083
out:
	return ret;
1084 1085
}

1086 1087 1088 1089 1090 1091
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	int ret;
	struct spu_context *ctx = file->private_data;

1092 1093 1094
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1095
	ret = __spufs_signal1_read(ctx, buf, len, pos);
1096
	spu_release_saved(ctx);
1097 1098 1099 1100

	return ret;
}

1101 1102 1103 1104
static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1105
	ssize_t ret;
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1116 1117 1118
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1119 1120
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
1121 1122 1123 1124

	return 4;
}

N
Nick Piggin 已提交
1125 1126
static int
spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1127
{
1128 1129 1130
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1131 1132 1133
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1134
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1135 1136 1137
#else
#error unsupported page size
#endif
1138 1139 1140
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
N
Nick Piggin 已提交
1141
	.fault = spufs_signal1_mmap_fault,
1142 1143 1144 1145 1146 1147 1148
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1149
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1150
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1151
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1152 1153 1154 1155 1156

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

1157
static const struct file_operations spufs_signal1_fops = {
1158
	.open = spufs_signal1_open,
1159
	.release = spufs_signal1_release,
1160 1161
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
1162
	.mmap = spufs_signal1_mmap,
1163 1164
};

1165 1166 1167 1168 1169 1170 1171
static const struct file_operations spufs_signal1_nosched_fops = {
	.open = spufs_signal1_open,
	.release = spufs_signal1_release,
	.write = spufs_signal1_write,
	.mmap = spufs_signal1_mmap,
};

1172 1173 1174 1175
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
1176

1177
	mutex_lock(&ctx->mapping_lock);
1178
	file->private_data = ctx;
1179 1180
	if (!i->i_openers++)
		ctx->signal2 = inode->i_mapping;
1181
	mutex_unlock(&ctx->mapping_lock);
1182 1183 1184
	return nonseekable_open(inode, file);
}

1185 1186 1187 1188 1189 1190
static int
spufs_signal2_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1191
	mutex_lock(&ctx->mapping_lock);
1192 1193
	if (!--i->i_openers)
		ctx->signal2 = NULL;
1194
	mutex_unlock(&ctx->mapping_lock);
1195 1196 1197
	return 0;
}

1198
static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1199 1200
			size_t len, loff_t *pos)
{
1201
	int ret = 0;
1202 1203 1204 1205 1206
	u32 data;

	if (len < 4)
		return -EINVAL;

1207 1208 1209 1210
	if (ctx->csa.spu_chnlcnt_RW[4]) {
		data =  ctx->csa.spu_chnldata_RW[4];
		ret = 4;
	}
1211

1212 1213 1214
	if (!ret)
		goto out;

1215 1216 1217
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

1218
out:
1219 1220 1221 1222 1223 1224 1225 1226 1227
	return ret;
}

static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

1228 1229 1230
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1231
	ret = __spufs_signal2_read(ctx, buf, len, pos);
1232
	spu_release_saved(ctx);
1233 1234

	return ret;
1235 1236 1237 1238 1239 1240
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
1241
	ssize_t ret;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

1252 1253 1254
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1255 1256
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
1257 1258 1259 1260

	return 4;
}

1261
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1262 1263
static int
spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1264
{
1265 1266 1267
#if SPUFS_SIGNAL_MAP_SIZE == 0x1000
	return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
#elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1268 1269 1270
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
1271
	return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1272 1273 1274
#else
#error unsupported page size
#endif
1275 1276 1277
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
N
Nick Piggin 已提交
1278
	.fault = spufs_signal2_mmap_fault,
1279 1280 1281 1282 1283 1284 1285
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1286
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1287
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1288
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1289 1290 1291 1292

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
1293 1294 1295
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1296

1297
static const struct file_operations spufs_signal2_fops = {
1298
	.open = spufs_signal2_open,
1299
	.release = spufs_signal2_release,
1300 1301
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
1302
	.mmap = spufs_signal2_mmap,
1303 1304
};

1305 1306 1307 1308 1309 1310 1311
static const struct file_operations spufs_signal2_nosched_fops = {
	.open = spufs_signal2_open,
	.release = spufs_signal2_release,
	.write = spufs_signal2_write,
	.mmap = spufs_signal2_mmap,
};

