gup.c 84.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/tlbflush.h>
23

24 25
#include "internal.h"

26 27 28 29 30
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
static void hpage_pincount_add(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_add(refs, compound_pincount_ptr(page));
}

static void hpage_pincount_sub(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_sub(refs, compound_pincount_ptr(page));
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

J
John Hubbard 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/*
 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
 * flags-dependent amount.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: head page (with refcount appropriately incremented) for success, or
 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
 * considered failure, and furthermore, a likely bug in the caller, so a warning
 * is also emitted.
 */
static __maybe_unused struct page *try_grab_compound_head(struct page *page,
							  int refs,
							  unsigned int flags)
{
	if (flags & FOLL_GET)
		return try_get_compound_head(page, refs);
	else if (flags & FOLL_PIN) {
88 89
		int orig_refs = refs;

90 91 92 93 94 95 96 97
		/*
		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
		 * path, so fail and let the caller fall back to the slow path.
		 */
		if (unlikely(flags & FOLL_LONGTERM) &&
				is_migrate_cma_page(page))
			return NULL;

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
		/*
		 * When pinning a compound page of order > 1 (which is what
		 * hpage_pincount_available() checks for), use an exact count to
		 * track it, via hpage_pincount_add/_sub().
		 *
		 * However, be sure to *also* increment the normal page refcount
		 * field at least once, so that the page really is pinned.
		 */
		if (!hpage_pincount_available(page))
			refs *= GUP_PIN_COUNTING_BIAS;

		page = try_get_compound_head(page, refs);
		if (!page)
			return NULL;

		if (hpage_pincount_available(page))
			hpage_pincount_add(page, refs);

116 117 118
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
				    orig_refs);

119
		return page;
J
John Hubbard 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	}

	WARN_ON_ONCE(1);
	return NULL;
}

/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 * time. Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));

	if (flags & FOLL_GET)
		return try_get_page(page);
	else if (flags & FOLL_PIN) {
154 155
		int refs = 1;

J
John Hubbard 已提交
156 157 158 159 160
		page = compound_head(page);

		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
			return false;

161 162 163 164 165 166 167 168 169 170 171 172
		if (hpage_pincount_available(page))
			hpage_pincount_add(page, 1);
		else
			refs = GUP_PIN_COUNTING_BIAS;

		/*
		 * Similar to try_grab_compound_head(): even if using the
		 * hpage_pincount_add/_sub() routines, be sure to
		 * *also* increment the normal page refcount field at least
		 * once, so that the page really is pinned.
		 */
		page_ref_add(page, refs);
173 174

		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
J
John Hubbard 已提交
175 176 177 178 179 180 181 182
	}

	return true;
}

#ifdef CONFIG_DEV_PAGEMAP_OPS
static bool __unpin_devmap_managed_user_page(struct page *page)
{
183
	int count, refs = 1;
J
John Hubbard 已提交
184 185 186 187

	if (!page_is_devmap_managed(page))
		return false;

188 189 190 191 192 193
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	count = page_ref_sub_return(page, refs);
J
John Hubbard 已提交
194

195
	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
J
John Hubbard 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	/*
	 * devmap page refcounts are 1-based, rather than 0-based: if
	 * refcount is 1, then the page is free and the refcount is
	 * stable because nobody holds a reference on the page.
	 */
	if (count == 1)
		free_devmap_managed_page(page);
	else if (!count)
		__put_page(page);

	return true;
}
#else
static bool __unpin_devmap_managed_user_page(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEV_PAGEMAP_OPS */

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
226 227
	int refs = 1;

J
John Hubbard 已提交
228 229 230 231 232 233 234 235 236 237 238
	page = compound_head(page);

	/*
	 * For devmap managed pages we need to catch refcount transition from
	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
	 * page is free and we need to inform the device driver through
	 * callback. See include/linux/memremap.h and HMM for details.
	 */
	if (__unpin_devmap_managed_user_page(page))
		return;

239 240 241 242 243 244
	if (hpage_pincount_available(page))
		hpage_pincount_sub(page, 1);
	else
		refs = GUP_PIN_COUNTING_BIAS;

	if (page_ref_sub_and_test(page, refs))
J
John Hubbard 已提交
245
		__put_page(page);
246 247

	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
J
John Hubbard 已提交
248 249 250
}
EXPORT_SYMBOL(unpin_user_page);

251
/**
252
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
254
 * @npages: number of pages in the @pages array.
255
 * @make_dirty: whether to mark the pages dirty
256 257 258 259 260
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
261
 * compound page) dirty, if @make_dirty is true, and if the page was previously
262 263
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
264
 *
265
 * Please see the unpin_user_page() documentation for details.
266
 *
267 268 269
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
270
 * set_page_dirty_lock(), unpin_user_page().
271 272
 *
 */
273 274
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
275
{
276
	unsigned long index;
277

278 279 280 281 282 283 284
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
285
		unpin_user_pages(pages, npages);
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
313
		unpin_user_page(page);
314
	}
315
}
316
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317 318

/**
319
 * unpin_user_pages() - release an array of gup-pinned pages.
320 321 322
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
323
 * For each page in the @pages array, release the page using unpin_user_page().
324
 *
325
 * Please see the unpin_user_page() documentation for details.
326
 */
327
void unpin_user_pages(struct page **pages, unsigned long npages)
328 329 330
{
	unsigned long index;

331 332 333 334 335 336 337
	/*
	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
	 * leaving them pinned), but probably not. More likely, gup/pup returned
	 * a hard -ERRNO error to the caller, who erroneously passed it here.
	 */
	if (WARN_ON(IS_ERR_VALUE(npages)))
		return;
338 339 340 341 342 343
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
344
		unpin_user_page(pages[index]);
345
}
346
EXPORT_SYMBOL(unpin_user_pages);
347

