hclgevf_main.c 99.5 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.

#include <linux/etherdevice.h>
5
#include <linux/iopoll.h>
6
#include <net/rtnetlink.h>
7 8 9 10 11 12 13
#include "hclgevf_cmd.h"
#include "hclgevf_main.h"
#include "hclge_mbx.h"
#include "hnae3.h"

#define HCLGEVF_NAME	"hclgevf"

14 15
#define HCLGEVF_RESET_MAX_FAIL_CNT	5

16
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 18
static struct hnae3_ae_algo ae_algovf;

19 20
static struct workqueue_struct *hclgevf_wq;

21
static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 23 24
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
25 26 27 28
	/* required last entry */
	{0, }
};

29 30 31 32 33 34 35 36
static const u8 hclgevf_hash_key[] = {
	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
};

37 38
MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);

39 40 41 42 43 44 45 46 47 48 49
static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
					 HCLGEVF_CMDQ_TX_DEPTH_REG,
					 HCLGEVF_CMDQ_TX_TAIL_REG,
					 HCLGEVF_CMDQ_TX_HEAD_REG,
					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
					 HCLGEVF_CMDQ_RX_DEPTH_REG,
					 HCLGEVF_CMDQ_RX_TAIL_REG,
					 HCLGEVF_CMDQ_RX_HEAD_REG,
					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
50
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
					 HCLGEVF_CMDQ_INTR_EN_REG,
					 HCLGEVF_CMDQ_INTR_GEN_REG};

static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
					   HCLGEVF_RST_ING,
					   HCLGEVF_GRO_EN_REG};

static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
					 HCLGEVF_RING_RX_ADDR_H_REG,
					 HCLGEVF_RING_RX_BD_NUM_REG,
					 HCLGEVF_RING_RX_BD_LENGTH_REG,
					 HCLGEVF_RING_RX_MERGE_EN_REG,
					 HCLGEVF_RING_RX_TAIL_REG,
					 HCLGEVF_RING_RX_HEAD_REG,
					 HCLGEVF_RING_RX_FBD_NUM_REG,
					 HCLGEVF_RING_RX_OFFSET_REG,
					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
					 HCLGEVF_RING_RX_STASH_REG,
					 HCLGEVF_RING_RX_BD_ERR_REG,
					 HCLGEVF_RING_TX_ADDR_L_REG,
					 HCLGEVF_RING_TX_ADDR_H_REG,
					 HCLGEVF_RING_TX_BD_NUM_REG,
					 HCLGEVF_RING_TX_PRIORITY_REG,
					 HCLGEVF_RING_TX_TC_REG,
					 HCLGEVF_RING_TX_MERGE_EN_REG,
					 HCLGEVF_RING_TX_TAIL_REG,
					 HCLGEVF_RING_TX_HEAD_REG,
					 HCLGEVF_RING_TX_FBD_NUM_REG,
					 HCLGEVF_RING_TX_OFFSET_REG,
					 HCLGEVF_RING_TX_EBD_NUM_REG,
					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
					 HCLGEVF_RING_TX_BD_ERR_REG,
					 HCLGEVF_RING_EN_REG};

static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
					     HCLGEVF_TQP_INTR_GL0_REG,
					     HCLGEVF_TQP_INTR_GL1_REG,
					     HCLGEVF_TQP_INTR_GL2_REG,
					     HCLGEVF_TQP_INTR_RL_REG};

91
static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
92
{
93 94 95 96 97 98
	if (!handle->client)
		return container_of(handle, struct hclgevf_dev, nic);
	else if (handle->client->type == HNAE3_CLIENT_ROCE)
		return container_of(handle, struct hclgevf_dev, roce);
	else
		return container_of(handle, struct hclgevf_dev, nic);
99 100 101 102
}

static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
{
103
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
104 105 106 107 108 109
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_desc desc;
	struct hclgevf_tqp *tqp;
	int status;
	int i;

110 111
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
112 113 114 115 116 117 118 119 120 121 122 123 124
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_QUERY_RX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status,	i);
			return status;
		}
		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
125
			le32_to_cpu(desc.data[1]);
126 127 128 129 130 131 132 133 134 135 136 137 138

		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status, i);
			return status;
		}
		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
139
			le32_to_cpu(desc.data[1]);
140 141 142 143 144 145 146 147 148 149 150 151
	}

	return 0;
}

static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_tqp *tqp;
	u64 *buff = data;
	int i;

152 153
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 155 156
		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
	}
	for (i = 0; i < kinfo->num_tqps; i++) {
157
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
158 159 160 161 162 163 164 165
		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
	}

	return buff;
}

static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
{
166
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
167

168
	return kinfo->num_tqps * 2;
169 170 171 172
}

static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
{
173
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
174
	u8 *buff = data;
175
	int i;
176

177 178 179
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
180
		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
181 182 183 184
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