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
/*
 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
 * work of acquiring (or not) the SPU context before calling through
 * to the actual get routine. The set routine is called directly.
 */
#define SPU_ATTR_NOACQUIRE	0
#define SPU_ATTR_ACQUIRE	1
#define SPU_ATTR_ACQUIRE_SAVED	2

#define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire)	\
1322
static int __##__get(void *data, u64 *val)				\
1323 1324
{									\
	struct spu_context *ctx = data;					\
1325
	int ret = 0;							\
1326 1327
									\
	if (__acquire == SPU_ATTR_ACQUIRE) {				\
1328 1329 1330
		ret = spu_acquire(ctx);					\
		if (ret)						\
			return ret;					\
1331
		*val = __get(ctx);					\
1332 1333
		spu_release(ctx);					\
	} else if (__acquire == SPU_ATTR_ACQUIRE_SAVED)	{		\
1334 1335 1336
		ret = spu_acquire_saved(ctx);				\
		if (ret)						\
			return ret;					\
1337
		*val = __get(ctx);					\
1338 1339
		spu_release_saved(ctx);					\
	} else								\
1340
		*val = __get(ctx);					\
1341
									\
1342
	return 0;							\
1343
}									\
1344
DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1345

1346
static int spufs_signal1_type_set(void *data, u64 val)
1347 1348
{
	struct spu_context *ctx = data;
1349
	int ret;
1350

1351 1352 1353
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1354 1355
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
1356 1357

	return 0;
1358 1359
}

1360
static u64 spufs_signal1_type_get(struct spu_context *ctx)
1361 1362 1363
{
	return ctx->ops->signal1_type_get(ctx);
}
1364
DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1365
		       spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1366

1367

1368
static int spufs_signal2_type_set(void *data, u64 val)
1369 1370
{
	struct spu_context *ctx = data;
1371
	int ret;
1372

1373 1374 1375
	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1376 1377
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
1378 1379

	return 0;
1380 1381
}

1382
static u64 spufs_signal2_type_get(struct spu_context *ctx)
1383 1384 1385
{
	return ctx->ops->signal2_type_get(ctx);
}
1386
DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1387
		       spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1388

1389
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1390 1391
static int
spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1392
{
1393
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1394 1395 1396
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
N
Nick Piggin 已提交
1397
	.fault = spufs_mss_mmap_fault,
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1408
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1409
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1410
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1411 1412 1413 1414

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
1415 1416 1417
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1418 1419 1420 1421

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1422
	struct spu_context *ctx = i->i_ctx;
1423 1424

	file->private_data = i->i_ctx;
1425

1426
	mutex_lock(&ctx->mapping_lock);
1427 1428
	if (!i->i_openers++)
		ctx->mss = inode->i_mapping;
1429
	mutex_unlock(&ctx->mapping_lock);
1430 1431 1432
	return nonseekable_open(inode, file);
}

1433 1434 1435 1436 1437 1438
static int
spufs_mss_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1439
	mutex_lock(&ctx->mapping_lock);
1440 1441
	if (!--i->i_openers)
		ctx->mss = NULL;
1442
	mutex_unlock(&ctx->mapping_lock);
1443 1444 1445
	return 0;
}

1446
static const struct file_operations spufs_mss_fops = {
1447
	.open	 = spufs_mss_open,
1448
	.release = spufs_mss_release,
1449
	.mmap	 = spufs_mss_mmap,
1450 1451
};

N
Nick Piggin 已提交
1452 1453
static int
spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1454
{
1455
	return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1456 1457 1458
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
N
Nick Piggin 已提交
1459
	.fault = spufs_psmap_mmap_fault,
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1470
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
1481
	struct spu_context *ctx = i->i_ctx;
1482

1483
	mutex_lock(&ctx->mapping_lock);
1484
	file->private_data = i->i_ctx;
1485 1486
	if (!i->i_openers++)
		ctx->psmap = inode->i_mapping;
1487
	mutex_unlock(&ctx->mapping_lock);
1488 1489 1490
	return nonseekable_open(inode, file);
}

