hclgevf_main.c 103.5 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.

#include <linux/etherdevice.h>
5
#include <linux/iopoll.h>
6
#include <net/rtnetlink.h>
7 8 9 10 11 12 13
#include "hclgevf_cmd.h"
#include "hclgevf_main.h"
#include "hclge_mbx.h"
#include "hnae3.h"

#define HCLGEVF_NAME	"hclgevf"

14 15
#define HCLGEVF_RESET_MAX_FAIL_CNT	5

16
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 18 19
static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
				  unsigned long delay);

20 21
static struct hnae3_ae_algo ae_algovf;

22 23
static struct workqueue_struct *hclgevf_wq;

24
static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 26 27
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 29 30 31
	/* required last entry */
	{0, }
};

32 33 34 35 36 37 38 39
static const u8 hclgevf_hash_key[] = {
	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
};

40 41
MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);

42 43 44 45 46 47 48 49 50 51 52
static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
					 HCLGEVF_CMDQ_TX_DEPTH_REG,
					 HCLGEVF_CMDQ_TX_TAIL_REG,
					 HCLGEVF_CMDQ_TX_HEAD_REG,
					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
					 HCLGEVF_CMDQ_RX_DEPTH_REG,
					 HCLGEVF_CMDQ_RX_TAIL_REG,
					 HCLGEVF_CMDQ_RX_HEAD_REG,
					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
					 HCLGEVF_CMDQ_INTR_EN_REG,
					 HCLGEVF_CMDQ_INTR_GEN_REG};

static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
					   HCLGEVF_RST_ING,
					   HCLGEVF_GRO_EN_REG};

static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
					 HCLGEVF_RING_RX_ADDR_H_REG,
					 HCLGEVF_RING_RX_BD_NUM_REG,
					 HCLGEVF_RING_RX_BD_LENGTH_REG,
					 HCLGEVF_RING_RX_MERGE_EN_REG,
					 HCLGEVF_RING_RX_TAIL_REG,
					 HCLGEVF_RING_RX_HEAD_REG,
					 HCLGEVF_RING_RX_FBD_NUM_REG,
					 HCLGEVF_RING_RX_OFFSET_REG,
					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
					 HCLGEVF_RING_RX_STASH_REG,
					 HCLGEVF_RING_RX_BD_ERR_REG,
					 HCLGEVF_RING_TX_ADDR_L_REG,
					 HCLGEVF_RING_TX_ADDR_H_REG,
					 HCLGEVF_RING_TX_BD_NUM_REG,
					 HCLGEVF_RING_TX_PRIORITY_REG,
					 HCLGEVF_RING_TX_TC_REG,
					 HCLGEVF_RING_TX_MERGE_EN_REG,
					 HCLGEVF_RING_TX_TAIL_REG,
					 HCLGEVF_RING_TX_HEAD_REG,
					 HCLGEVF_RING_TX_FBD_NUM_REG,
					 HCLGEVF_RING_TX_OFFSET_REG,
					 HCLGEVF_RING_TX_EBD_NUM_REG,
					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
					 HCLGEVF_RING_TX_BD_ERR_REG,
					 HCLGEVF_RING_EN_REG};

static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
					     HCLGEVF_TQP_INTR_GL0_REG,
					     HCLGEVF_TQP_INTR_GL1_REG,
					     HCLGEVF_TQP_INTR_GL2_REG,
					     HCLGEVF_TQP_INTR_RL_REG};

94
static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95
{
96 97 98 99 100 101
	if (!handle->client)
		return container_of(handle, struct hclgevf_dev, nic);
	else if (handle->client->type == HNAE3_CLIENT_ROCE)
		return container_of(handle, struct hclgevf_dev, roce);
	else
		return container_of(handle, struct hclgevf_dev, nic);
102 103 104 105
}

static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
{
106
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 108 109 110 111 112
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_desc desc;
	struct hclgevf_tqp *tqp;
	int status;
	int i;

113 114
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 116 117 118 119 120 121 122 123 124 125 126 127
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_QUERY_RX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status,	i);
			return status;
		}
		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128
			le32_to_cpu(desc.data[1]);
129 130 131 132 133 134 135 136 137 138 139 140 141

		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status, i);
			return status;
		}
		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142
			le32_to_cpu(desc.data[1]);
143 144 145 146 147 148 149 150 151 152 153 154
	}

	return 0;
}

static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_tqp *tqp;
	u64 *buff = data;
	int i;

155 156
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 158 159
		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
	}
	for (i = 0; i < kinfo->num_tqps; i++) {
160
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 162 163 164 165 166 167 168
		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
	}

	return buff;
}

static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
{
169
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170

171
	return kinfo->num_tqps * 2;
172 173 174 175
}

static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
{
176
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177
	u8 *buff = data;
178
	int i;
179

180 181 182
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
183
		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 185 186 187
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

188 189 190
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
191
		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

	return buff;
}

static void hclgevf_update_stats(struct hnae3_handle *handle,
				 struct net_device_stats *net_stats)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int status;

	status = hclgevf_tqps_update_stats(handle);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF update of TQPS stats fail, status = %d.\n",
			status);
}

static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
{
	if (strset == ETH_SS_TEST)
		return -EOPNOTSUPP;
	else if (strset == ETH_SS_STATS)
		return hclgevf_tqps_get_sset_count(handle, strset);

	return 0;
}

static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
				u8 *data)
{
	u8 *p = (char *)data;

	if (strset == ETH_SS_STATS)
		p = hclgevf_tqps_get_strings(handle, p);
}

static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
{
	hclgevf_tqps_get_stats(handle, data);
}

236 237 238 239 240 241 242 243 244 245
static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
				   u8 subcode)
{
	if (msg) {
		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
		msg->code = code;
		msg->subcode = subcode;
	}
}

246
static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
247
{
248 249 250
	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
	struct hclge_basic_info *basic_info;
251
	struct hclge_vf_to_pf_msg send_msg;
252
	unsigned long caps;
253 254
	int status;

255 256
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
257
				      sizeof(resp_msg));
258 259
	if (status) {
		dev_err(&hdev->pdev->dev,
260
			"failed to get basic info from pf, ret = %d", status);
261 262 263
		return status;
	}

264 265 266 267 268 269 270
	basic_info = (struct hclge_basic_info *)resp_msg;

	hdev->hw_tc_map = basic_info->hw_tc_map;
	hdev->mbx_api_version = basic_info->mbx_api_version;
	caps = basic_info->pf_caps;
	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
271 272 273 274

	return 0;
}

275 276 277
static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
278
	struct hclge_vf_to_pf_msg send_msg;
279 280 281
	u8 resp_msg;
	int ret;

282 283 284 285
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
				   sizeof(u8));
286 287 288 289 290 291 292 293 294 295 296 297
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get port based vlan state failed %d",
			ret);
		return ret;
	}

	nic->port_base_vlan_state = resp_msg;

	return 0;
}

298
static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
299
{
300
#define HCLGEVF_TQPS_RSS_INFO_LEN	6
301 302 303 304
#define HCLGEVF_TQPS_ALLOC_OFFSET	0
#define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
#define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4

305
	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
306
	struct hclge_vf_to_pf_msg send_msg;
307 308
	int status;

309 310
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
311 312 313 314 315 316 317 318
				      HCLGEVF_TQPS_RSS_INFO_LEN);
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp info from PF failed %d",
			status);
		return status;
	}

319 320 321 322 323 324
	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
	       sizeof(u16));
325 326 327 328 329 330 331

	return 0;
}

static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
{
#define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
332 333 334
#define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
#define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2

335
	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
336
	struct hclge_vf_to_pf_msg send_msg;
337 338
	int ret;

339 340
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
341 342 343 344 345 346 347 348
				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp depth info from PF failed %d",
			ret);
		return ret;
	}

349 350 351 352
	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
	       sizeof(u16));
353 354 355 356

	return 0;
}

357 358 359
static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
360
	struct hclge_vf_to_pf_msg send_msg;
361
	u16 qid_in_pf = 0;
362
	u8 resp_data[2];
363 364
	int ret;

365 366 367
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
368
				   sizeof(resp_data));
369 370 371 372 373 374
	if (!ret)
		qid_in_pf = *(u16 *)resp_data;

	return qid_in_pf;
}

375 376
static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
{
377
	struct hclge_vf_to_pf_msg send_msg;
378
	u8 resp_msg[2];
379 380
	int ret;

381 382 383
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
				   sizeof(resp_msg));
384 385 386 387 388 389 390
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get the pf port media type failed %d",
			ret);
		return ret;
	}

391 392
	hdev->hw.mac.media_type = resp_msg[0];
	hdev->hw.mac.module_type = resp_msg[1];
393 394 395 396

	return 0;
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
{
	struct hclgevf_tqp *tqp;
	int i;

	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
	if (!hdev->htqp)
		return -ENOMEM;

	tqp = hdev->htqp;

	for (i = 0; i < hdev->num_tqps; i++) {
		tqp->dev = &hdev->pdev->dev;
		tqp->index = i;

		tqp->q.ae_algo = &ae_algovf;
		tqp->q.buf_size = hdev->rx_buf_len;
415 416
		tqp->q.tx_desc_num = hdev->num_tx_desc;
		tqp->q.rx_desc_num = hdev->num_rx_desc;
417 418 419 420 421 422 423 424 425 426 427 428 429 430

		/* need an extended offset to configure queues >=
		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
		 */
		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
			tqp->q.io_base = hdev->hw.io_base +
					 HCLGEVF_TQP_REG_OFFSET +
					 i * HCLGEVF_TQP_REG_SIZE;
		else
			tqp->q.io_base = hdev->hw.io_base +
					 HCLGEVF_TQP_REG_OFFSET +
					 HCLGEVF_TQP_EXT_REG_OFFSET +
					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
					 HCLGEVF_TQP_REG_SIZE;
431 432 433 434 435 436 437 438 439 440 441 442

		tqp++;
	}

	return 0;
}

static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo;
	u16 new_tqps = hdev->num_tqps;
443
	unsigned int i;
444
	u8 num_tc = 0;
445 446

	kinfo = &nic->kinfo;
447 448
	kinfo->num_tx_desc = hdev->num_tx_desc;
	kinfo->num_rx_desc = hdev->num_rx_desc;
449 450 451
	kinfo->rx_buf_len = hdev->rx_buf_len;
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
		if (hdev->hw_tc_map & BIT(i))
452
			num_tc++;
453

454 455 456 457
	num_tc = num_tc ? num_tc : 1;
	kinfo->tc_info.num_tc = num_tc;
	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
	new_tqps = kinfo->rss_size * num_tc;
458 459 460 461 462 463 464 465 466 467 468 469 470
	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);