348
#ifdef CONFIG_MMU
349 350
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
351
{
352 353 354 355 356 357 358 359
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
360 361
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
362 363 364
		return ERR_PTR(-EFAULT);
	return NULL;
}
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

390
/*
391 392
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
393 394 395
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
396 397
	return pte_write(pte) ||
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
398 399
}

400
static struct page *follow_page_pte(struct vm_area_struct *vma,
401 402
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
403 404 405 406 407
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
408
	int ret;
409

410 411 412 413
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
414
retry:
415
	if (unlikely(pmd_bad(*pmd)))
416
		return no_page_table(vma, flags);
417 418 419 420 421 422 423 424 425 426 427 428

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
429
		if (pte_none(pte))
430 431 432 433 434 435
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
436
		goto retry;
437
	}
438
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
439
		goto no_page;
440
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
441 442 443
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
444 445

	page = vm_normal_page(vma, address, pte);
J
John Hubbard 已提交
446
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
447
		/*
J
John Hubbard 已提交
448 449 450
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
451
		 */
452 453
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
454 455 456 457
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
458 459 460 461 462 463 464 465 466 467 468 469 470
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
471 472
	}

473 474 475 476 477 478 479 480 481 482 483 484
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

J
John Hubbard 已提交
485 486 487 488
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
489
	}
490 491 492 493 494 495 496 497 498 499 500 501 502
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
503 504 505 506 507 508 509 510 511 512 513
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
514
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
515 516 517 518
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
540
out:
541 542 543 544 545
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
546 547 548 549
		return NULL;
	return no_page_table(vma, flags);
}

550 551
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
552 553
				    unsigned int flags,
				    struct follow_page_context *ctx)
554
{
555
	pmd_t *pmd, pmdval;
556 557 558 559
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

560
	pmd = pmd_offset(pudp, address);
561 562 563 564 565 566
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
567
		return no_page_table(vma, flags);
568
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
569 570 571 572
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
573
	}
574
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
575
		page = follow_huge_pd(vma, address,
576
				      __hugepd(pmd_val(pmdval)), flags,
577 578 579 580 581
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
582
retry:
583
	if (!pmd_present(pmdval)) {
584 585 586
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
587 588
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
589
			pmd_migration_entry_wait(mm, pmd);
590 591 592
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
593
		 * mmap_lock is held in read mode
594 595 596
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
597 598
		goto retry;
	}
599
	if (pmd_devmap(pmdval)) {
600
		ptl = pmd_lock(mm, pmd);
601
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
602 603 604 605
		spin_unlock(ptl);
		if (page)
			return page;
	}
606
	if (likely(!pmd_trans_huge(pmdval)))
607
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
608

609
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
610 611
		return no_page_table(vma, flags);

612
retry_locked:
613
	ptl = pmd_lock(mm, pmd);
614 615 616 617
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
618 619 620 621 622 623 624
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
625 626
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
627
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
628
	}
S
Song Liu 已提交
629
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
630 631 632 633 634
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
635
			split_huge_pmd(vma, pmd, address);
636 637
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
S
Song Liu 已提交
638
		} else if (flags & FOLL_SPLIT) {
639 640 641 642
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
643
			spin_unlock(ptl);
644 645 646 647
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
648 649
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
S
Song Liu 已提交
650 651 652 653
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
654 655 656
		}

		return ret ? ERR_PTR(ret) :
657
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
658
	}
659 660
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
661
	ctx->page_mask = HPAGE_PMD_NR - 1;
662
	return page;
663 664
}

665 666
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
667 668
				    unsigned int flags,
				    struct follow_page_context *ctx)
669 670 671 672 673 674 675 676 677
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
678
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
679 680 681 682 683
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
684 685 686 687 688 689 690 691
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
692 693
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
694
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
695 696 697 698 699 700 701
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

702
	return follow_pmd_mask(vma, address, pud, flags, ctx);
703 704 705 706
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
707 708
				    unsigned int flags,
				    struct follow_page_context *ctx)
709 710
{
	p4d_t *p4d;
711
	struct page *page;
712 713 714 715 716 717 718 719

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

720 721 722 723 724 725 726 727
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
728
	return follow_pud_mask(vma, address, p4d, flags, ctx);
729 730 731 732 733 734 735
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
736 737
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
738 739 740
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
741 742 743 744 745 746
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
747 748 749
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
750
static struct page *follow_page_mask(struct vm_area_struct *vma,
751
			      unsigned long address, unsigned int flags,
752
			      struct follow_page_context *ctx)
753 754 755 756 757
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

758
	ctx->page_mask = 0;
759 760 761 762

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
J
John Hubbard 已提交
763
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
764 765 766 767 768 769 770 771
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

772 773 774 775 776 777
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
778 779 780 781 782 783 784 785
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
786

787 788 789 790 791 792 793 794 795 796 797 798 799
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
800 801
}

802 803 804 805 806
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
807
	p4d_t *p4d;
808 809 810 811 812 813 814 815 816 817 818 819
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
820 821
	if (pgd_none(*pgd))
		return -EFAULT;
822
	p4d = p4d_offset(pgd, address);
823 824
	if (p4d_none(*p4d))
		return -EFAULT;
825
	pud = pud_offset(p4d, address);
826 827
	if (pud_none(*pud))
		return -EFAULT;
828
	pmd = pmd_offset(pud, address);
829
	if (!pmd_present(*pmd))
830 831 832 833 834 835 836 837 838 839 840 841 842 843
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
844
	if (unlikely(!try_grab_page(*page, gup_flags))) {
845 846 847
		ret = -ENOMEM;
		goto unmap;
	}
848 849 850 851 852 853 854
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