1491 1492 1493 1494 1495 1496
static int
spufs_psmap_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1497
	mutex_lock(&ctx->mapping_lock);
1498 1499
	if (!--i->i_openers)
		ctx->psmap = NULL;
1500
	mutex_unlock(&ctx->mapping_lock);
1501 1502 1503
	return 0;
}

1504
static const struct file_operations spufs_psmap_fops = {
1505
	.open	 = spufs_psmap_open,
1506
	.release = spufs_psmap_release,
1507
	.mmap	 = spufs_psmap_mmap,
1508 1509 1510
};


1511
#if SPUFS_MMAP_4K
N
Nick Piggin 已提交
1512 1513
static int
spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1514
{
1515
	return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1516 1517 1518
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
N
Nick Piggin 已提交
1519
	.fault = spufs_mfc_mmap_fault,
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

1530
	vma->vm_flags |= VM_IO | VM_PFNMAP;
1531
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1532
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1533 1534 1535 1536

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1537 1538 1539
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

1553
	mutex_lock(&ctx->mapping_lock);
1554
	file->private_data = ctx;
1555 1556
	if (!i->i_openers++)
		ctx->mfc = inode->i_mapping;
1557
	mutex_unlock(&ctx->mapping_lock);
1558 1559 1560
	return nonseekable_open(inode, file);
}

1561 1562 1563 1564 1565 1566
static int
spufs_mfc_release(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

1567
	mutex_lock(&ctx->mapping_lock);
1568 1569
	if (!--i->i_openers)
		ctx->mfc = NULL;
1570
	mutex_unlock(&ctx->mapping_lock);
1571 1572 1573
	return 0;
}

1574 1575 1576 1577 1578
/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

1579 1580 1581
	if (!ctx)
		return;

1582 1583
	wake_up_all(&ctx->mfc_wq);

1584
	pr_debug("%s %s\n", __func__, spu->name);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

1628 1629 1630 1631 1632
	ret = spu_acquire(ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
1633 1634 1635 1636 1637
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
1638
			/* XXX(hch): shouldn't we clear ret here? */
1639 1640 1641 1642
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
1643 1644
		if (ret)
			goto out;
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	}
	spu_release(ctx);

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

1762 1763 1764 1765
	ret = spu_acquire(ctx);
	if (ret)
		goto out;

1766
	ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1767 1768 1769
	if (ret)
		goto out;

1770 1771 1772 1773 1774 1775
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
1776 1777
		if (ret)
			goto out;
1778 1779 1780 1781 1782
		if (status)
			ret = status;
	}

	if (ret)
1783
		goto out_unlock;
1784 1785

	ctx->tagwait |= 1 << cmd.tag;
1786
	ret = size;
1787

1788 1789
out_unlock:
	spu_release(ctx);
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

1800 1801
	poll_wait(file, &ctx->mfc_wq, wait);

1802 1803 1804 1805 1806
	/*
	 * For now keep this uninterruptible and also ignore the rule
	 * that poll should not sleep.  Will be fixed later.
	 */
	mutex_lock(&ctx->state_mutex);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

1818
	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1819 1820 1821 1822 1823
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1824
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1825 1826 1827 1828
{
	struct spu_context *ctx = file->private_data;
	int ret;

1829 1830
	ret = spu_acquire(ctx);
	if (ret)
1831
		goto out;
1832 1833 1834 1835 1836 1837 1838 1839
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1840 1841
	if (ret)
		goto out;
1842 1843 1844 1845
#else
	ret = 0;
#endif
	spu_release(ctx);
1846
out:
1847 1848 1849 1850 1851 1852
	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1853
	return spufs_mfc_flush(file, NULL);
1854 1855 1856 1857 1858 1859 1860 1861 1862
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

1863
static const struct file_operations spufs_mfc_fops = {
1864
	.open	 = spufs_mfc_open,
1865
	.release = spufs_mfc_release,
1866 1867 1868 1869 1870 1871
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1872
	.mmap	 = spufs_mfc_mmap,
1873 1874
};