	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
				  sizeof(struct hnae3_queue *), GFP_KERNEL);
	if (!kinfo->tqp)
		return -ENOMEM;

	for (i = 0; i < kinfo->num_tqps; i++) {
		hdev->htqp[i].q.handle = &hdev->nic;
		hdev->htqp[i].q.tqp_index = i;
		kinfo->tqp[i] = &hdev->htqp[i].q;
	}

471 472 473 474
	/* after init the max rss_size and tqps, adjust the default tqp numbers
	 * and rss size with the actual vector numbers
	 */
	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
475
	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
476 477
				kinfo->rss_size);

478 479 480 481 482
	return 0;
}

static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
{
483
	struct hclge_vf_to_pf_msg send_msg;
484 485
	int status;

486 487
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
488 489 490 491 492 493 494
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed to fetch link status(%d) from PF", status);
}

void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
{
495
	struct hnae3_handle *rhandle = &hdev->roce;
496
	struct hnae3_handle *handle = &hdev->nic;
497
	struct hnae3_client *rclient;
498 499
	struct hnae3_client *client;

500 501 502
	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
		return;

503
	client = handle->client;
504
	rclient = hdev->roce_client;
505

506 507
	link_state =
		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
508 509
	if (link_state != hdev->hw.mac.link) {
		client->ops->link_status_change(handle, !!link_state);
510 511
		if (rclient && rclient->ops->link_status_change)
			rclient->ops->link_status_change(rhandle, !!link_state);
512 513
		hdev->hw.mac.link = link_state;
	}
514 515

	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
516 517
}

518
static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
519
{
520 521 522 523
#define HCLGEVF_ADVERTISING	0
#define HCLGEVF_SUPPORTED	1

	struct hclge_vf_to_pf_msg send_msg;
524

525 526 527 528 529
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
	send_msg.data[0] = HCLGEVF_ADVERTISING;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	send_msg.data[0] = HCLGEVF_SUPPORTED;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
530 531
}

532 533 534 535 536 537 538 539
static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	int ret;

	nic->ae_algo = &ae_algovf;
	nic->pdev = hdev->pdev;
	nic->numa_node_mask = hdev->numa_node_mask;
540
	nic->flags |= HNAE3_SUPPORT_VF;
541 542 543 544 545 546 547 548 549 550

	ret = hclgevf_knic_setup(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
			ret);
	return ret;
}

static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
{
551 552 553 554 555 556
	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
		dev_warn(&hdev->pdev->dev,
			 "vector(vector_id %d) has been freed.\n", vector_id);
		return;
	}

557 558 559 560 561 562 563 564 565 566 567 568 569
	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
	hdev->num_msi_left += 1;
	hdev->num_msi_used -= 1;
}

static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
			      struct hnae3_vector_info *vector_info)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_vector_info *vector = vector_info;
	int alloc = 0;
	int i, j;

570
	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	vector_num = min(hdev->num_msi_left, vector_num);

	for (j = 0; j < vector_num; j++) {
		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
				vector->vector = pci_irq_vector(hdev->pdev, i);
				vector->io_addr = hdev->hw.io_base +
					HCLGEVF_VECTOR_REG_BASE +
					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
				hdev->vector_status[i] = 0;
				hdev->vector_irq[i] = vector->vector;

				vector++;
				alloc++;

				break;
			}
		}
	}
	hdev->num_msi_left -= alloc;
	hdev->num_msi_used += alloc;

	return alloc;
}

static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
{
	int i;

	for (i = 0; i < hdev->num_msi; i++)
		if (vector == hdev->vector_irq[i])
			return i;

	return -EINVAL;
}

607 608 609 610
static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
				    const u8 hfunc, const u8 *key)
{
	struct hclgevf_rss_config_cmd *req;
611
	unsigned int key_offset = 0;
612
	struct hclgevf_desc desc;
613
	int key_counts;
614 615 616
	int key_size;
	int ret;

617
	key_counts = HCLGEVF_RSS_KEY_SIZE;
618 619
	req = (struct hclgevf_rss_config_cmd *)desc.data;

620
	while (key_counts) {
621 622 623 624 625 626 627 628
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
					     false);

		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
		req->hash_config |=
			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);

629
		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
630 631 632
		memcpy(req->hash_key,
		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);

633 634
		key_counts -= key_size;
		key_offset++;
635 636 637 638 639 640 641 642 643 644 645 646
		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"Configure RSS config fail, status = %d\n",
				ret);
			return ret;
		}
	}

	return 0;
}

647 648 649 650 651 652 653 654 655 656
static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_KEY_SIZE;
}

static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
{
	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
	struct hclgevf_rss_indirection_table_cmd *req;
	struct hclgevf_desc desc;
657
	int rss_cfg_tbl_num;
658 659 660 661
	int status;
	int i, j;

	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
662 663
	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
			  HCLGEVF_RSS_CFG_TBL_SIZE;
664

665
	for (i = 0; i < rss_cfg_tbl_num; i++) {
666 667
		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
					     false);
668 669 670
		req->start_table_index =
			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
			req->rss_result[j] =
				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];

		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"VF failed(=%d) to set RSS indirection table\n",
				status);
			return status;
		}
	}

	return 0;
}

static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
{
	struct hclgevf_rss_tc_mode_cmd *req;
	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
	u16 tc_size[HCLGEVF_MAX_TC_NUM];
	struct hclgevf_desc desc;
	u16 roundup_size;
695
	unsigned int i;
696
	int status;
697 698 699 700 701 702 703 704 705 706 707 708 709 710

	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;

	roundup_size = roundup_pow_of_two(rss_size);
	roundup_size = ilog2(roundup_size);

	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
		tc_size[i] = roundup_size;
		tc_offset[i] = rss_size * i;
	}

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
711 712 713
		u16 mode = 0;

		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
P
Peng Li 已提交
714
			      (tc_valid[i] & 0x1));
715
		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
P
Peng Li 已提交
716
				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
717 718 719
		hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
			      tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
			      0x1);
720
		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
P
Peng Li 已提交
721
				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
722 723

		req->rss_tc_mode[i] = cpu_to_le16(mode);
724 725 726 727 728 729 730 731 732
	}
	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed(=%d) to set rss tc mode\n", status);

	return status;
}

J
Jian Shen 已提交
733 734 735 736 737 738
/* for revision 0x20, vf shared the same rss config with pf */
static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RSS_MBX_RESP_LEN	8
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
739
	struct hclge_vf_to_pf_msg send_msg;
J
Jian Shen 已提交
740 741 742 743
	u16 msg_num, hash_key_index;
	u8 index;
	int ret;

744
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
J
Jian Shen 已提交
745 746 747
	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
			HCLGEVF_RSS_MBX_RESP_LEN;
	for (index = 0; index < msg_num; index++) {
748 749
		send_msg.data[0] = index;
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
J
Jian Shen 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
					   HCLGEVF_RSS_MBX_RESP_LEN);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"VF get rss hash key from PF failed, ret=%d",
				ret);
			return ret;
		}

		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
		if (index == msg_num - 1)
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0],
			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
		else
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
	}

	return 0;
}

771 772
static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
			   u8 *hfunc)
773 774
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
775
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
J
Jian Shen 已提交
776
	int i, ret;
777

778
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
779 780 781 782 783 784 785 786 787 788 789 790 791
		/* Get hash algorithm */
		if (hfunc) {
			switch (rss_cfg->hash_algo) {
			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
				*hfunc = ETH_RSS_HASH_TOP;
				break;
			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
				*hfunc = ETH_RSS_HASH_XOR;
				break;
			default:
				*hfunc = ETH_RSS_HASH_UNKNOWN;
				break;
			}
792 793
		}

794
		/* Get the RSS Key required by the user */
795
		if (key)
796 797
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
J
Jian Shen 已提交
798 799 800 801 802 803 804 805 806 807
	} else {
		if (hfunc)
			*hfunc = ETH_RSS_HASH_TOP;
		if (key) {
			ret = hclgevf_get_rss_hash_key(hdev);
			if (ret)
				return ret;
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
808 809 810
	}

	if (indir)
811
		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
812 813
			indir[i] = rss_cfg->rss_indirection_tbl[i];

814
	return 0;
815 816 817
}

static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
818
			   const u8 *key, const u8 hfunc)
819 820 821
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
822 823
	int ret, i;

824
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
		/* Set the RSS Hash Key if specififed by the user */
		if (key) {
			switch (hfunc) {
			case ETH_RSS_HASH_TOP:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
				break;
			case ETH_RSS_HASH_XOR:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
				break;
			case ETH_RSS_HASH_NO_CHANGE:
				break;
			default:
				return -EINVAL;
			}

			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
						       key);
			if (ret)
				return ret;

			/* Update the shadow RSS key with user specified qids */
			memcpy(rss_cfg->rss_hash_key, key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
	}
852 853

	/* update the shadow RSS table with user specified qids */
854
	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
855 856 857 858 859 860
		rss_cfg->rss_indirection_tbl[i] = indir[i];

	/* update the hardware */
	return hclgevf_set_rss_indir_table(hdev);
}

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
{
	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;

	if (nfc->data & RXH_L4_B_2_3)
		hash_sets |= HCLGEVF_D_PORT_BIT;
	else
		hash_sets &= ~HCLGEVF_D_PORT_BIT;

	if (nfc->data & RXH_IP_SRC)
		hash_sets |= HCLGEVF_S_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_S_IP_BIT;

	if (nfc->data & RXH_IP_DST)
		hash_sets |= HCLGEVF_D_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_D_IP_BIT;

	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
		hash_sets |= HCLGEVF_V_TAG_BIT;

	return hash_sets;
}

886 887 888
static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
				      struct ethtool_rxnfc *nfc,
				      struct hclgevf_rss_input_tuple_cmd *req)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 tuple_sets;

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		req->ipv4_tcp_en = tuple_sets;
		break;
	case TCP_V6_FLOW:
		req->ipv6_tcp_en = tuple_sets;
		break;
	case UDP_V4_FLOW:
		req->ipv4_udp_en = tuple_sets;
		break;
	case UDP_V6_FLOW:
		req->ipv6_udp_en = tuple_sets;
		break;
	case SCTP_V4_FLOW:
		req->ipv4_sctp_en = tuple_sets;
		break;
	case SCTP_V6_FLOW:
921 922
		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
923 924 925 926 927 928 929 930 931 932 933 934 935 936
			return -EINVAL;

		req->ipv6_sctp_en = tuple_sets;
		break;
	case IPV4_FLOW:
		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	case IPV6_FLOW:
		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	default:
		return -EINVAL;
	}

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	return 0;
}

static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return -EOPNOTSUPP;

	if (nfc->data &
	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
		return -EINVAL;

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to init rss tuple cmd, ret = %d\n", ret);
		return ret;
	}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Set rss tuple fail, status = %d\n", ret);
		return ret;
	}