855
/*
856 857
 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
858
 * is, *@locked will be set to 0 and -EBUSY returned.
859
 */
860
static int faultin_page(struct vm_area_struct *vma,
861
		unsigned long address, unsigned int *flags, int *locked)
862 863
{
	unsigned int fault_flags = 0;
864
	vm_fault_t ret;
865

E
Eric B Munson 已提交
866 867 868
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
869 870
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
871 872
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
873
	if (locked)
874
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
875 876
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
877
	if (*flags & FOLL_TRIED) {
878 879 880 881
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
882 883
		fault_flags |= FAULT_FLAG_TRIED;
	}
884

885
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
886
	if (ret & VM_FAULT_ERROR) {
887 888 889 890
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
891 892 893 894
		BUG();
	}

	if (ret & VM_FAULT_RETRY) {
895 896
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
897 898 899 900 901 902 903 904 905 906 907 908 909
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
910
		*flags |= FOLL_COW;
911 912 913
	return 0;
}

914 915 916
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
917 918
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
919 920 921 922

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

923 924 925
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

926
	if (write) {
927 928 929 930 931 932 933 934 935 936 937 938
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
939
			if (!is_cow_mapping(vm_flags))
940 941 942 943 944 945 946 947 948 949 950 951
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
952 953 954 955 956
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
957
		return -EFAULT;
958 959 960
	return 0;
}

961 962 963 964 965 966 967 968 969 970 971
/**
 * __get_user_pages() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
972
 * @locked:     whether we're still with the mmap_lock held
973
 *
974 975 976 977 978 979 980
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
981
 * -- 0 return value is possible when the fault would need to be retried.
982 983 984
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
985
 * @vmas are valid only as long as mmap_lock is held.
986
 *
987
 * Must be called with mmap_lock held.  It may be released.  See below.
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
1008
 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1009 1010
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
1011
 *
1012
 * A caller using such a combination of @locked and @gup_flags
1013
 * must therefore hold the mmap_lock for reading only, and recognize
1014 1015
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
1016 1017 1018 1019 1020
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
1021
static long __get_user_pages(struct mm_struct *mm,
1022 1023
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
1024
		struct vm_area_struct **vmas, int *locked)
1025
{
1026
	long ret = 0, i = 0;
1027
	struct vm_area_struct *vma = NULL;
1028
	struct follow_page_context ctx = { NULL };
1029 1030 1031 1032

	if (!nr_pages)
		return 0;

1033 1034
	start = untagged_addr(start);

1035
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1058
					goto out;
1059
				ctx.page_mask = 0;
1060 1061
				goto next_page;
			}
1062

1063 1064 1065 1066
			if (!vma || check_vma_flags(vma, gup_flags)) {
				ret = -EFAULT;
				goto out;
			}
1067 1068 1069
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1070
						gup_flags, locked);
1071 1072 1073
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
1074
					 * and we've lost mmap_lock.
1075 1076 1077 1078 1079 1080
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					BUG_ON(ret != 0);
					goto out;
				}
1081
				continue;
1082
			}
1083 1084 1085 1086 1087 1088
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1089
		if (fatal_signal_pending(current)) {
1090
			ret = -EINTR;
1091 1092
			goto out;
		}
1093
		cond_resched();
1094 1095

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1096
		if (!page) {
1097
			ret = faultin_page(vma, start, &foll_flags, locked);
1098 1099 1100
			switch (ret) {
			case 0:
				goto retry;
1101 1102
			case -EBUSY:
				ret = 0;
J
Joe Perches 已提交
1103
				fallthrough;
1104 1105 1106
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1107
				goto out;
1108 1109
			case -ENOENT:
				goto next_page;
1110
			}
1111
			BUG();
1112 1113 1114 1115 1116 1117 1118
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1119 1120
			ret = PTR_ERR(page);
			goto out;
1121
		}
1122 1123 1124 1125
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1126
			ctx.page_mask = 0;
1127 1128
		}
next_page:
1129 1130
		if (vmas) {
			vmas[i] = vma;
1131
			ctx.page_mask = 0;
1132
		}
1133
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1134 1135 1136 1137 1138
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1139
	} while (nr_pages);
1140 1141 1142 1143
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1144 1145
}

1146 1147
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1148
{
1149 1150
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1151
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1152 1153 1154 1155

	if (!(vm_flags & vma->vm_flags))
		return false;

1156 1157
	/*
	 * The architecture might have a hardware protection
1158
	 * mechanism other than read/write that can deny access.
1159 1160 1161
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1162
	 */
1163
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1164 1165
		return false;

1166 1167 1168
	return true;
}

1169
/**
1170 1171 1172 1173
 * fixup_user_fault() - manually resolve a user page fault
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1174
 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1175 1176
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1188
 * get_user_pages() only guarantees to update these in the struct page.
1189 1190 1191 1192 1193 1194
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1195 1196
 * This function will not return with an unlocked mmap_lock. So it has not the
 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1197
 */
1198
int fixup_user_fault(struct mm_struct *mm,
1199 1200
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1201 1202
{
	struct vm_area_struct *vma;
1203
	vm_fault_t ret, major = 0;
1204

1205 1206
	address = untagged_addr(address);

1207
	if (unlocked)
1208
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1209

1210
retry:
1211 1212 1213 1214
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1215
	if (!vma_permits_fault(vma, fault_flags))
1216 1217
		return -EFAULT;