1875
static int spufs_npc_set(void *data, u64 val)
1876 1877
{
	struct spu_context *ctx = data;
1878 1879 1880 1881 1882
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
1883 1884
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1885 1886

	return 0;
1887 1888
}

1889
static u64 spufs_npc_get(struct spu_context *ctx)
1890 1891 1892
{
	return ctx->ops->npc_read(ctx);
}
1893 1894
DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE);
1895

1896
static int spufs_decr_set(void *data, u64 val)
1897 1898 1899
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1900 1901 1902 1903 1904
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1905
	lscsa->decr.slot[0] = (u32) val;
1906
	spu_release_saved(ctx);
1907 1908

	return 0;
1909 1910
}

1911
static u64 spufs_decr_get(struct spu_context *ctx)
1912 1913
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1914 1915
	return lscsa->decr.slot[0];
}
1916 1917
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1918

1919
static int spufs_decr_status_set(void *data, u64 val)
1920 1921
{
	struct spu_context *ctx = data;
1922 1923 1924 1925 1926
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1927 1928 1929 1930
	if (val)
		ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
	else
		ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1931
	spu_release_saved(ctx);
1932 1933

	return 0;
1934 1935
}

1936
static u64 spufs_decr_status_get(struct spu_context *ctx)
1937
{
1938 1939 1940 1941
	if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
		return SPU_DECR_STATUS_RUNNING;
	else
		return 0;
1942
}
1943 1944 1945
DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
		       spufs_decr_status_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1946

1947
static int spufs_event_mask_set(void *data, u64 val)
1948 1949 1950
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1951 1952 1953 1954 1955
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1956
	lscsa->event_mask.slot[0] = (u32) val;
1957
	spu_release_saved(ctx);
1958 1959

	return 0;
1960 1961
}

1962
static u64 spufs_event_mask_get(struct spu_context *ctx)
1963 1964
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1965 1966 1967
	return lscsa->event_mask.slot[0];
}

1968 1969 1970
DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
		       spufs_event_mask_set, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
1971

1972
static u64 spufs_event_status_get(struct spu_context *ctx)
1973 1974 1975 1976 1977
{
	struct spu_state *state = &ctx->csa;
	u64 stat;
	stat = state->spu_chnlcnt_RW[0];
	if (stat)
1978 1979 1980
		return state->spu_chnldata_RW[0];
	return 0;
}
1981 1982
DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
		       NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1983

1984
static int spufs_srr0_set(void *data, u64 val)
1985 1986 1987
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
1988 1989 1990 1991 1992
	int ret;

	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
1993
	lscsa->srr0.slot[0] = (u32) val;
1994
	spu_release_saved(ctx);
1995 1996

	return 0;
1997 1998
}

1999
static u64 spufs_srr0_get(struct spu_context *ctx)
2000 2001
{
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
2002
	return lscsa->srr0.slot[0];
2003
}
2004 2005
DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
		       "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2006

2007
static u64 spufs_id_get(struct spu_context *ctx)
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
{
	u64 num;

	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;

	return num;
}
2018 2019
DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE)
2020

2021
static u64 spufs_object_id_get(struct spu_context *ctx)
2022 2023
{
	/* FIXME: Should there really be no locking here? */
2024
	return ctx->object_id;
2025 2026
}

2027
static int spufs_object_id_set(void *data, u64 id)
2028 2029 2030
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
2031 2032

	return 0;
2033 2034
}

2035 2036
DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		       spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2037

2038
static u64 spufs_lslr_get(struct spu_context *ctx)
2039 2040 2041
{
	return ctx->csa.priv2.spu_lslr_RW;
}
2042 2043
DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
		       SPU_ATTR_ACQUIRE_SAVED);
2044 2045 2046 2047 2048 2049 2050 2051 2052

static int spufs_info_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	return 0;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static int spufs_caps_show(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	if (!(ctx->flags & SPU_CREATE_NOSCHED))
		seq_puts(s, "sched\n");
	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		seq_puts(s, "step\n");
	return 0;
}

static int spufs_caps_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_caps_fops = {
	.open		= spufs_caps_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2076 2077 2078 2079 2080
static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2081 2082 2083 2084 2085
	/* EOF if there's no entry in the mbox */
	if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
		return 0;

	data = ctx->csa.prob.pu_mb_R;
2086 2087 2088 2089

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2090 2091 2092
static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
2093
	int ret;
2094 2095 2096 2097 2098
	struct spu_context *ctx = file->private_data;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2099 2100 2101
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2102
	spin_lock(&ctx->csa.register_lock);
2103
	ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2104
	spin_unlock(&ctx->csa.register_lock);
2105
	spu_release_saved(ctx);
2106