	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
	return 0;
}

984 985
static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
					      int flow_type, u8 *tuple_sets)
986
{
987
	switch (flow_type) {
988
	case TCP_V4_FLOW:
989
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
990 991
		break;
	case UDP_V4_FLOW:
992
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
993 994
		break;
	case TCP_V6_FLOW:
995
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
996 997
		break;
	case UDP_V6_FLOW:
998
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
999 1000
		break;
	case SCTP_V4_FLOW:
1001
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
1002 1003
		break;
	case SCTP_V6_FLOW:
1004
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
1005 1006 1007
		break;
	case IPV4_FLOW:
	case IPV6_FLOW:
1008
		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1009 1010 1011 1012 1013
		break;
	default:
		return -EINVAL;
	}

1014 1015 1016 1017 1018 1019
	return 0;
}

static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
{
	u64 tuple_data = 0;
1020 1021

	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1022
		tuple_data |= RXH_L4_B_2_3;
1023
	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1024
		tuple_data |= RXH_L4_B_0_1;
1025
	if (tuple_sets & HCLGEVF_D_IP_BIT)
1026
		tuple_data |= RXH_IP_DST;
1027
	if (tuple_sets & HCLGEVF_S_IP_BIT)
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		tuple_data |= RXH_IP_SRC;

	return tuple_data;
}

static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 tuple_sets;
	int ret;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return -EOPNOTSUPP;

	nfc->data = 0;

	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
						 &tuple_sets);
	if (ret || !tuple_sets)
		return ret;

	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

	return 0;
}

static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
				       struct hclgevf_rss_cfg *rss_cfg)
{
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Configure rss input fail, status = %d\n", ret);
	return ret;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090
static int hclgevf_get_tc_size(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;

	return rss_cfg->rss_size;
}

static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1091
				       int vector_id,
1092 1093 1094
				       struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1095
	struct hclge_vf_to_pf_msg send_msg;
1096 1097
	struct hnae3_ring_chain_node *node;
	int status;
1098
	int i = 0;
1099

1100 1101
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1102
		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1103
	send_msg.vector_id = vector_id;
1104 1105

	for (node = ring_chain; node; node = node->next) {
1106
		send_msg.param[i].ring_type =
P
Peng Li 已提交
1107
				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1108 1109 1110 1111 1112 1113

		send_msg.param[i].tqp_index = node->tqp_index;
		send_msg.param[i].int_gl_index =
					hnae3_get_field(node->int_gl_idx,
							HNAE3_RING_GL_IDX_M,
							HNAE3_RING_GL_IDX_S);
1114 1115

		i++;
1116 1117
		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
			send_msg.ring_num = i;
1118

1119 1120
			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
						      NULL, 0);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
			if (status) {
				dev_err(&hdev->pdev->dev,
					"Map TQP fail, status is %d.\n",
					status);
				return status;
			}
			i = 0;
		}
	}

	return 0;
}

static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
				      struct hnae3_ring_chain_node *ring_chain)
{
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
}

static int hclgevf_unmap_ring_from_vector(
				struct hnae3_handle *handle,
				int vector,
				struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret, vector_id;

1158 1159 1160
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
		return 0;

1161 1162 1163 1164 1165 1166 1167
	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

1168
	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1169
	if (ret)
1170 1171 1172 1173
		dev_err(&handle->pdev->dev,
			"Unmap ring from vector fail. vector=%d, ret =%d\n",
			vector_id,
			ret);
1174 1175 1176 1177 1178 1179 1180

	return ret;
}

static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1181 1182 1183 1184 1185 1186 1187 1188 1189
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"hclgevf_put_vector get vector index fail. ret =%d\n",
			vector_id);
		return vector_id;
	}
1190

1191
	hclgevf_free_vector(hdev, vector_id);
1192 1193 1194 1195

	return 0;
}

1196
static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1197
					bool en_uc_pmc, bool en_mc_pmc,
1198
					bool en_bc_pmc)
1199
{
1200
	struct hnae3_handle *handle = &hdev->nic;
1201
	struct hclge_vf_to_pf_msg send_msg;
1202
	int ret;
1203

1204 1205 1206 1207 1208
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
	send_msg.en_bc = en_bc_pmc ? 1 : 0;
	send_msg.en_uc = en_uc_pmc ? 1 : 0;
	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1209 1210
	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
					     &handle->priv_flags) ? 1 : 0;
1211 1212

	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1213
	if (ret)
1214
		dev_err(&hdev->pdev->dev,
1215
			"Set promisc mode fail, status is %d.\n", ret);
1216

1217
	return ret;
1218 1219
}

1220 1221
static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
				    bool en_mc_pmc)
1222
{
1223 1224 1225
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	bool en_bc_pmc;

1226
	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1227 1228 1229

	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
					    en_bc_pmc);
1230 1231
}

1232 1233 1234 1235 1236
static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1237
	hclgevf_task_schedule(hdev, 0);
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
}

static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *handle = &hdev->nic;
	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
	int ret;

	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
		if (!ret)
			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
	}
}

1254 1255
static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
				       u16 stream_id, bool enable)
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
{
	struct hclgevf_cfg_com_tqp_queue_cmd *req;
	struct hclgevf_desc desc;

	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
				     false);
	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
	req->stream_id = cpu_to_le16(stream_id);
1266 1267
	if (enable)
		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1268

1269 1270
	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
}
1271

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;
	u16 i;

	for (i = 0; i < handle->kinfo.num_tqps; i++) {
		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
		if (ret)
			return ret;
	}

	return 0;
1285 1286 1287 1288
}

static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
{
1289
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1290 1291 1292
	struct hclgevf_tqp *tqp;
	int i;

1293 1294
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1295 1296 1297 1298
		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
	}
}

1299 1300
static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
{
1301
	struct hclge_vf_to_pf_msg send_msg;
1302 1303 1304
	u8 host_mac[ETH_ALEN];
	int status;

1305 1306 1307
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
				      ETH_ALEN);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	if (status) {
		dev_err(&hdev->pdev->dev,
			"fail to get VF MAC from host %d", status);
		return status;
	}

	ether_addr_copy(p, host_mac);

	return 0;
}

1319 1320 1321
static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1322
	u8 host_mac_addr[ETH_ALEN];
1323

1324 1325 1326 1327 1328 1329 1330 1331
	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
		return;

	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
	if (hdev->has_pf_mac)
		ether_addr_copy(p, host_mac_addr);
	else
		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1332 1333
}

1334 1335
static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
				bool is_first)
1336 1337 1338
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1339
	struct hclge_vf_to_pf_msg send_msg;
1340 1341 1342
	u8 *new_mac_addr = (u8 *)p;
	int status;

1343
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1344
	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1345
	ether_addr_copy(send_msg.data, new_mac_addr);
1346 1347 1348 1349
	if (is_first && !hdev->has_pf_mac)
		eth_zero_addr(&send_msg.data[ETH_ALEN]);
	else
		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1350
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1351 1352 1353 1354 1355 1356
	if (!status)
		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);

	return status;
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node)
		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
			return mac_node;

	return NULL;
}

static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_NODE_STATE state)
{
	switch (state) {
	/* from set_rx_mode or tmp_add_list */
	case HCLGEVF_MAC_TO_ADD:
		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	/* only from set_rx_mode */
	case HCLGEVF_MAC_TO_DEL:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
		}
		break;
	/* only from tmp_add_list, the mac_node->state won't be
	 * HCLGEVF_MAC_ACTIVE
	 */
	case HCLGEVF_MAC_ACTIVE:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	}
}

static int hclgevf_update_mac_list(struct hnae3_handle *handle,
				   enum HCLGEVF_MAC_NODE_STATE state,
				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
				   const unsigned char *addr)
1401 1402
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1403 1404
	struct hclgevf_mac_addr_node *mac_node;
	struct list_head *list;
1405

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	/* if the mac addr is already in the mac list, no need to add a new
	 * one into it, just check the mac addr state, convert it to a new
	 * new state, or just remove it, or do nothing.
	 */
	mac_node = hclgevf_find_mac_node(list, addr);
	if (mac_node) {
		hclgevf_update_mac_node(mac_node, state);
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return 0;
	}
	/* if this address is never added, unnecessary to delete */
	if (state == HCLGEVF_MAC_TO_DEL) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOENT;
	}

	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
	if (!mac_node) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOMEM;
	}

	mac_node->state = state;
	ether_addr_copy(mac_node->mac_addr, addr);
	list_add_tail(&mac_node->node, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
	return 0;
}

static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_UC, addr);
1446 1447 1448 1449 1450
}

static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1451 1452
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_UC, addr);
1453 1454 1455 1456 1457
}

static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
1458 1459
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_MC, addr);
1460 1461 1462 1463 1464
}

static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1465 1466 1467 1468 1469 1470 1471 1472
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_MC, addr);
}

static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
				    struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
1473
	struct hclge_vf_to_pf_msg send_msg;
1474
	u8 code, subcode;
1475

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
		code = HCLGE_MBX_SET_UNICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
	} else {
		code = HCLGE_MBX_SET_MULTICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
	}

	hclgevf_build_send_msg(&send_msg, code, subcode);
	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1492
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1493 1494
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
				    struct list_head *list,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;
	int ret;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
		if  (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to configure mac %pM, state = %d, ret = %d\n",
				mac_node->mac_addr, mac_node->state, ret);
			return;
		}
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_add_list(struct list_head *add_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
		/* if the mac address from tmp_add_list is not in the
		 * uc/mc_mac_list, it means have received a TO_DEL request
		 * during the time window of sending mac config request to PF
		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
		 * then it will be removed at next time. If is TO_ADD, it means
		 * send TO_ADD request failed, so just remove the mac node.
		 */
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			hclgevf_update_mac_node(new_node, mac_node->state);
			list_del(&mac_node->node);
			kfree(mac_node);
		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
1539
			list_move_tail(&mac_node->node, mac_list);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_del_list(struct list_head *del_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			/* If the mac addr is exist in the mac list, it means
			 * received a new request TO_ADD during the time window
			 * of sending mac addr configurrequest to PF, so just
			 * change the mac state to ACTIVE.
			 */
			new_node->state = HCLGEVF_MAC_ACTIVE;
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
1564
			list_move_tail(&mac_node->node, mac_list);
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
		}
	}
}

static void hclgevf_clear_list(struct list_head *list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		list_del(&mac_node->node);
		kfree(mac_node);
	}
}

static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
	struct list_head tmp_add_list, tmp_del_list;
	struct list_head *list;

	INIT_LIST_HEAD(&tmp_add_list);
	INIT_LIST_HEAD(&tmp_del_list);