1218 1219 1220 1221
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1222
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1223
	major |= ret & VM_FAULT_MAJOR;
1224
	if (ret & VM_FAULT_ERROR) {
1225 1226 1227 1228
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1229 1230
		BUG();
	}
1231 1232

	if (ret & VM_FAULT_RETRY) {
1233
		mmap_read_lock(mm);
1234 1235 1236
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1237 1238
	}

1239 1240
	return 0;
}
1241
EXPORT_SYMBOL_GPL(fixup_user_fault);
1242

1243 1244 1245 1246
/*
 * Please note that this function, unlike __get_user_pages will not
 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 */
1247
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1248 1249 1250 1251
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1252
						int *locked,
1253
						unsigned int flags)
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

P
Peter Xu 已提交
1265
	if (flags & FOLL_PIN)
1266
		atomic_set(&mm->has_pinned, 1);
P
Peter Xu 已提交
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1278 1279 1280 1281 1282
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
1283
		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1302 1303 1304 1305
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1306 1307 1308 1309
			if (!pages_done)
				pages_done = ret;
			break;
		}
1310 1311 1312 1313 1314 1315
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1316
		start += ret << PAGE_SHIFT;
1317
		lock_dropped = true;
1318

1319
retry:
1320 1321
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1322 1323 1324 1325
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1326
		 */
1327

1328 1329 1330
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1331
			break;
1332
		}
1333

1334
		ret = mmap_read_lock_killable(mm);
1335 1336 1337 1338 1339 1340
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1341

1342
		*locked = 1;
1343
		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1344 1345 1346 1347 1348 1349
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1360 1361
		if (likely(pages))
			pages++;
1362 1363
		start += PAGE_SIZE;
	}
1364
	if (lock_dropped && *locked) {
1365 1366 1367 1368
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
1369
		mmap_read_unlock(mm);
1370 1371 1372 1373 1374
		*locked = 0;
	}
	return pages_done;
}

1375 1376 1377 1378 1379
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1380
 * @locked: whether the mmap_lock is still held
1381 1382 1383
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
1384 1385
 * Return either number of pages pinned in the vma, or a negative error
 * code on error.
1386
 *
1387
 * vma->vm_mm->mmap_lock must be held.
1388
 *
1389
 * If @locked is NULL, it may be held for read or write and will
1390 1391
 * be unperturbed.
 *
1392 1393
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1394 1395
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1396
		unsigned long start, unsigned long end, int *locked)
1397 1398 1399 1400 1401 1402 1403 1404 1405
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1406
	mmap_assert_locked(mm);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1423
	if (vma_is_accessible(vma))
1424 1425 1426 1427 1428 1429
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
1430
	return __get_user_pages(mm, start, nr_pages, gup_flags,
1431
				NULL, NULL, locked);
1432 1433 1434 1435 1436 1437 1438
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
1439
 * mmap_lock must not be held.
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
1458
			mmap_read_lock(mm);
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
1490
		mmap_read_unlock(mm);
1491 1492
	return ret;	/* 0 or negative error code */
}
1493
#else /* CONFIG_MMU */
1494
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
1550
 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1551 1552 1553 1554
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
1555
	struct mm_struct *mm = current->mm;
1556
	struct page *page;
1557 1558
	int locked = 1;
	int ret;
1559

1560
	if (mmap_read_lock_killable(mm))
1561
		return NULL;
1562 1563 1564 1565 1566
	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
	if (locked)
		mmap_read_unlock(mm);
	return (ret == 1) ? page : NULL;
1567 1568 1569
}
#endif /* CONFIG_ELF_CORE */

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
{
	long i;
	struct vm_area_struct *vma_prev = NULL;

	for (i = 0; i < nr_pages; i++) {
		struct vm_area_struct *vma = vmas[i];

		if (vma == vma_prev)
			continue;

		vma_prev = vma;

		if (vma_is_fsdax(vma))
			return true;
	}
	return false;
}

#ifdef CONFIG_CMA
1591
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1592 1593
					unsigned long start,
					unsigned long nr_pages,
1594
					struct page **pages,
1595 1596
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1597
{
1598 1599
	unsigned long i;
	unsigned long step;
1600 1601 1602
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);
1603
	long ret = nr_pages;
1604 1605 1606 1607
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
	};
1608 1609

check_again:
1610 1611 1612 1613 1614 1615 1616 1617
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
1618
		step = compound_nr(head) - (pages[i] - head);
1619 1620 1621 1622 1623
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1624 1625
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1626
				isolate_huge_page(head, &cma_page_list);
1627
			else {
1628 1629 1630 1631 1632 1633 1634 1635 1636
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
H
Huang Ying 已提交
1637
							    page_is_file_lru(head),
1638
							    thp_nr_pages(head));
1639 1640 1641
				}
			}
		}
1642 1643

		i += step;
1644 1645 1646 1647 1648 1649 1650 1651 1652
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
		for (i = 0; i < nr_pages; i++)
			put_page(pages[i]);

1653 1654
		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1665 1666 1667
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1668
		 */
1669
		ret = __get_user_pages_locked(mm, start, nr_pages,
1670 1671 1672
						   pages, vmas, NULL,
						   gup_flags);

1673 1674
		if ((ret > 0) && migrate_allow) {
			nr_pages = ret;
1675 1676 1677 1678 1679
			drain_allow = true;
			goto check_again;
		}
	}

1680
	return ret;
1681 1682
}
#else
1683
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1684 1685 1686 1687 1688
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1689 1690 1691
{
	return nr_pages;
}
1692
#endif /* CONFIG_CMA */
1693