2107
	return ret;
2108 2109
}

2110
static const struct file_operations spufs_mbox_info_fops = {
2111 2112 2113 2114 2115
	.open = spufs_info_open,
	.read = spufs_mbox_info_read,
	.llseek  = generic_file_llseek,
};

2116 2117 2118 2119 2120
static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
				char __user *buf, size_t len, loff_t *pos)
{
	u32 data;

2121 2122 2123 2124 2125
	/* EOF if there's no entry in the ibox */
	if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
		return 0;

	data = ctx->csa.priv2.puint_mb_R;
2126 2127 2128 2129

	return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
}

2130 2131 2132 2133
static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
2134
	int ret;
2135 2136 2137 2138

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2139 2140 2141
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2142
	spin_lock(&ctx->csa.register_lock);
2143
	ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2144
	spin_unlock(&ctx->csa.register_lock);
2145
	spu_release_saved(ctx);
2146

2147
	return ret;
2148 2149
}

2150
static const struct file_operations spufs_ibox_info_fops = {
2151 2152 2153 2154 2155
	.open = spufs_info_open,
	.read = spufs_ibox_info_read,
	.llseek  = generic_file_llseek,
};

2156 2157
static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2158 2159 2160 2161 2162
{
	int i, cnt;
	u32 data[4];
	u32 wbox_stat;

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	wbox_stat = ctx->csa.prob.mb_stat_R;
	cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
	for (i = 0; i < cnt; i++) {
		data[i] = ctx->csa.spu_mailbox_data[i];
	}

	return simple_read_from_buffer(buf, len, pos, &data,
				cnt * sizeof(u32));
}

static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2179 2180 2181
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2182 2183 2184
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2185
	spin_lock(&ctx->csa.register_lock);
2186
	ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2187
	spin_unlock(&ctx->csa.register_lock);
2188
	spu_release_saved(ctx);
2189

2190
	return ret;
2191 2192
}

2193
static const struct file_operations spufs_wbox_info_fops = {
2194 2195 2196 2197 2198
	.open = spufs_info_open,
	.read = spufs_wbox_info_read,
	.llseek  = generic_file_llseek,
};

2199 2200
static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
{
	struct spu_dma_info info;
	struct mfc_cq_sr *qp, *spuqp;
	int i;

	info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
	info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
	info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
	info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
	info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
	for (i = 0; i < 16; i++) {
		qp = &info.dma_info_command_data[i];
		spuqp = &ctx->csa.priv2.spuq[i];

		qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
	}

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

2225 2226 2227 2228 2229 2230 2231 2232 2233
static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
			      size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

2234 2235 2236
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2237 2238 2239
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_dma_info_read(ctx, buf, len, pos);
	spin_unlock(&ctx->csa.register_lock);
2240
	spu_release_saved(ctx);
2241 2242 2243 2244

	return ret;
}

2245
static const struct file_operations spufs_dma_info_fops = {
2246 2247 2248 2249
	.open = spufs_info_open,
	.read = spufs_dma_info_read,
};

2250 2251
static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
			char __user *buf, size_t len, loff_t *pos)
2252 2253 2254
{
	struct spu_proxydma_info info;
	struct mfc_cq_sr *qp, *puqp;
2255
	int ret = sizeof info;
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	int i;

	if (len < ret)
		return -EINVAL;

	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
	info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
	info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
	for (i = 0; i < 8; i++) {
		qp = &info.proxydma_info_command_data[i];
		puqp = &ctx->csa.priv2.puq[i];

		qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
		qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
		qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
		qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
	}
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	return simple_read_from_buffer(buf, len, pos, &info,
				sizeof info);
}

static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
				   size_t len, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