	/* move the mac addr to the tmp_add_list and tmp_del_list, then
	 * we can add/delete these mac addr outside the spin lock
	 */
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		switch (mac_node->state) {
		case HCLGEVF_MAC_TO_DEL:
1600
			list_move_tail(&mac_node->node, &tmp_del_list);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
			break;
		case HCLGEVF_MAC_TO_ADD:
			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
			if (!new_node)
				goto stop_traverse;

			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
			new_node->state = mac_node->state;
			list_add_tail(&new_node->node, &tmp_add_list);
			break;
		default:
			break;
		}
	}

stop_traverse:
	spin_unlock_bh(&hdev->mac_table.mac_list_lock);

	/* delete first, in order to get max mac table space for adding */
	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);

	/* if some mac addresses were added/deleted fail, move back to the
	 * mac_list, and retry at next time.
	 */
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_sync_from_del_list(&tmp_del_list, list);
	hclgevf_sync_from_add_list(&tmp_add_list, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
{
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
}

static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
{
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
	struct hclge_vf_to_pf_msg send_msg;

	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
		return -EOPNOTSUPP;

	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_ENABLE_VLAN_FILTER);
	send_msg.data[0] = enable ? 1 : 0;

	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
}

1666 1667 1668 1669
static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
				   __be16 proto, u16 vlan_id,
				   bool is_kill)
{
1670 1671 1672 1673
#define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
#define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
#define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3

1674
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1675
	struct hclge_vf_to_pf_msg send_msg;
1676
	int ret;
1677

1678
	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1679 1680 1681 1682 1683
		return -EINVAL;

	if (proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

1684 1685
	/* When device is resetting or reset failed, firmware is unable to
	 * handle mailbox. Just record the vlan id, and remove it after
1686 1687
	 * reset finished.
	 */
1688 1689
	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1690 1691 1692 1693
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
		return -EBUSY;
	}

1694 1695 1696 1697 1698 1699 1700
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_FILTER);
	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
	       sizeof(vlan_id));
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
	       sizeof(proto));
G
Guojia Liao 已提交
1701
	/* when remove hw vlan filter failed, record the vlan id,
1702 1703 1704
	 * and try to remove it from hw later, to be consistence
	 * with stack.
	 */
1705
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	if (is_kill && ret)
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);

	return ret;
}

static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_SYNC_COUNT	60
	struct hnae3_handle *handle = &hdev->nic;
	int ret, sync_cnt = 0;
	u16 vlan_id;

	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	while (vlan_id != VLAN_N_VID) {
		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
					      vlan_id, true);
		if (ret)
			return;

		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
		sync_cnt++;
		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
			return;

		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	}
1733 1734
}

1735 1736 1737
static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1738
	struct hclge_vf_to_pf_msg send_msg;
1739

1740 1741 1742 1743
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_RX_OFF_CFG);
	send_msg.data[0] = enable ? 1 : 0;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1744 1745
}

1746
static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1747
{
1748
#define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1749
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1750
	struct hclge_vf_to_pf_msg send_msg;
1751
	u8 return_status = 0;
1752
	int ret;
1753
	u16 i;
1754

1755
	/* disable vf queue before send queue reset msg to PF */
1756 1757 1758 1759
	ret = hclgevf_tqp_enable(handle, false);
	if (ret) {
		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
			ret);
1760
		return ret;
1761
	}
1762

1763
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778

	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
				   sizeof(return_status));
	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
		return ret;

	for (i = 1; i < handle->kinfo.num_tqps; i++) {
		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
		memcpy(send_msg.data, &i, sizeof(i));
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
		if (ret)
			return ret;
	}

	return 0;
1779 1780
}

1781 1782 1783
static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1784
	struct hclge_vf_to_pf_msg send_msg;
1785

1786 1787 1788
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1789 1790
}

1791 1792 1793 1794 1795
static int hclgevf_notify_client(struct hclgevf_dev *hdev,
				 enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->nic_client;
	struct hnae3_handle *handle = &hdev->nic;
1796
	int ret;
1797

1798 1799 1800 1801
	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
	    !client)
		return 0;

1802 1803 1804
	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

1805 1806 1807 1808 1809 1810
	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
			type, ret);

	return ret;
1811 1812
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
				      enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->roce_client;
	struct hnae3_handle *handle = &hdev->roce;
	int ret;

	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
		return 0;

	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
			type, ret);
	return ret;
}

1833 1834
static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
{
1835 1836 1837 1838 1839 1840 1841
#define HCLGEVF_RESET_WAIT_US	20000
#define HCLGEVF_RESET_WAIT_CNT	2000
#define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)

	u32 val;
	int ret;
1842

1843
	if (hdev->reset_type == HNAE3_VF_RESET)
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_VF_RST_ING, val,
					 !(val & HCLGEVF_VF_RST_ING_BIT),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
	else
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_RST_ING, val,
					 !(val & HCLGEVF_RST_ING_BITS),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1855 1856

	/* hardware completion status should be available by this time */
1857 1858
	if (ret) {
		dev_err(&hdev->pdev->dev,
1859
			"couldn't get reset done status from h/w, timeout!\n");
1860
		return ret;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	}

	/* we will wait a bit more to let reset of the stack to complete. This
	 * might happen in case reset assertion was made by PF. Yes, this also
	 * means we might end up waiting bit more even for VF reset.
	 */
	msleep(5000);

	return 0;
}

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
{
	u32 reg_val;

	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
	if (enable)
		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
	else
		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;

	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
			  reg_val);
}

1886 1887
static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
{
1888 1889
	int ret;

1890
	/* uninitialize the nic client */
1891 1892 1893
	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1894

1895
	/* re-initialize the hclge device */
1896
	ret = hclgevf_reset_hdev(hdev);
1897 1898 1899 1900 1901
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"hclge device re-init failed, VF is disabled!\n");
		return ret;
	}
1902 1903

	/* bring up the nic client again */
1904 1905 1906
	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;
1907

1908 1909 1910
	/* clear handshake status with IMP */
	hclgevf_reset_handshake(hdev, false);

1911 1912
	/* bring up the nic to enable TX/RX again */
	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1913 1914
}

1915 1916
static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
{
1917 1918
#define HCLGEVF_RESET_SYNC_TIME 100

1919
	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1920 1921 1922
		struct hclge_vf_to_pf_msg send_msg;
		int ret;

1923 1924
		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1925 1926 1927 1928 1929
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to assert VF reset, ret = %d\n", ret);
			return ret;
		}
1930
		hdev->rst_stats.vf_func_rst_cnt++;
1931 1932
	}

1933
	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1934 1935
	/* inform hardware that preparatory work is done */
	msleep(HCLGEVF_RESET_SYNC_TIME);
1936
	hclgevf_reset_handshake(hdev, true);
1937 1938
	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
		 hdev->reset_type);
1939

1940
	return 0;
1941 1942
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
{
	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
		 hdev->rst_stats.vf_func_rst_cnt);
	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
		 hdev->rst_stats.flr_rst_cnt);
	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
		 hdev->rst_stats.vf_rst_cnt);
	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
		 hdev->rst_stats.rst_done_cnt);
	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
		 hdev->rst_stats.hw_rst_done_cnt);
	dev_info(&hdev->pdev->dev, "reset count: %u\n",
		 hdev->rst_stats.rst_cnt);
	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
		 hdev->rst_stats.rst_fail_cnt);
	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1962
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1963 1964 1965 1966 1967 1968 1969
	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
}

1970 1971
static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
{
1972 1973
	/* recover handshake status with IMP when reset fail */
	hclgevf_reset_handshake(hdev, true);
1974
	hdev->rst_stats.rst_fail_cnt++;
1975
	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1976 1977 1978 1979 1980 1981 1982 1983
		hdev->rst_stats.rst_fail_cnt);

	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
		set_bit(hdev->reset_type, &hdev->reset_pending);

	if (hclgevf_is_reset_pending(hdev)) {
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		hclgevf_reset_task_schedule(hdev);
1984
	} else {
1985
		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1986
		hclgevf_dump_rst_info(hdev);
1987 1988 1989
	}
}

1990
static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1991 1992 1993
{
	int ret;

1994
	hdev->rst_stats.rst_cnt++;
1995

1996 1997 1998 1999 2000
	/* perform reset of the stack & ae device for a client */
	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;

2001
	rtnl_lock();
2002
	/* bring down the nic to stop any ongoing TX/RX */
2003
	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2004
	rtnl_unlock();
2005
	if (ret)
2006
		return ret;
2007

2008 2009 2010 2011 2012 2013
	return hclgevf_reset_prepare_wait(hdev);
}

static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
{
	int ret;
2014

2015
	hdev->rst_stats.hw_rst_done_cnt++;
2016 2017 2018
	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
2019

2020
	rtnl_lock();
G
Guojia Liao 已提交
2021
	/* now, re-initialize the nic client and ae device */
2022
	ret = hclgevf_reset_stack(hdev);
2023
	rtnl_unlock();
2024
	if (ret) {
2025
		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2026
		return ret;
2027
	}
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
	 * times
	 */
	if (ret &&
	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
		return ret;

	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
	if (ret)
		return ret;

2041
	hdev->last_reset_time = jiffies;
2042
	hdev->rst_stats.rst_done_cnt++;
2043
	hdev->rst_stats.rst_fail_cnt = 0;
2044
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	return 0;
}

static void hclgevf_reset(struct hclgevf_dev *hdev)
{
	if (hclgevf_reset_prepare(hdev))
		goto err_reset;

	/* check if VF could successfully fetch the hardware reset completion
	 * status from the hardware
	 */
	if (hclgevf_reset_wait(hdev)) {
		/* can't do much in this situation, will disable VF */
		dev_err(&hdev->pdev->dev,
			"failed to fetch H/W reset completion status\n");
		goto err_reset;
	}

	if (hclgevf_reset_rebuild(hdev))
		goto err_reset;

	return;

2069
err_reset:
2070
	hclgevf_reset_err_handle(hdev);
2071 2072
}

2073 2074 2075 2076 2077
static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
						     unsigned long *addr)
{
	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;

2078
	/* return the highest priority reset level amongst all */
2079 2080 2081 2082 2083 2084
	if (test_bit(HNAE3_VF_RESET, addr)) {
		rst_level = HNAE3_VF_RESET;
		clear_bit(HNAE3_VF_RESET, addr);
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2085 2086 2087
		rst_level = HNAE3_VF_FULL_RESET;
		clear_bit(HNAE3_VF_FULL_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2088 2089 2090 2091
	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_PF_FUNC_RESET;
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2092 2093 2094
	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_FUNC_RESET;
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2095 2096 2097
	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
		rst_level = HNAE3_FLR_RESET;
		clear_bit(HNAE3_FLR_RESET, addr);
2098 2099 2100 2101 2102
	}

	return rst_level;
}

2103 2104
static void hclgevf_reset_event(struct pci_dev *pdev,
				struct hnae3_handle *handle)
2105
{
2106 2107
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	struct hclgevf_dev *hdev = ae_dev->priv;
2108 2109 2110