1694
/*
1695 1696
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1697
 */
1698
static long __gup_longterm_locked(struct mm_struct *mm,
1699 1700 1701 1702 1703
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1704
{
1705 1706
	struct vm_area_struct **vmas_tmp = vmas;
	unsigned long flags = 0;
1707 1708
	long rc, i;

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	if (gup_flags & FOLL_LONGTERM) {
		if (!pages)
			return -EINVAL;

		if (!vmas_tmp) {
			vmas_tmp = kcalloc(nr_pages,
					   sizeof(struct vm_area_struct *),
					   GFP_KERNEL);
			if (!vmas_tmp)
				return -ENOMEM;
		}
		flags = memalloc_nocma_save();
1721 1722
	}

1723
	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1724
				     vmas_tmp, NULL, gup_flags);
1725

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
	if (gup_flags & FOLL_LONGTERM) {
		if (rc < 0)
			goto out;

		if (check_dax_vmas(vmas_tmp, rc)) {
			for (i = 0; i < rc; i++)
				put_page(pages[i]);
			rc = -EOPNOTSUPP;
			goto out;
		}

1737
		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1738
						 vmas_tmp, gup_flags);
1739 1740
out:
		memalloc_nocma_restore(flags);
1741
	}
1742

1743 1744
	if (vmas_tmp != vmas)
		kfree(vmas_tmp);
1745 1746
	return rc;
}
1747
#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1748
static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1749 1750 1751 1752 1753 1754
						  unsigned long start,
						  unsigned long nr_pages,
						  struct page **pages,
						  struct vm_area_struct **vmas,
						  unsigned int flags)
{
1755
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1756 1757 1758 1759
				       NULL, flags);
}
#endif /* CONFIG_FS_DAX || CONFIG_CMA */

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static bool is_valid_gup_flags(unsigned int gup_flags)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return false;
	/*
	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
	 * FOLL_PIN.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return false;

	return true;
}

1779
#ifdef CONFIG_MMU
1780
static long __get_user_pages_remote(struct mm_struct *mm,
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
1799
		return __gup_longterm_locked(mm, start, nr_pages, pages,
1800 1801 1802 1803
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

1804
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1805 1806 1807 1808
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1809
/**
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
 * get_user_pages_remote() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1834
 * @vmas are valid only as long as mmap_lock is held.
1835
 *
1836
 * Must be called with mmap_lock held for read or write.
1837
 *
1838 1839
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
1840 1841 1842 1843
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
1844
 * get_user_pages_remote returns, and there may even be a completely different
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
1856 1857 1858 1859 1860
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1861 1862 1863
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
1864
 * get_user_pages_remote should be phased out in favor of
1865
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1866
 * should use get_user_pages_remote because it cannot pass
1867 1868
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
1869
long get_user_pages_remote(struct mm_struct *mm,
1870 1871 1872 1873
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
1874
	if (!is_valid_gup_flags(gup_flags))
1875 1876
		return -EINVAL;

1877
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1878
				       pages, vmas, locked);
1879 1880 1881
}
EXPORT_SYMBOL(get_user_pages_remote);

1882
#else /* CONFIG_MMU */
1883
long get_user_pages_remote(struct mm_struct *mm,
1884 1885 1886 1887 1888 1889
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
J
John Hubbard 已提交
1890

1891
static long __get_user_pages_remote(struct mm_struct *mm,
J
John Hubbard 已提交
1892 1893 1894 1895 1896 1897
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
1898 1899
#endif /* !CONFIG_MMU */

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
1911 1912 1913 1914
 * This is the same as get_user_pages_remote(), just with a less-flexible
 * calling convention where we assume that the mm being operated on belongs to
 * the current task, and doesn't allow passing of a locked parameter.  We also
 * obviously don't pass FOLL_REMOTE in here.
1915 1916 1917 1918 1919
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
1920
	if (!is_valid_gup_flags(gup_flags))
1921 1922
		return -EINVAL;

1923
	return __gup_longterm_locked(current->mm, start, nr_pages,
1924 1925 1926
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1927

1928
/**
1929
 * get_user_pages_locked() is suitable to replace the form:
1930
 *
1931
 *      mmap_read_lock(mm);
1932
 *      do_something()
1933
 *      get_user_pages(mm, ..., pages, NULL);
1934
 *      mmap_read_unlock(mm);
1935
 *
1936
 *  to:
1937
 *
1938
 *      int locked = 1;
1939
 *      mmap_read_lock(mm);
1940
 *      do_something()
1941
 *      get_user_pages_locked(mm, ..., pages, &locked);
1942
 *      if (locked)
1943
 *          mmap_read_unlock(mm);
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
 *
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @locked:     pointer to lock flag indicating whether lock is held and
 *              subsequently whether VM_FAULT_RETRY functionality can be
 *              utilised. Lock must initially be held.
 *
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
1959
 */
1960 1961 1962
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
1963 1964
{
	/*
1965 1966 1967 1968
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
1969
	 */
1970 1971
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1972 1973 1974 1975 1976 1977
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;
1978

1979
	return __get_user_pages_locked(current->mm, start, nr_pages,
1980 1981
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
1982
}
1983
EXPORT_SYMBOL(get_user_pages_locked);
1984 1985

/*
1986
 * get_user_pages_unlocked() is suitable to replace the form:
1987
 *
1988
 *      mmap_read_lock(mm);
1989
 *      get_user_pages(mm, ..., pages, NULL);
1990
 *      mmap_read_unlock(mm);
1991 1992 1993
 *
 *  with:
 *
1994
 *      get_user_pages_unlocked(mm, ..., pages);
1995 1996 1997 1998
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1999
 */
2000 2001
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
2002 2003
{
	struct mm_struct *mm = current->mm;
2004 2005
	int locked = 1;
	long ret;
2006