2287 2288 2289
	ret = spu_acquire_saved(ctx);
	if (ret)
		return ret;
2290 2291
	spin_lock(&ctx->csa.register_lock);
	ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2292
	spin_unlock(&ctx->csa.register_lock);
2293
	spu_release_saved(ctx);
2294 2295 2296 2297

	return ret;
}

2298
static const struct file_operations spufs_proxydma_info_fops = {
2299 2300 2301 2302
	.open = spufs_info_open,
	.read = spufs_proxydma_info_read,
};

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static int spufs_show_tid(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;

	seq_printf(s, "%d\n", ctx->tid);
	return 0;
}

static int spufs_tid_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_tid_fops = {
	.open		= spufs_tid_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2323 2324 2325 2326 2327
static const char *ctx_state_names[] = {
	"user", "system", "iowait", "loaded"
};

static unsigned long long spufs_acct_time(struct spu_context *ctx,
2328
		enum spu_utilization_state state)
2329
{
2330 2331
	struct timespec ts;
	unsigned long long time = ctx->stats.times[state];
2332

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	/*
	 * In general, utilization statistics are updated by the controlling
	 * thread as the spu context moves through various well defined
	 * state transitions, but if the context is lazily loaded its
	 * utilization statistics are not updated as the controlling thread
	 * is not tightly coupled with the execution of the spu context.  We
	 * calculate and apply the time delta from the last recorded state
	 * of the spu context.
	 */
	if (ctx->spu && ctx->stats.util_state == state) {
		ktime_get_ts(&ts);
		time += timespec_to_ns(&ts) - ctx->stats.tstamp;
	}
2346

2347
	return time / NSEC_PER_MSEC;
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
}

static unsigned long long spufs_slb_flts(struct spu_context *ctx)
{
	unsigned long long slb_flts = ctx->stats.slb_flt;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		slb_flts += (ctx->spu->stats.slb_flt -
			     ctx->stats.slb_flt_base);
	}

	return slb_flts;
}

static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
{
	unsigned long long class2_intrs = ctx->stats.class2_intr;

	if (ctx->state == SPU_STATE_RUNNABLE) {
		class2_intrs += (ctx->spu->stats.class2_intr -
				 ctx->stats.class2_intr_base);
	}

	return class2_intrs;
}


static int spufs_show_stat(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
2378 2379 2380 2381 2382
	int ret;

	ret = spu_acquire(ctx);
	if (ret)
		return ret;
2383 2384 2385

	seq_printf(s, "%s %llu %llu %llu %llu "
		      "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2386 2387 2388 2389 2390
		ctx_state_names[ctx->stats.util_state],
		spufs_acct_time(ctx, SPU_UTIL_USER),
		spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
		spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
		spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
		ctx->stats.vol_ctx_switch,
		ctx->stats.invol_ctx_switch,
		spufs_slb_flts(ctx),
		ctx->stats.hash_flt,
		ctx->stats.min_flt,
		ctx->stats.maj_flt,
		spufs_class2_intrs(ctx),
		ctx->stats.libassist);
	spu_release(ctx);
	return 0;
}

static int spufs_stat_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_stat_fops = {
	.open		= spufs_stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
static inline int spufs_switch_log_used(struct spu_context *ctx)
{
	return (ctx->switch_log->head - ctx->switch_log->tail) %
		SWITCH_LOG_BUFSIZE;
}

static inline int spufs_switch_log_avail(struct spu_context *ctx)
{
	return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
}

static int spufs_switch_log_open(struct inode *inode, struct file *file)
{
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;