	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");

2111
	if (hdev->default_reset_request)
2112
		hdev->reset_level =
2113 2114 2115
			hclgevf_get_reset_level(hdev,
						&hdev->default_reset_request);
	else
2116
		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2117

2118 2119 2120
	/* reset of this VF requested */
	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
	hclgevf_reset_task_schedule(hdev);
2121

2122
	hdev->last_reset_time = jiffies;
2123 2124
}

2125 2126 2127 2128 2129 2130 2131 2132
static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
					  enum hnae3_reset_type rst_type)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	set_bit(rst_type, &hdev->default_reset_request);
}

2133 2134 2135 2136 2137
static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
{
	writel(en ? 1 : 0, vector->addr);
}

2138 2139
static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
					  enum hnae3_reset_type rst_type)
2140
{
2141 2142
#define HCLGEVF_RESET_RETRY_WAIT_MS	500
#define HCLGEVF_RESET_RETRY_CNT		5
2143

2144
	struct hclgevf_dev *hdev = ae_dev->priv;
2145 2146
	int retry_cnt = 0;
	int ret;
2147

2148 2149 2150
retry:
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2151
	hdev->reset_type = rst_type;
2152 2153
	ret = hclgevf_reset_prepare(hdev);
	if (ret) {
2154
		dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n",
2155 2156
			ret);
		if (hdev->reset_pending ||
2157
		    retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2158 2159 2160 2161 2162
			dev_err(&hdev->pdev->dev,
				"reset_pending:0x%lx, retry_cnt:%d\n",
				hdev->reset_pending, retry_cnt);
			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
			up(&hdev->reset_sem);
2163
			msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2164 2165 2166
			goto retry;
		}
	}
2167

2168
	/* disable misc vector before reset done */
2169
	hclgevf_enable_vector(&hdev->misc_vector, false);
2170 2171 2172

	if (hdev->reset_type == HNAE3_FLR_RESET)
		hdev->rst_stats.flr_rst_cnt++;
2173
}
2174

2175
static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	hclgevf_enable_vector(&hdev->misc_vector, true);

	ret = hclgevf_reset_rebuild(hdev);
	if (ret)
		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
			 ret);

	hdev->reset_type = HNAE3_NONE_RESET;
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	up(&hdev->reset_sem);
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->fw_version;
}

static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
{
	struct hclgevf_misc_vector *vector = &hdev->misc_vector;

	vector->vector_irq = pci_irq_vector(hdev->pdev,
					    HCLGEVF_MISC_VECTOR_NUM);
	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
	/* vector status always valid for Vector 0 */
	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;

	hdev->num_msi_left -= 1;
	hdev->num_msi_used += 1;
}

2214 2215
void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
{
2216 2217 2218
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
			      &hdev->state))
2219
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2220 2221
}

2222
void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2223
{
2224 2225 2226
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
			      &hdev->state))
2227
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2228 2229
}

2230 2231
static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
				  unsigned long delay)
2232
{
2233 2234
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2235
		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2236 2237
}

2238
static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2239
{
2240 2241
#define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3

2242
	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2243 2244
		return;

2245 2246
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2247

2248 2249
	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
			       &hdev->reset_state)) {
2250
		/* PF has intimated that it is about to reset the hardware.
2251 2252 2253
		 * We now have to poll & check if hardware has actually
		 * completed the reset sequence. On hardware reset completion,
		 * VF needs to reset the client and ae device.
2254 2255 2256
		 */
		hdev->reset_attempts = 0;

2257 2258 2259
		hdev->last_reset_time = jiffies;
		while ((hdev->reset_type =
			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2260 2261
		       != HNAE3_NONE_RESET)
			hclgevf_reset(hdev);
2262 2263 2264
	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
				      &hdev->reset_state)) {
		/* we could be here when either of below happens:
2265
		 * 1. reset was initiated due to watchdog timeout caused by
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		 *    a. IMP was earlier reset and our TX got choked down and
		 *       which resulted in watchdog reacting and inducing VF
		 *       reset. This also means our cmdq would be unreliable.
		 *    b. problem in TX due to other lower layer(example link
		 *       layer not functioning properly etc.)
		 * 2. VF reset might have been initiated due to some config
		 *    change.
		 *
		 * NOTE: Theres no clear way to detect above cases than to react
		 * to the response of PF for this reset request. PF will ack the
		 * 1b and 2. cases but we will not get any intimation about 1a
		 * from PF as cmdq would be in unreliable state i.e. mailbox
		 * communication between PF and VF would be broken.
G
Guojia Liao 已提交
2279 2280
		 *
		 * if we are never geting into pending state it means either:
2281 2282 2283 2284 2285 2286
		 * 1. PF is not receiving our request which could be due to IMP
		 *    reset
		 * 2. PF is screwed
		 * We cannot do much for 2. but to check first we can try reset
		 * our PCIe + stack and see if it alleviates the problem.
		 */
2287
		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2288
			/* prepare for full reset of stack + pcie interface */
2289
			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2290 2291 2292 2293 2294 2295

			/* "defer" schedule the reset task again */
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		} else {
			hdev->reset_attempts++;

2296 2297
			set_bit(hdev->reset_level, &hdev->reset_pending);
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2298
		}
2299
		hclgevf_reset_task_schedule(hdev);
2300
	}
2301

2302
	hdev->reset_type = HNAE3_NONE_RESET;
2303
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2304
	up(&hdev->reset_sem);
2305 2306
}

2307
static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2308
{
2309 2310
	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
		return;
2311 2312 2313 2314

	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
		return;

2315
	hclgevf_mbx_async_handler(hdev);
2316 2317 2318 2319

	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
}

2320
static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2321
{
2322
	struct hclge_vf_to_pf_msg send_msg;
2323 2324
	int ret;

2325
	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2326 2327
		return;

2328 2329
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2330 2331 2332 2333 2334
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF sends keep alive cmd failed(=%d)\n", ret);
}

2335
static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2336
{
2337 2338
	unsigned long delta = round_jiffies_relative(HZ);
	struct hnae3_handle *handle = &hdev->nic;
2339

2340 2341 2342
	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
		return;

2343 2344
	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
		delta = jiffies - hdev->last_serv_processed;
2345

2346 2347 2348 2349
		if (delta < round_jiffies_relative(HZ)) {
			delta = round_jiffies_relative(HZ) - delta;
			goto out;
		}
2350
	}
2351

2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	hdev->serv_processed_cnt++;
	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
		hclgevf_keep_alive(hdev);

	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
		hdev->last_serv_processed = jiffies;
		goto out;
	}

	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
		hclgevf_tqps_update_stats(handle);

2364 2365
	/* VF does not need to request link status when this bit is set, because
	 * PF will push its link status to VFs when link status changed.
2366
	 */
2367 2368
	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
		hclgevf_request_link_info(hdev);
2369

2370 2371
	hclgevf_update_link_mode(hdev);

2372 2373
	hclgevf_sync_vlan_filter(hdev);

2374 2375
	hclgevf_sync_mac_table(hdev);

2376 2377
	hclgevf_sync_promisc_mode(hdev);

2378
	hdev->last_serv_processed = jiffies;
2379

2380 2381 2382 2383 2384 2385 2386 2387
out:
	hclgevf_task_schedule(hdev, delta);
}

static void hclgevf_service_task(struct work_struct *work)
{
	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
						service_task.work);
2388

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
	hclgevf_periodic_service_task(hdev);

	/* Handle reset and mbx again in case periodical task delays the
	 * handling by calling hclgevf_task_schedule() in
	 * hclgevf_periodic_service_task()
	 */
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
2399 2400 2401 2402 2403 2404 2405
}

static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
{
	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
}

2406 2407
static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
						      u32 *clearval)
2408
{
2409
	u32 val, cmdq_stat_reg, rst_ing_reg;
2410 2411

	/* fetch the events from their corresponding regs */
2412
	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2413
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2414
	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2415 2416 2417 2418 2419
		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
		dev_info(&hdev->pdev->dev,
			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2420
		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2421
		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2422
		hdev->rst_stats.vf_rst_cnt++;
2423 2424 2425 2426 2427 2428
		/* set up VF hardware reset status, its PF will clear
		 * this status when PF has initialized done.
		 */
		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
				  val | HCLGEVF_VF_RST_ING_BIT);
2429 2430 2431
		return HCLGEVF_VECTOR0_EVENT_RST;
	}

2432
	/* check for vector0 mailbox(=CMDQ RX) event source */
2433 2434 2435 2436 2437 2438 2439 2440
	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
		/* for revision 0x21, clearing interrupt is writing bit 0
		 * to the clear register, writing bit 1 means to keep the
		 * old value.
		 * for revision 0x20, the clear register is a read & write
		 * register, so we should just write 0 to the bit we are
		 * handling, and keep other bits as cmdq_stat_reg.
		 */
2441
		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2442 2443 2444 2445 2446
			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
		else
			*clearval = cmdq_stat_reg &
				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);

2447
		return HCLGEVF_VECTOR0_EVENT_MBX;
2448 2449
	}

2450 2451 2452 2453
	/* print other vector0 event source */
	dev_info(&hdev->pdev->dev,
		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
		 cmdq_stat_reg);
2454

2455
	return HCLGEVF_VECTOR0_EVENT_OTHER;
2456 2457 2458 2459
}

static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
{
2460
	enum hclgevf_evt_cause event_cause;
2461 2462 2463 2464
	struct hclgevf_dev *hdev = data;
	u32 clearval;

	hclgevf_enable_vector(&hdev->misc_vector, false);
2465
	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2466

2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
	switch (event_cause) {
	case HCLGEVF_VECTOR0_EVENT_RST:
		hclgevf_reset_task_schedule(hdev);
		break;
	case HCLGEVF_VECTOR0_EVENT_MBX:
		hclgevf_mbx_handler(hdev);
		break;
	default:
		break;
	}
2477

2478 2479 2480 2481
	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
		hclgevf_clear_event_cause(hdev, clearval);
		hclgevf_enable_vector(&hdev->misc_vector, true);
	}
2482 2483 2484 2485 2486 2487 2488 2489

	return IRQ_HANDLED;
}

static int hclgevf_configure(struct hclgevf_dev *hdev)
{
	int ret;

2490 2491 2492 2493
	ret = hclgevf_get_basic_info(hdev);
	if (ret)
		return ret;

2494 2495 2496 2497 2498
	/* get current port based vlan state from PF */
	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
	if (ret)
		return ret;

2499
	/* get queue configuration from PF */
2500
	ret = hclgevf_get_queue_info(hdev);
2501 2502
	if (ret)
		return ret;
2503 2504 2505 2506 2507 2508