2007 2008 2009 2010 2011 2012 2013 2014
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
2015

2016
	mmap_read_lock(mm);
2017
	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2018
				      &locked, gup_flags | FOLL_TOUCH);
2019
	if (locked)
2020
		mmap_read_unlock(mm);
2021
	return ret;
2022
}
2023
EXPORT_SYMBOL(get_user_pages_unlocked);
2024 2025

/*
2026
 * Fast GUP
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
2047
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2048
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2049 2050 2051 2052 2053 2054 2055 2056 2057
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
2058
#ifdef CONFIG_HAVE_FAST_GUP
J
John Hubbard 已提交
2059 2060 2061

static void put_compound_head(struct page *page, int refs, unsigned int flags)
{
2062
	if (flags & FOLL_PIN) {
2063 2064 2065
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
				    refs);

2066 2067 2068 2069 2070
		if (hpage_pincount_available(page))
			hpage_pincount_sub(page, refs);
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}
J
John Hubbard 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
	/*
	 * Calling put_page() for each ref is unnecessarily slow. Only the last
	 * ref needs a put_page().
	 */
	if (refs > 1)
		page_ref_sub(page, refs - 1);
	put_page(page);
}

2082
#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
J
John Hubbard 已提交
2083

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
/*
 * WARNING: only to be used in the get_user_pages_fast() implementation.
 *
 * With get_user_pages_fast(), we walk down the pagetables without taking any
 * locks.  For this we would like to load the pointers atomically, but sometimes
 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 * we do have is the guarantee that a PTE will only either go from not present
 * to present, or present to not present or both -- it will not switch to a
 * completely different present page without a TLB flush in between; something
 * that we are blocking by holding interrupts off.
 *
 * Setting ptes from not present to present goes:
 *
 *   ptep->pte_high = h;
 *   smp_wmb();
 *   ptep->pte_low = l;
 *
 * And present to not present goes:
 *
 *   ptep->pte_low = 0;
 *   smp_wmb();
 *   ptep->pte_high = 0;
 *
 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 * picked up a changed pte high. We might have gotten rubbish values from
 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 * operates on present ptes we're safe.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	pte_t pte;
2118

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
	do {
		pte.pte_low = ptep->pte_low;
		smp_rmb();
		pte.pte_high = ptep->pte_high;
		smp_rmb();
	} while (unlikely(pte.pte_low != ptep->pte_low));

	return pte;
}
#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2129
/*
2130
 * We require that the PTE can be read atomically.
2131 2132 2133
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
2134
	return ptep_get(ptep);
2135
}
2136
#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2137

2138
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2139
					    unsigned int flags,
2140
					    struct page **pages)
2141 2142 2143 2144 2145
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
J
John Hubbard 已提交
2146 2147 2148 2149
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2150 2151 2152
	}
}

2153
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2154
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2155
			 unsigned int flags, struct page **pages, int *nr)
2156
{
2157 2158
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2159 2160 2161 2162
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2163
		pte_t pte = gup_get_pte(ptep);
2164
		struct page *head, *page;
2165 2166 2167

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2168
		 * path using the pte_protnone check.
2169
		 */
2170 2171 2172
		if (pte_protnone(pte))
			goto pte_unmap;

2173
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2174 2175
			goto pte_unmap;

2176
		if (pte_devmap(pte)) {
2177 2178 2179
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2180 2181
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2182
				undo_dev_pagemap(nr, nr_start, flags, pages);
2183 2184 2185
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2186 2187 2188 2189 2190
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

J
John Hubbard 已提交
2191
		head = try_grab_compound_head(page, 1, flags);
2192
		if (!head)
2193 2194 2195
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
J
John Hubbard 已提交
2196
			put_compound_head(head, 1, flags);
2197 2198 2199
			goto pte_unmap;
		}

2200
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
				unpin_user_page(page);
				goto pte_unmap;
			}
		}
2215
		SetPageReferenced(page);
2216 2217 2218 2219 2220 2221 2222 2223
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2224 2225
	if (pgmap)
		put_dev_pagemap(pgmap);
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
2237
 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2238 2239 2240
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2241
			 unsigned int flags, struct page **pages, int *nr)
2242 2243 2244
{
	return 0;
}
2245
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2246

R
Robin Murphy 已提交
2247
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2248
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2249 2250
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2251 2252 2253 2254 2255 2256 2257 2258 2259
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2260
			undo_dev_pagemap(nr, nr_start, flags, pages);
2261 2262 2263 2264
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
J
John Hubbard 已提交
2265 2266 2267 2268
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
			return 0;
		}
2269 2270 2271
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2272 2273 2274

	if (pgmap)
		put_dev_pagemap(pgmap);
2275 2276 2277
	return 1;
}

2278
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2279 2280
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2281 2282
{
	unsigned long fault_pfn;
2283 2284 2285
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2286
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2287
		return 0;
2288

2289
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2290
		undo_dev_pagemap(nr, nr_start, flags, pages);
2291 2292 2293
		return 0;
	}
	return 1;
2294 2295
}

2296
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2297 2298
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2299 2300
{
	unsigned long fault_pfn;
2301 2302 2303
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2304
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2305
		return 0;
2306

2307
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2308
		undo_dev_pagemap(nr, nr_start, flags, pages);
2309 2310 2311
		return 0;
	}
	return 1;
2312 2313
}
#else
2314
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2315 2316
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2317 2318 2319 2320 2321
{
	BUILD_BUG();
	return 0;
}