	/*
	 * We (ab-)use the mapping_lock here because it serves the similar
	 * purpose for synchronizing open/close elsewhere.  Maybe it should
	 * be renamed eventually.
	 */
	mutex_lock(&ctx->mapping_lock);
	if (ctx->switch_log) {
		spin_lock(&ctx->switch_log->lock);
		ctx->switch_log->head = 0;
		ctx->switch_log->tail = 0;
		spin_unlock(&ctx->switch_log->lock);
	} else {
		/*
		 * We allocate the switch log data structures on first open.
		 * They will never be free because we assume a context will
		 * be traced until it goes away.
		 */
		ctx->switch_log = kzalloc(sizeof(struct switch_log) +
			SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
			GFP_KERNEL);
		if (!ctx->switch_log)
			goto out;
		spin_lock_init(&ctx->switch_log->lock);
		init_waitqueue_head(&ctx->switch_log->wait);
	}
	mutex_unlock(&ctx->mapping_lock);

	return 0;
 out:
	mutex_unlock(&ctx->mapping_lock);
	return -ENOMEM;
}

static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
{
	struct switch_log_entry *p;

	p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;

	return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
			(unsigned int) p->tstamp.tv_sec,
			(unsigned int) p->tstamp.tv_nsec,
			p->spu_id,
			(unsigned int) p->type,
			(unsigned int) p->val,
			(unsigned long long) p->timebase);
}

static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
			     size_t len, loff_t *ppos)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	int error = 0, cnt = 0;

	if (!buf || len < 0)
		return -EINVAL;

	while (cnt < len) {
		char tbuf[128];
		int width;

		if (file->f_flags & O_NONBLOCK) {
			if (spufs_switch_log_used(ctx) <= 0)
				return cnt ? cnt : -EAGAIN;
		} else {
			/* Wait for data in buffer */
			error = wait_event_interruptible(ctx->switch_log->wait,
					spufs_switch_log_used(ctx) > 0);
			if (error)
				break;
		}

		spin_lock(&ctx->switch_log->lock);
		if (ctx->switch_log->head == ctx->switch_log->tail) {
			/* multiple readers race? */
			spin_unlock(&ctx->switch_log->lock);
			continue;
		}

		width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
		if (width < len) {
			ctx->switch_log->tail =
				(ctx->switch_log->tail + 1) %
				 SWITCH_LOG_BUFSIZE;
		}

		spin_unlock(&ctx->switch_log->lock);

		/*
		 * If the record is greater than space available return
		 * partial buffer (so far)
		 */
		if (width >= len)
			break;

		error = copy_to_user(buf + cnt, tbuf, width);
		if (error)
			break;
		cnt += width;
	}

	return cnt == 0 ? error : cnt;
}

static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
	unsigned int mask = 0;

	poll_wait(file, &ctx->switch_log->wait, wait);

	if (spufs_switch_log_used(ctx) > 0)
		mask |= POLLIN;

	return mask;
}

static const struct file_operations spufs_switch_log_fops = {
	.owner	= THIS_MODULE,
	.open	= spufs_switch_log_open,
	.read	= spufs_switch_log_read,
	.poll	= spufs_switch_log_poll,
};

void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
		u32 type, u32 val)
{
	if (!ctx->switch_log)
		return;

	spin_lock(&ctx->switch_log->lock);
	if (spufs_switch_log_avail(ctx) > 1) {
		struct switch_log_entry *p;

		p = ctx->switch_log->log + ctx->switch_log->head;
		ktime_get_ts(&p->tstamp);
		p->timebase = get_tb();
		p->spu_id = spu ? spu->number : -1;
		p->type = type;
		p->val = val;

		ctx->switch_log->head =
			(ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
	}
	spin_unlock(&ctx->switch_log->lock);

	wake_up(&ctx->switch_log->wait);
}
2580

2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
static int spufs_show_ctx(struct seq_file *s, void *private)
{
	struct spu_context *ctx = s->private;
	u64 mfc_control_RW;

	mutex_lock(&ctx->state_mutex);
	if (ctx->spu) {
		struct spu *spu = ctx->spu;
		struct spu_priv2 __iomem *priv2 = spu->priv2;

		spin_lock_irq(&spu->register_lock);
		mfc_control_RW = in_be64(&priv2->mfc_control_RW);
		spin_unlock_irq(&spu->register_lock);
	} else {
		struct spu_state *csa = &ctx->csa;