	/* get queue depth info from PF */
	ret = hclgevf_get_queue_depth(hdev);
	if (ret)
		return ret;

2509
	return hclgevf_get_pf_media_type(hdev);
2510 2511
}

2512 2513 2514
static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
2515
	struct hclgevf_dev *hdev;
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
	if (!hdev)
		return -ENOMEM;

	hdev->pdev = pdev;
	hdev->ae_dev = ae_dev;
	ae_dev->priv = hdev;

	return 0;
}

2528 2529 2530 2531 2532
static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *roce = &hdev->roce;
	struct hnae3_handle *nic = &hdev->nic;

2533
	roce->rinfo.num_vectors = hdev->num_roce_msix;
2534 2535 2536 2537 2538

	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
	    hdev->num_msi_left == 0)
		return -EINVAL;

2539
	roce->rinfo.base_vector = hdev->roce_base_vector;
2540 2541 2542

	roce->rinfo.netdev = nic->kinfo.netdev;
	roce->rinfo.roce_io_base = hdev->hw.io_base;
2543
	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2544 2545 2546 2547 2548 2549 2550 2551

	roce->pdev = nic->pdev;
	roce->ae_algo = nic->ae_algo;
	roce->numa_node_mask = nic->numa_node_mask;

	return 0;
}

2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
{
	struct hclgevf_cfg_gro_status_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	if (!hnae3_dev_gro_supported(hdev))
		return 0;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
				     false);
	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;

2565
	req->gro_en = en ? 1 : 0;
2566 2567 2568 2569 2570 2571 2572 2573 2574

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF GRO hardware config cmd failed, ret = %d.\n", ret);

	return ret;
}

2575
static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2576
{
2577
	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2578
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2579
	struct hclgevf_rss_tuple_cfg *tuple_sets;
2580
	u32 i;
2581

2582
	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2583
	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2584
	tuple_sets = &rss_cfg->rss_tuple_sets;
2585
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2586 2587
		u8 *rss_ind_tbl;

2588
		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2589 2590 2591 2592 2593 2594 2595

		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
					   sizeof(*rss_ind_tbl), GFP_KERNEL);
		if (!rss_ind_tbl)
			return -ENOMEM;

		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2596 2597
		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
		       HCLGEVF_RSS_KEY_SIZE);
2598

2599 2600 2601 2602 2603 2604
		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2605 2606 2607 2608
		tuple_sets->ipv6_sctp_en =
			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2609 2610 2611 2612
		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
	}

	/* Initialize RSS indirect table */
2613
	for (i = 0; i < rss_ind_tbl_size; i++)
2614
		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2615 2616

	return 0;
2617 2618 2619 2620 2621 2622 2623
}

static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
{
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	int ret;

2624
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2625 2626 2627 2628
		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
					       rss_cfg->rss_hash_key);
		if (ret)
			return ret;
2629 2630 2631 2632

		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
		if (ret)
			return ret;
2633 2634
	}

2635 2636 2637 2638
	ret = hclgevf_set_rss_indir_table(hdev);
	if (ret)
		return ret;

2639
	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2640 2641 2642 2643 2644 2645 2646 2647
}

static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
{
	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
				       false);
}

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
{
#define HCLGEVF_FLUSH_LINK_TIMEOUT	100000

	unsigned long last = hdev->serv_processed_cnt;
	int i = 0;

	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
	       last == hdev->serv_processed_cnt)
		usleep_range(1, 1);
}

2661 2662 2663 2664 2665
static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (enable) {
2666
		hclgevf_task_schedule(hdev, 0);
2667
	} else {
2668
		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2669 2670 2671 2672

		/* flush memory to make sure DOWN is seen by service task */
		smp_mb__before_atomic();
		hclgevf_flush_link_update(hdev);
2673 2674 2675
	}
}

2676 2677 2678 2679
static int hclgevf_ae_start(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

2680
	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2681
	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2682

2683 2684 2685 2686
	hclgevf_reset_tqp_stats(handle);

	hclgevf_request_link_info(hdev);

2687 2688
	hclgevf_update_link_mode(hdev);

2689 2690 2691 2692 2693 2694 2695
	return 0;
}

static void hclgevf_ae_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

2696 2697
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);

2698
	if (hdev->reset_type != HNAE3_VF_RESET)
2699
		hclgevf_reset_tqp(handle);
2700

2701
	hclgevf_reset_tqp_stats(handle);
2702
	hclgevf_update_link_status(hdev, 0);
2703 2704
}

2705 2706
static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
{
2707 2708 2709
#define HCLGEVF_STATE_ALIVE	1
#define HCLGEVF_STATE_NOT_ALIVE	0

2710
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2711
	struct hclge_vf_to_pf_msg send_msg;
2712

2713 2714 2715 2716
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
				HCLGEVF_STATE_NOT_ALIVE;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2717 2718 2719 2720
}

static int hclgevf_client_start(struct hnae3_handle *handle)
{
2721
	return hclgevf_set_alive(handle, true);
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
}

static void hclgevf_client_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;

	ret = hclgevf_set_alive(handle, false);
	if (ret)
		dev_warn(&hdev->pdev->dev,
			 "%s failed %d\n", __func__, ret);
}

2735 2736 2737 2738
static void hclgevf_state_init(struct hclgevf_dev *hdev)
{
	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2739
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2740

2741
	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2742

2743
	mutex_init(&hdev->mbx_resp.mbx_mutex);
2744
	sema_init(&hdev->reset_sem, 1);
2745

2746 2747 2748 2749
	spin_lock_init(&hdev->mac_table.mac_list_lock);
	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);

2750 2751 2752 2753 2754 2755 2756
	/* bring the device down */
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
}

static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
{
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2757
	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2758

2759 2760
	if (hdev->service_task.work.func)
		cancel_delayed_work_sync(&hdev->service_task);
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770

	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
}

static int hclgevf_init_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int vectors;
	int i;

2771
	if (hnae3_dev_roce_supported(hdev))
2772 2773 2774 2775 2776
		vectors = pci_alloc_irq_vectors(pdev,
						hdev->roce_base_msix_offset + 1,
						hdev->num_msi,
						PCI_IRQ_MSIX);
	else
2777 2778
		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
						hdev->num_msi,
2779
						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2780 2781 2782 2783 2784 2785 2786 2787 2788

	if (vectors < 0) {
		dev_err(&pdev->dev,
			"failed(%d) to allocate MSI/MSI-X vectors\n",
			vectors);
		return vectors;
	}
	if (vectors < hdev->num_msi)
		dev_warn(&hdev->pdev->dev,
2789
			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2790 2791 2792 2793
			 hdev->num_msi, vectors);

	hdev->num_msi = vectors;
	hdev->num_msi_left = vectors;
2794

2795
	hdev->base_msi_vector = pdev->irq;
2796
	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810

	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
					   sizeof(u16), GFP_KERNEL);
	if (!hdev->vector_status) {
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	for (i = 0; i < hdev->num_msi; i++)
		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;

	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
					sizeof(int), GFP_KERNEL);
	if (!hdev->vector_irq) {
2811
		devm_kfree(&pdev->dev, hdev->vector_status);
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	return 0;
}

static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

2823 2824
	devm_kfree(&pdev->dev, hdev->vector_status);
	devm_kfree(&pdev->dev, hdev->vector_irq);
2825 2826 2827 2828 2829
	pci_free_irq_vectors(pdev);
}

static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
{
2830
	int ret;
2831 2832 2833

	hclgevf_get_misc_vector(hdev);

2834 2835
	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
		 HCLGEVF_NAME, pci_name(hdev->pdev));
2836
	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2837
			  0, hdev->misc_vector.name, hdev);
2838 2839 2840 2841 2842 2843
	if (ret) {
		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
			hdev->misc_vector.vector_irq);
		return ret;
	}

2844 2845
	hclgevf_clear_event_cause(hdev, 0);

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	/* enable misc. vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, true);

	return ret;
}

static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
{
	/* disable misc vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, false);
2856
	synchronize_irq(hdev->misc_vector.vector_irq);
2857 2858 2859 2860
	free_irq(hdev->misc_vector.vector_irq, hdev);
	hclgevf_free_vector(hdev, 0);
}

2861 2862 2863 2864 2865 2866
static void hclgevf_info_show(struct hclgevf_dev *hdev)
{
	struct device *dev = &hdev->pdev->dev;

	dev_info(dev, "VF info begin:\n");

2867 2868 2869 2870 2871 2872
	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
	dev_info(dev, "PF media type of this VF: %u\n",
2873 2874 2875 2876 2877
		 hdev->hw.mac.media_type);

	dev_info(dev, "VF info end.\n");
}

2878 2879 2880 2881
static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
					    struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
2882
	int rst_cnt = hdev->rst_stats.rst_cnt;
2883 2884 2885 2886 2887 2888 2889
	int ret;

	ret = client->ops->init_instance(&hdev->nic);
	if (ret)
		return ret;

	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2890 2891 2892 2893 2894 2895 2896 2897
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    rst_cnt != hdev->rst_stats.rst_cnt) {
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

		client->ops->uninit_instance(&hdev->nic, 0);
		return -EBUSY;
	}

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	hnae3_set_client_init_flag(client, ae_dev, 1);

	if (netif_msg_drv(&hdev->nic))
		hclgevf_info_show(hdev);

	return 0;
}

static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
					     struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
	    !hdev->nic_client)
		return 0;

	ret = hclgevf_init_roce_base_info(hdev);
	if (ret)
		return ret;

	ret = client->ops->init_instance(&hdev->roce);
	if (ret)
		return ret;

2924
	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2925 2926 2927 2928 2929
	hnae3_set_client_init_flag(client, ae_dev, 1);

	return 0;
}

2930 2931
static int hclgevf_init_client_instance(struct hnae3_client *client,
					struct hnae3_ae_dev *ae_dev)
2932
{
2933
	struct hclgevf_dev *hdev = ae_dev->priv;
2934 2935 2936 2937 2938 2939 2940
	int ret;

	switch (client->type) {
	case HNAE3_CLIENT_KNIC:
		hdev->nic_client = client;
		hdev->nic.client = client;

2941
		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2942
		if (ret)
2943
			goto clear_nic;
2944

2945 2946 2947 2948
		ret = hclgevf_init_roce_client_instance(ae_dev,
							hdev->roce_client);
		if (ret)
			goto clear_roce;
2949

2950 2951
		break;
	case HNAE3_CLIENT_ROCE:
2952 2953 2954 2955
		if (hnae3_dev_roce_supported(hdev)) {
			hdev->roce_client = client;
			hdev->roce.client = client;
		}
2956

2957 2958 2959
		ret = hclgevf_init_roce_client_instance(ae_dev, client);
		if (ret)
			goto clear_roce;
2960