2322
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2323 2324
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2325 2326 2327 2328 2329 2330
{
	BUILD_BUG();
	return 0;
}
#endif

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

	for (nr = 0; addr != end; addr += PAGE_SIZE)
		pages[nr++] = page++;

	return nr;
}

2342 2343 2344 2345 2346 2347 2348 2349 2350
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2351 2352
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

2363
	pte = huge_ptep_get(ptep);
2364

2365
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2366 2367 2368 2369 2370 2371 2372
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	head = pte_page(pte);
	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2373
	refs = record_subpages(page, addr, end, pages + *nr);
2374

J
John Hubbard 已提交
2375
	head = try_grab_compound_head(head, refs, flags);
2376
	if (!head)
2377 2378 2379
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2380
		put_compound_head(head, refs, flags);
2381 2382 2383
		return 0;
	}

2384
	*nr += refs;
2385
	SetPageReferenced(head);
2386 2387 2388 2389
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2390
		unsigned int pdshift, unsigned long end, unsigned int flags,
2391 2392 2393 2394 2395 2396 2397 2398 2399
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2400
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2401 2402 2403 2404 2405 2406 2407
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2408
		unsigned int pdshift, unsigned long end, unsigned int flags,
2409 2410 2411 2412 2413 2414
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2415
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2416 2417
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2418
{
2419
	struct page *head, *page;
2420 2421
	int refs;

2422
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2423 2424
		return 0;

2425 2426 2427
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2428 2429
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2430
	}
2431

2432
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2433
	refs = record_subpages(page, addr, end, pages + *nr);
2434

J
John Hubbard 已提交
2435
	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2436
	if (!head)
2437 2438 2439
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2440
		put_compound_head(head, refs, flags);
2441 2442 2443
		return 0;
	}

2444
	*nr += refs;
2445
	SetPageReferenced(head);
2446 2447 2448 2449
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2450 2451
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2452
{
2453
	struct page *head, *page;
2454 2455
	int refs;

2456
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2457 2458
		return 0;

2459 2460 2461
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2462 2463
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2464
	}
2465

2466
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2467
	refs = record_subpages(page, addr, end, pages + *nr);
2468

J
John Hubbard 已提交
2469
	head = try_grab_compound_head(pud_page(orig), refs, flags);
2470
	if (!head)
2471 2472 2473
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2474
		put_compound_head(head, refs, flags);
2475 2476 2477
		return 0;
	}

2478
	*nr += refs;
2479
	SetPageReferenced(head);
2480 2481 2482
	return 1;
}

2483
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2484
			unsigned long end, unsigned int flags,
2485 2486 2487
			struct page **pages, int *nr)
{
	int refs;
2488
	struct page *head, *page;
2489

2490
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2491 2492
		return 0;

2493
	BUILD_BUG_ON(pgd_devmap(orig));
2494

2495
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2496
	refs = record_subpages(page, addr, end, pages + *nr);
2497

J
John Hubbard 已提交
2498
	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2499
	if (!head)
2500 2501 2502
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2503
		put_compound_head(head, refs, flags);
2504 2505 2506
		return 0;
	}

2507
	*nr += refs;
2508
	SetPageReferenced(head);
2509 2510 2511
	return 1;
}

2512
static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2513
		unsigned int flags, struct page **pages, int *nr)
2514 2515 2516 2517
{
	unsigned long next;
	pmd_t *pmdp;

2518
	pmdp = pmd_offset_lockless(pudp, pud, addr);
2519
	do {
2520
		pmd_t pmd = READ_ONCE(*pmdp);
2521 2522

		next = pmd_addr_end(addr, end);
2523
		if (!pmd_present(pmd))
2524 2525
			return 0;

Y
Yu Zhao 已提交
2526 2527
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2528 2529 2530 2531 2532
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2533
			if (pmd_protnone(pmd))
2534 2535
				return 0;

2536
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2537 2538 2539
				pages, nr))
				return 0;

2540 2541 2542 2543 2544 2545
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2546
					 PMD_SHIFT, next, flags, pages, nr))
2547
				return 0;
2548
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2549
			return 0;
2550 2551 2552 2553 2554
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2555
static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2556
			 unsigned int flags, struct page **pages, int *nr)
2557 2558 2559 2560
{
	unsigned long next;
	pud_t *pudp;

2561
	pudp = pud_offset_lockless(p4dp, p4d, addr);
2562
	do {
2563
		pud_t pud = READ_ONCE(*pudp);
2564 2565

		next = pud_addr_end(addr, end);
Q
Qiujun Huang 已提交
2566
		if (unlikely(!pud_present(pud)))
2567
			return 0;
2568
		if (unlikely(pud_huge(pud))) {
2569
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2570 2571 2572 2573
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2574
					 PUD_SHIFT, next, flags, pages, nr))
2575
				return 0;
2576
		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2577 2578 2579 2580 2581 2582
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2583
static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2584
			 unsigned int flags, struct page **pages, int *nr)
2585 2586 2587 2588
{
	unsigned long next;
	p4d_t *p4dp;

2589
	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2590 2591 2592 2593 2594 2595 2596 2597 2598
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2599
					 P4D_SHIFT, next, flags, pages, nr))
2600
				return 0;
2601
		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2602 2603 2604 2605 2606 2607
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2608
static void gup_pgd_range(unsigned long addr, unsigned long end,
2609
		unsigned int flags, struct page **pages, int *nr)
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2622
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2623 2624 2625 2626
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2627
					 PGDIR_SHIFT, next, flags, pages, nr))
2628
				return;
2629
		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2630 2631 2632
			return;
	} while (pgdp++, addr = next, addr != end);
}
2633 2634 2635 2636 2637 2638
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2639 2640 2641