		mfc_control_RW = csa->priv2.mfc_control_RW;
	}

	seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
		" %c %lx %lx %lx %lx %x %x\n",
		ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
		ctx->flags,
		ctx->sched_flags,
		ctx->prio,
		ctx->time_slice,
		ctx->spu ? ctx->spu->number : -1,
		!list_empty(&ctx->rq) ? 'q' : ' ',
		ctx->csa.class_0_pending,
		ctx->csa.class_0_dar,
		ctx->csa.class_1_dsisr,
		mfc_control_RW,
		ctx->ops->runcntl_read(ctx),
		ctx->ops->status_read(ctx));

	mutex_unlock(&ctx->state_mutex);

	return 0;
}

static int spufs_ctx_open(struct inode *inode, struct file *file)
{
	return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
}

static const struct file_operations spufs_ctx_fops = {
	.open           = spufs_ctx_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = single_release,
};

2633
struct spufs_tree_descr spufs_dir_contents[] = {
2634
	{ "capabilities", &spufs_caps_fops, 0444, },
2635 2636
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
	{ "regs", &spufs_regs_fops,  0666, sizeof(struct spu_reg128[128]), },
2637 2638 2639
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2640 2641 2642
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2643 2644
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
2645 2646
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
2647
	{ "cntl", &spufs_cntl_fops,  0666, },
2648
	{ "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2649 2650 2651 2652 2653
	{ "lslr", &spufs_lslr_ops, 0444, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
2654 2655 2656
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
2657
	{ "event_status", &spufs_event_status_ops, 0444, },
2658
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2659 2660
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2661 2662 2663 2664 2665 2666 2667
	{ "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
	{ "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
	{ "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
	{ "dma_info", &spufs_dma_info_fops, 0444,
		sizeof(struct spu_dma_info), },
	{ "proxydma_info", &spufs_proxydma_info_fops, 0444,
		sizeof(struct spu_proxydma_info)},
2668
	{ "tid", &spufs_tid_fops, 0444, },
2669
	{ "stat", &spufs_stat_fops, 0444, },
2670
	{ "switch_log", &spufs_switch_log_fops, 0444 },
2671 2672
	{},
};
2673

2674
struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2675
	{ "capabilities", &spufs_caps_fops, 0444, },
2676
	{ "mem",  &spufs_mem_fops,  0666, LS_SIZE, },
2677 2678 2679
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
2680 2681 2682
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2683 2684
	{ "signal1", &spufs_signal1_nosched_fops, 0222, },
	{ "signal2", &spufs_signal2_nosched_fops, 0222, },
2685 2686 2687 2688 2689 2690
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
2691
	{ "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2692 2693
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
2694
	{ "tid", &spufs_tid_fops, 0444, },
2695
	{ "stat", &spufs_stat_fops, 0444, },
2696 2697 2698 2699
	{},
};

struct spufs_tree_descr spufs_dir_debug_contents[] = {
2700
	{ ".ctx", &spufs_ctx_fops, 0444, },
2701 2702
	{},
};
2703 2704

struct spufs_coredump_reader spufs_coredump_read[] = {
2705 2706
	{ "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
	{ "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2707 2708 2709
	{ "lslr", NULL, spufs_lslr_get, 19 },
	{ "decr", NULL, spufs_decr_get, 19 },
	{ "decr_status", NULL, spufs_decr_status_get, 19 },
2710 2711
	{ "mem", __spufs_mem_read, NULL, LS_SIZE, },
	{ "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2712
	{ "signal1_type", NULL, spufs_signal1_type_get, 19 },
2713
	{ "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2714 2715 2716
	{ "signal2_type", NULL, spufs_signal2_type_get, 19 },
	{ "event_mask", NULL, spufs_event_mask_get, 19 },
	{ "event_status", NULL, spufs_event_status_get, 19 },
2717 2718 2719 2720 2721 2722
	{ "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
	{ "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
	{ "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
	{ "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
	{ "proxydma_info", __spufs_proxydma_info_read,
			   NULL, sizeof(struct spu_proxydma_info)},
2723 2724
	{ "object-id", NULL, spufs_object_id_get, 19 },
	{ "npc", NULL, spufs_npc_get, 19 },
2725
	{ NULL },
2726
};