2961 2962 2963
		break;
	default:
		return -EINVAL;
2964 2965 2966
	}

	return 0;
2967 2968 2969 2970 2971 2972 2973 2974 2975

clear_nic:
	hdev->nic_client = NULL;
	hdev->nic.client = NULL;
	return ret;
clear_roce:
	hdev->roce_client = NULL;
	hdev->roce.client = NULL;
	return ret;
2976 2977
}

2978 2979
static void hclgevf_uninit_client_instance(struct hnae3_client *client,
					   struct hnae3_ae_dev *ae_dev)
2980
{
2981 2982
	struct hclgevf_dev *hdev = ae_dev->priv;

2983
	/* un-init roce, if it exists */
2984
	if (hdev->roce_client) {
2985
		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2986
		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2987 2988 2989
		hdev->roce_client = NULL;
		hdev->roce.client = NULL;
	}
2990 2991

	/* un-init nic/unic, if this was not called by roce client */
2992 2993
	if (client->ops->uninit_instance && hdev->nic_client &&
	    client->type != HNAE3_CLIENT_ROCE) {
2994 2995
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

2996
		client->ops->uninit_instance(&hdev->nic, 0);
2997 2998 2999
		hdev->nic_client = NULL;
		hdev->nic.client = NULL;
	}
3000 3001
}

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MEM_BAR		4

	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw = &hdev->hw;

	/* for device does not have device memory, return directly */
	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
		return 0;

	hw->mem_base = devm_ioremap_wc(&pdev->dev,
				       pci_resource_start(pdev,
							  HCLGEVF_MEM_BAR),
				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
	if (!hw->mem_base) {
3018
		dev_err(&pdev->dev, "failed to map device memory\n");
3019 3020 3021 3022 3023 3024
		return -EFAULT;
	}

	return 0;
}

3025 3026 3027 3028 3029 3030 3031 3032 3033
static int hclgevf_pci_init(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw;
	int ret;

	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable PCI device\n");
3034
		return ret;
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	}

	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (ret) {
		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
		goto err_disable_device;
	}

	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
	if (ret) {
		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
		goto err_disable_device;
	}

	pci_set_master(pdev);
	hw = &hdev->hw;
	hw->hdev = hdev;
P
Peng Li 已提交
3052
	hw->io_base = pci_iomap(pdev, 2, 0);
3053 3054 3055 3056 3057 3058
	if (!hw->io_base) {
		dev_err(&pdev->dev, "can't map configuration register space\n");
		ret = -ENOMEM;
		goto err_clr_master;
	}

3059 3060 3061 3062
	ret = hclgevf_dev_mem_map(hdev);
	if (ret)
		goto err_unmap_io_base;

3063 3064
	return 0;

3065 3066
err_unmap_io_base:
	pci_iounmap(pdev, hdev->hw.io_base);
3067 3068 3069 3070 3071
err_clr_master:
	pci_clear_master(pdev);
	pci_release_regions(pdev);
err_disable_device:
	pci_disable_device(pdev);
3072

3073 3074 3075 3076 3077 3078 3079
	return ret;
}

static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

3080 3081 3082
	if (hdev->hw.mem_base)
		devm_iounmap(&pdev->dev, hdev->hw.mem_base);

3083 3084 3085 3086 3087 3088
	pci_iounmap(pdev, hdev->hw.io_base);
	pci_clear_master(pdev);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
{
	struct hclgevf_query_res_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"query vf resource failed, ret = %d.\n", ret);
		return ret;
	}

	req = (struct hclgevf_query_res_cmd *)desc.data;

3105
	if (hnae3_dev_roce_supported(hdev)) {
3106
		hdev->roce_base_msix_offset =
3107
		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3108 3109 3110
				HCLGEVF_MSIX_OFT_ROCEE_M,
				HCLGEVF_MSIX_OFT_ROCEE_S);
		hdev->num_roce_msix =
3111
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3112 3113
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);

3114 3115 3116
		/* nic's msix numbers is always equals to the roce's. */
		hdev->num_nic_msix = hdev->num_roce_msix;

3117 3118 3119 3120 3121 3122 3123
		/* VF should have NIC vectors and Roce vectors, NIC vectors
		 * are queued before Roce vectors. The offset is fixed to 64.
		 */
		hdev->num_msi = hdev->num_roce_msix +
				hdev->roce_base_msix_offset;
	} else {
		hdev->num_msi =
3124
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3125
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3126 3127 3128 3129 3130 3131 3132 3133 3134

		hdev->num_nic_msix = hdev->num_msi;
	}

	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
		dev_err(&hdev->pdev->dev,
			"Just %u msi resources, not enough for vf(min:2).\n",
			hdev->num_nic_msix);
		return -EINVAL;
3135 3136 3137 3138 3139
	}

	return 0;
}

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_NON_TSO_BD_NUM			8U

	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);

	ae_dev->dev_specs.max_non_tso_bd_num =
					HCLGEVF_MAX_NON_TSO_BD_NUM;
	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3150
	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3151
	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3152 3153 3154 3155 3156 3157 3158
}

static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
				    struct hclgevf_desc *desc)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct hclgevf_dev_specs_0_cmd *req0;
3159
	struct hclgevf_dev_specs_1_cmd *req1;
3160 3161

	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3162
	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3163 3164 3165 3166

	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
	ae_dev->dev_specs.rss_ind_tbl_size =
					le16_to_cpu(req0->rss_ind_tbl_size);
3167
	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3168
	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3169
	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3170
	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3171 3172
}

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
{
	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;

	if (!dev_specs->max_non_tso_bd_num)
		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
	if (!dev_specs->rss_ind_tbl_size)
		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	if (!dev_specs->rss_key_size)
		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3183 3184
	if (!dev_specs->max_int_gl)
		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3185 3186
	if (!dev_specs->max_frm_size)
		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3187 3188
}

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
{
	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
	int ret;
	int i;

	/* set default specifications as devices lower than version V3 do not
	 * support querying specifications from firmware.
	 */
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
		hclgevf_set_default_dev_specs(hdev);
		return 0;
	}

	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
		hclgevf_cmd_setup_basic_desc(&desc[i],
					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
	}
	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
				     true);

	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
	if (ret)
		return ret;

	hclgevf_parse_dev_specs(hdev, desc);
3216
	hclgevf_check_dev_specs(hdev);
3217 3218 3219 3220

	return 0;
}

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret = 0;

	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		pci_set_master(pdev);
		ret = hclgevf_init_msi(hdev);
		if (ret) {
			dev_err(&pdev->dev,
				"failed(%d) to init MSI/MSI-X\n", ret);
			return ret;
		}

		ret = hclgevf_misc_irq_init(hdev);
		if (ret) {
			hclgevf_uninit_msi(hdev);
			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
				ret);
			return ret;
		}

		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	return ret;
}

3256 3257 3258 3259 3260 3261 3262 3263 3264
static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
{
	struct hclge_vf_to_pf_msg send_msg;

	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
			       HCLGE_MBX_VPORT_LIST_CLEAR);
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
}

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
{
	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
}

static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
{
	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
}

3277
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3278
{
3279
	struct pci_dev *pdev = hdev->pdev;
3280 3281
	int ret;

3282 3283 3284 3285 3286 3287
	ret = hclgevf_pci_reset(hdev);
	if (ret) {
		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
		return ret;
	}

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	ret = hclgevf_cmd_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "cmd failed %d\n", ret);
		return ret;
	}

	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		return ret;
	}

3301 3302 3303 3304
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		return ret;

3305 3306 3307 3308 3309
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		return ret;
3310
	}
3311

3312 3313
	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);

3314 3315
	hclgevf_init_rxd_adv_layout(hdev);

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	dev_info(&hdev->pdev->dev, "Reset done\n");

	return 0;
}

static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret;

3326
	ret = hclgevf_pci_init(hdev);
3327
	if (ret)
3328 3329
		return ret;

3330
	ret = hclgevf_cmd_queue_init(hdev);
3331
	if (ret)
3332 3333
		goto err_cmd_queue_init;

3334 3335 3336 3337 3338 3339
	ret = hclgevf_cmd_init(hdev);
	if (ret)
		goto err_cmd_init;

	/* Get vf resource */
	ret = hclgevf_query_vf_resource(hdev);
3340
	if (ret)
3341
		goto err_cmd_init;
3342

3343 3344 3345 3346 3347 3348 3349
	ret = hclgevf_query_dev_specs(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to query dev specifications, ret = %d\n", ret);
		goto err_cmd_init;
	}

3350 3351 3352
	ret = hclgevf_init_msi(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3353
		goto err_cmd_init;
3354 3355 3356
	}

	hclgevf_state_init(hdev);
3357
	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3358
	hdev->reset_type = HNAE3_NONE_RESET;
3359 3360

	ret = hclgevf_misc_irq_init(hdev);
3361
	if (ret)
3362 3363
		goto err_misc_irq_init;

3364 3365
	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	ret = hclgevf_configure(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
		goto err_config;
	}

	ret = hclgevf_alloc_tqps(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
		goto err_config;
	}

	ret = hclgevf_set_handle_info(hdev);
3379
	if (ret)
3380 3381
		goto err_config;

3382 3383 3384 3385
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		goto err_config;

3386
	/* Initialize RSS for this VF */
3387 3388 3389 3390 3391 3392
	ret = hclgevf_rss_init_cfg(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
		goto err_config;
	}

3393 3394 3395 3396 3397 3398 3399
	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		goto err_config;
	}

3400 3401 3402 3403 3404 3405 3406 3407 3408
	/* ensure vf tbl list as empty before init*/
	ret = hclgevf_clear_vport_list(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to clear tbl list configuration, ret = %d.\n",
			ret);
		goto err_config;
	}

3409 3410 3411 3412 3413 3414 3415
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		goto err_config;
	}

3416 3417
	hclgevf_init_rxd_adv_layout(hdev);

3418
	hdev->last_reset_time = jiffies;
3419 3420
	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
		 HCLGEVF_DRIVER_NAME);
3421

3422 3423
	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));

3424 3425 3426 3427 3428 3429 3430
	return 0;

err_config:
	hclgevf_misc_irq_uninit(hdev);
err_misc_irq_init:
	hclgevf_state_uninit(hdev);
	hclgevf_uninit_msi(hdev);
3431
err_cmd_init:
3432 3433
	hclgevf_cmd_uninit(hdev);
err_cmd_queue_init:
3434
	hclgevf_pci_uninit(hdev);
3435
	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3436 3437 3438
	return ret;
}

3439
static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3440
{
3441 3442
	struct hclge_vf_to_pf_msg send_msg;

3443
	hclgevf_state_uninit(hdev);
3444
	hclgevf_uninit_rxd_adv_layout(hdev);
3445