#ifndef gup_fast_permitted
/*
2642
 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2643 2644
 * we need to fall back to the slow version:
 */
2645
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2646
{
2647
	return true;
2648 2649 2650
}
#endif

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
2661
		mmap_read_lock(current->mm);
2662
		ret = __gup_longterm_locked(current->mm,
2663 2664
					    start, nr_pages,
					    pages, NULL, gup_flags);
2665
		mmap_read_unlock(current->mm);
2666 2667 2668 2669 2670 2671 2672 2673
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2674 2675 2676
static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
					unsigned int gup_flags,
					struct page **pages)
2677
{
2678
	unsigned long addr, len, end;
2679
	unsigned long flags;
2680
	int nr_pinned = 0, ret = 0;
2681

2682
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2683 2684
				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
				       FOLL_FAST_ONLY)))
2685 2686
		return -EINVAL;

P
Peter Xu 已提交
2687 2688 2689
	if (gup_flags & FOLL_PIN)
		atomic_set(&current->mm->has_pinned, 1);

2690
	if (!(gup_flags & FOLL_FAST_ONLY))
2691
		might_lock_read(&current->mm->mmap_lock);
2692

2693
	start = untagged_addr(start) & PAGE_MASK;
2694 2695 2696 2697
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;

2698
	if (end <= start)
2699
		return 0;
2700
	if (unlikely(!access_ok((void __user *)start, len)))
2701
		return -EFAULT;
2702

2703
	/*
2704 2705 2706 2707 2708 2709 2710 2711 2712
	 * Disable interrupts. The nested form is used, in order to allow
	 * full, general purpose use of this routine.
	 *
	 * With interrupts disabled, we block page table pages from being
	 * freed from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock(.) here as we also want to
	 * block IPIs that come from THPs splitting.
2713
	 */
2714 2715 2716 2717 2718 2719
	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
		unsigned long fast_flags = gup_flags;

		local_irq_save(flags);
		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
		local_irq_restore(flags);
2720
		ret = nr_pinned;
2721
	}
2722

2723
	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2724
		/* Try to get the remaining pages with get_user_pages */
2725 2726
		start += nr_pinned << PAGE_SHIFT;
		pages += nr_pinned;
2727

2728
		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2729
					      gup_flags, pages);
2730 2731

		/* Have to be a bit careful with return values */
2732
		if (nr_pinned > 0) {
2733
			if (ret < 0)
2734
				ret = nr_pinned;
2735
			else
2736
				ret += nr_pinned;
2737 2738 2739 2740 2741
		}
	}

	return ret;
}
2742 2743 2744 2745 2746 2747 2748 2749
/**
 * get_user_pages_fast_only() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
2762 2763
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
2764
{
2765
	int nr_pinned;
2766 2767 2768
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
2769 2770 2771
	 *
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
2772
	 */
2773
	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2774

2775 2776
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
2777 2778

	/*
2779 2780 2781 2782
	 * As specified in the API description above, this routine is not
	 * allowed to return negative values. However, the common core
	 * routine internal_get_user_pages_fast() *can* return -errno.
	 * Therefore, correct for that here:
2783
	 */
2784 2785
	if (nr_pinned < 0)
		nr_pinned = 0;
2786 2787 2788

	return nr_pinned;
}
2789
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2790

2791 2792
/**
 * get_user_pages_fast() - pin user pages in memory
J
John Hubbard 已提交
2793 2794 2795 2796 2797
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2798
 *
2799
 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
2810
	if (!is_valid_gup_flags(gup_flags))
2811 2812
		return -EINVAL;

2813 2814 2815 2816 2817 2818 2819
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2820 2821
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2822
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2823 2824 2825 2826

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
J
John Hubbard 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2838
 * see Documentation/core-api/pin_user_pages.rst for further details.
2839 2840 2841 2842
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
J
John Hubbard 已提交
2843 2844 2845 2846 2847 2848
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2849 2850 2851
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

2852
/*
2853 2854
 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
 *
 * The API rules are the same, too: no negative values may be returned.
 */
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
{
	int nr_pinned;

	/*
	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
	 * rules require returning 0, rather than -errno:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return 0;
	/*
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
	 */
	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
	/*
	 * This routine is not allowed to return negative values. However,
	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
	 * correct for that here:
	 */
	if (nr_pinned < 0)
		nr_pinned = 0;

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);

2888
/**
2889
 * pin_user_pages_remote() - pin pages of a remote process
2890
 *
J
John Hubbard 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2909
 * see Documentation/core-api/pin_user_pages.rst for details.
2910
 */
2911
long pin_user_pages_remote(struct mm_struct *mm,
2912 2913 2914 2915
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
J
John Hubbard 已提交
2916 2917 2918 2919 2920
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2921
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
J
John Hubbard 已提交
2922
				       pages, vmas, locked);
2923 2924 2925 2926 2927 2928
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
J
John Hubbard 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2942
 * see Documentation/core-api/pin_user_pages.rst for details.
2943 2944 2945 2946 2947
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
J
John Hubbard 已提交
2948 2949 2950 2951 2952
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2953
	return __gup_longterm_locked(current->mm, start, nr_pages,
J
John Hubbard 已提交
2954
				     pages, vmas, gup_flags);
2955 2956
}
EXPORT_SYMBOL(pin_user_pages);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997

/*
 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
 * Behavior is the same, except that this one sets FOLL_PIN and rejects
 * FOLL_GET.
 */
long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
{
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2998
	return __get_user_pages_locked(current->mm, start, nr_pages,
2999 3000 3001 3002
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(pin_user_pages_locked);