3446 3447
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3448

3449 3450 3451 3452 3453
	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
	}

3454
	hclgevf_cmd_uninit(hdev);
3455
	hclgevf_pci_uninit(hdev);
3456
	hclgevf_uninit_mac_list(hdev);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
}

static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
	int ret;

	ret = hclgevf_alloc_hdev(ae_dev);
	if (ret) {
		dev_err(&pdev->dev, "hclge device allocation failed\n");
		return ret;
	}

	ret = hclgevf_init_hdev(ae_dev->priv);
3471
	if (ret) {
3472
		dev_err(&pdev->dev, "hclge device initialization failed\n");
3473 3474
		return ret;
	}
3475

3476
	return 0;
3477 3478 3479 3480 3481 3482 3483
}

static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	hclgevf_uninit_hdev(hdev);
3484 3485 3486
	ae_dev->priv = NULL;
}

3487 3488 3489 3490 3491
static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo = &nic->kinfo;

3492
	return min_t(u32, hdev->rss_size_max,
3493
		     hdev->num_tqps / kinfo->tc_info.num_tc);
3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
}

/**
 * hclgevf_get_channels - Get the current channels enabled and max supported.
 * @handle: hardware information for network interface
 * @ch: ethtool channels structure
 *
 * We don't support separate tx and rx queues as channels. The other count
 * represents how many queues are being used for control. max_combined counts
 * how many queue pairs we can support. They may not be mapped 1 to 1 with
 * q_vectors since we support a lot more queue pairs than q_vectors.
 **/
static void hclgevf_get_channels(struct hnae3_handle *handle,
				 struct ethtool_channels *ch)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	ch->max_combined = hclgevf_get_max_channels(hdev);
	ch->other_count = 0;
	ch->max_other = 0;
3514
	ch->combined_count = handle->kinfo.rss_size;
3515 3516
}

3517
static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3518
					  u16 *alloc_tqps, u16 *max_rss_size)
3519 3520 3521
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3522
	*alloc_tqps = hdev->num_tqps;
3523 3524 3525
	*max_rss_size = hdev->rss_size_max;
}

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
static void hclgevf_update_rss_size(struct hnae3_handle *handle,
				    u32 new_tqps_num)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u16 max_rss_size;

	kinfo->req_rss_size = new_tqps_num;

	max_rss_size = min_t(u16, hdev->rss_size_max,
3536
			     hdev->num_tqps / kinfo->tc_info.num_tc);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547

	/* Use the user's configuration when it is not larger than
	 * max_rss_size, otherwise, use the maximum specification value.
	 */
	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
	    kinfo->req_rss_size <= max_rss_size)
		kinfo->rss_size = kinfo->req_rss_size;
	else if (kinfo->rss_size > max_rss_size ||
		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
		kinfo->rss_size = max_rss_size;

3548
	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
}

static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
				bool rxfh_configured)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	u16 cur_rss_size = kinfo->rss_size;
	u16 cur_tqps = kinfo->num_tqps;
	u32 *rss_indir;
	unsigned int i;
	int ret;

	hclgevf_update_rss_size(handle, new_tqps_num);

	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
	if (ret)
		return ret;

3568
	/* RSS indirection table has been configured by user */
3569 3570 3571 3572
	if (rxfh_configured)
		goto out;

	/* Reinitializes the rss indirect table according to the new RSS size */
3573 3574
	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
			    sizeof(u32), GFP_KERNEL);
3575 3576 3577
	if (!rss_indir)
		return -ENOMEM;

3578
	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3579 3580
		rss_indir[i] = i % kinfo->rss_size;

3581 3582
	hdev->rss_cfg.rss_size = kinfo->rss_size;

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
	if (ret)
		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
			ret);

	kfree(rss_indir);

out:
	if (!ret)
		dev_info(&hdev->pdev->dev,
			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
			 cur_rss_size, kinfo->rss_size,
3595
			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3596 3597 3598 3599

	return ret;
}

3600 3601 3602 3603 3604 3605 3606
static int hclgevf_get_status(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->hw.mac.link;
}

3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
					    u8 *auto_neg, u32 *speed,
					    u8 *duplex)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (speed)
		*speed = hdev->hw.mac.speed;
	if (duplex)
		*duplex = hdev->hw.mac.duplex;
	if (auto_neg)
		*auto_neg = AUTONEG_DISABLE;
}

void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
				 u8 duplex)
{
	hdev->hw.mac.speed = speed;
	hdev->hw.mac.duplex = duplex;
}

3628
static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3629 3630 3631 3632 3633 3634
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_config_gro(hdev, enable);
}

3635 3636
static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
				   u8 *module_type)
3637 3638
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3639

3640 3641
	if (media_type)
		*media_type = hdev->hw.mac.media_type;
3642 3643 3644

	if (module_type)
		*module_type = hdev->hw.mac.module_type;
3645 3646
}

3647 3648 3649 3650
static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3651
	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3652 3653
}

3654 3655 3656 3657 3658 3659 3660
static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
}

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
}

static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3672
	return hdev->rst_stats.hw_rst_done_cnt;
3673 3674
}

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
static void hclgevf_get_link_mode(struct hnae3_handle *handle,
				  unsigned long *supported,
				  unsigned long *advertising)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	*supported = hdev->hw.mac.supported;
	*advertising = hdev->hw.mac.advertising;
}

3685
#define MAX_SEPARATE_NUM	4
3686
#define SEPARATOR_VALUE		0xFDFCFBFA
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
#define REG_NUM_PER_LINE	4
#define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))

static int hclgevf_get_regs_len(struct hnae3_handle *handle)
{
	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;

	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
}

static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
			     void *data)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int i, j, reg_um, separator_num;
	u32 *reg = data;

	*version = hdev->fw_version;

	/* fetching per-VF registers values from VF PCIe register space */
	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_tqps; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  ring_reg_addr_list[i] +
						  0x200 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}

	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_msi_used - 1; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  tqp_intr_reg_addr_list[i] +
						  4 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}
}

3751 3752 3753 3754
void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
					u8 *port_base_vlan_info, u8 data_size)
{
	struct hnae3_handle *nic = &hdev->nic;
3755
	struct hclge_vf_to_pf_msg send_msg;
3756
	int ret;
3757 3758

	rtnl_lock();
3759

3760 3761
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
		dev_warn(&hdev->pdev->dev,
			 "is resetting when updating port based vlan info\n");
		rtnl_unlock();
		return;
	}

	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret) {
		rtnl_unlock();
		return;
	}
3773 3774

	/* send msg to PF and wait update port based vlan info */
3775 3776 3777
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
	memcpy(send_msg.data, port_base_vlan_info, data_size);
3778 3779 3780 3781 3782 3783 3784
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	if (!ret) {
		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
			nic->port_base_vlan_state = state;
		else
			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
	}
3785 3786 3787 3788 3789

	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
	rtnl_unlock();
}

3790 3791 3792
static const struct hnae3_ae_ops hclgevf_ops = {
	.init_ae_dev = hclgevf_init_ae_dev,
	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3793 3794
	.reset_prepare = hclgevf_reset_prepare_general,
	.reset_done = hclgevf_reset_done,
3795 3796
	.init_client_instance = hclgevf_init_client_instance,
	.uninit_client_instance = hclgevf_uninit_client_instance,
3797 3798
	.start = hclgevf_ae_start,
	.stop = hclgevf_ae_stop,
3799 3800
	.client_start = hclgevf_client_start,
	.client_stop = hclgevf_client_stop,
3801 3802 3803
	.map_ring_to_vector = hclgevf_map_ring_to_vector,
	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
	.get_vector = hclgevf_get_vector,
3804
	.put_vector = hclgevf_put_vector,
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818
	.reset_queue = hclgevf_reset_tqp,
	.get_mac_addr = hclgevf_get_mac_addr,
	.set_mac_addr = hclgevf_set_mac_addr,
	.add_uc_addr = hclgevf_add_uc_addr,
	.rm_uc_addr = hclgevf_rm_uc_addr,
	.add_mc_addr = hclgevf_add_mc_addr,
	.rm_mc_addr = hclgevf_rm_mc_addr,
	.get_stats = hclgevf_get_stats,
	.update_stats = hclgevf_update_stats,
	.get_strings = hclgevf_get_strings,
	.get_sset_count = hclgevf_get_sset_count,
	.get_rss_key_size = hclgevf_get_rss_key_size,
	.get_rss = hclgevf_get_rss,
	.set_rss = hclgevf_set_rss,
3819 3820
	.get_rss_tuple = hclgevf_get_rss_tuple,
	.set_rss_tuple = hclgevf_set_rss_tuple,
3821 3822 3823
	.get_tc_size = hclgevf_get_tc_size,
	.get_fw_version = hclgevf_get_fw_version,
	.set_vlan_filter = hclgevf_set_vlan_filter,
3824
	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3825
	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3826
	.reset_event = hclgevf_reset_event,
3827
	.set_default_reset_request = hclgevf_set_def_reset_request,
3828
	.set_channels = hclgevf_set_channels,
3829
	.get_channels = hclgevf_get_channels,
3830
	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3831 3832
	.get_regs_len = hclgevf_get_regs_len,
	.get_regs = hclgevf_get_regs,
3833
	.get_status = hclgevf_get_status,
3834
	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3835
	.get_media_type = hclgevf_get_media_type,
3836 3837 3838
	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
	.ae_dev_resetting = hclgevf_ae_dev_resetting,
	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3839
	.set_gro_en = hclgevf_gro_en,
3840
	.set_mtu = hclgevf_set_mtu,
3841
	.get_global_queue_id = hclgevf_get_qid_global,
3842
	.set_timer_task = hclgevf_set_timer_task,
3843
	.get_link_mode = hclgevf_get_link_mode,
3844
	.set_promisc_mode = hclgevf_set_promisc_mode,
3845
	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3846
	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
};

static struct hnae3_ae_algo ae_algovf = {
	.ops = &hclgevf_ops,
	.pdev_id_table = ae_algovf_pci_tbl,
};

static int hclgevf_init(void)
{
	pr_info("%s is initializing\n", HCLGEVF_NAME);

3858
	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3859 3860 3861 3862 3863
	if (!hclgevf_wq) {
		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
		return -ENOMEM;
	}

3864 3865 3866
	hnae3_register_ae_algo(&ae_algovf);

	return 0;
3867 3868 3869 3870 3871
}

static void hclgevf_exit(void)
{
	hnae3_unregister_ae_algo(&ae_algovf);
3872
	destroy_workqueue(hclgevf_wq);
3873 3874 3875 3876 3877 3878 3879 3880
}
module_init(hclgevf_init);
module_exit(hclgevf_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGEVF Driver");
MODULE_VERSION(HCLGEVF_MOD_VERSION);