185 186 187
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
188
		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

	return buff;
}

static void hclgevf_update_stats(struct hnae3_handle *handle,
				 struct net_device_stats *net_stats)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int status;

	status = hclgevf_tqps_update_stats(handle);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF update of TQPS stats fail, status = %d.\n",
			status);
}

static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
{
	if (strset == ETH_SS_TEST)
		return -EOPNOTSUPP;
	else if (strset == ETH_SS_STATS)
		return hclgevf_tqps_get_sset_count(handle, strset);

	return 0;
}

static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
				u8 *data)
{
	u8 *p = (char *)data;

	if (strset == ETH_SS_STATS)
		p = hclgevf_tqps_get_strings(handle, p);
}

static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
{
	hclgevf_tqps_get_stats(handle, data);
}

233 234 235 236 237 238 239 240 241 242
static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
				   u8 subcode)
{
	if (msg) {
		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
		msg->code = code;
		msg->subcode = subcode;
	}
}

243 244
static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
{
245
	struct hclge_vf_to_pf_msg send_msg;
246 247 248
	u8 resp_msg;
	int status;

249 250 251
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
				      sizeof(resp_msg));
252 253 254 255 256 257 258 259 260 261 262 263
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get TC info from PF failed %d",
			status);
		return status;
	}

	hdev->hw_tc_map = resp_msg;

	return 0;
}

264 265 266
static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
267
	struct hclge_vf_to_pf_msg send_msg;
268 269 270
	u8 resp_msg;
	int ret;

271 272 273 274
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
				   sizeof(u8));
275 276 277 278 279 280 281 282 283 284 285 286
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get port based vlan state failed %d",
			ret);
		return ret;
	}

	nic->port_base_vlan_state = resp_msg;

	return 0;
}

287
static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
288
{
289
#define HCLGEVF_TQPS_RSS_INFO_LEN	6
290 291 292 293
#define HCLGEVF_TQPS_ALLOC_OFFSET	0
#define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
#define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4

294
	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
295
	struct hclge_vf_to_pf_msg send_msg;
296 297
	int status;

298 299
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
300 301 302 303 304 305 306 307
				      HCLGEVF_TQPS_RSS_INFO_LEN);
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp info from PF failed %d",
			status);
		return status;
	}

308 309 310 311 312 313
	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
	       sizeof(u16));
314 315 316 317 318 319 320

	return 0;
}

static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
{
#define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
321 322 323
#define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
#define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2

324
	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
325
	struct hclge_vf_to_pf_msg send_msg;
326 327
	int ret;

328 329
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
330 331 332 333 334 335 336 337
				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp depth info from PF failed %d",
			ret);
		return ret;
	}

338 339 340 341
	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
	       sizeof(u16));
342 343 344 345

	return 0;
}

346 347 348
static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
349
	struct hclge_vf_to_pf_msg send_msg;
350
	u16 qid_in_pf = 0;
351
	u8 resp_data[2];
352 353
	int ret;

354 355 356
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
357
				   sizeof(resp_data));
358 359 360 361 362 363
	if (!ret)
		qid_in_pf = *(u16 *)resp_data;

	return qid_in_pf;
}

364 365
static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
{
366
	struct hclge_vf_to_pf_msg send_msg;
367
	u8 resp_msg[2];
368 369
	int ret;

370 371 372
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
				   sizeof(resp_msg));
373 374 375 376 377 378 379
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get the pf port media type failed %d",
			ret);
		return ret;
	}

380 381
	hdev->hw.mac.media_type = resp_msg[0];
	hdev->hw.mac.module_type = resp_msg[1];
382 383 384 385

	return 0;
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
{
	struct hclgevf_tqp *tqp;
	int i;

	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
	if (!hdev->htqp)
		return -ENOMEM;

	tqp = hdev->htqp;

	for (i = 0; i < hdev->num_tqps; i++) {
		tqp->dev = &hdev->pdev->dev;
		tqp->index = i;

		tqp->q.ae_algo = &ae_algovf;
		tqp->q.buf_size = hdev->rx_buf_len;
404 405
		tqp->q.tx_desc_num = hdev->num_tx_desc;
		tqp->q.rx_desc_num = hdev->num_rx_desc;
406 407 408 409 410 411 412 413 414 415 416 417 418 419

		/* need an extended offset to configure queues >=
		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
		 */
		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
			tqp->q.io_base = hdev->hw.io_base +
					 HCLGEVF_TQP_REG_OFFSET +
					 i * HCLGEVF_TQP_REG_SIZE;
		else
			tqp->q.io_base = hdev->hw.io_base +
					 HCLGEVF_TQP_REG_OFFSET +
					 HCLGEVF_TQP_EXT_REG_OFFSET +
					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
					 HCLGEVF_TQP_REG_SIZE;
420 421 422 423 424 425 426 427 428 429 430 431

		tqp++;
	}

	return 0;
}

static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo;
	u16 new_tqps = hdev->num_tqps;
432
	unsigned int i;
433 434 435

	kinfo = &nic->kinfo;
	kinfo->num_tc = 0;
436 437
	kinfo->num_tx_desc = hdev->num_tx_desc;
	kinfo->num_rx_desc = hdev->num_rx_desc;
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	kinfo->rx_buf_len = hdev->rx_buf_len;
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
		if (hdev->hw_tc_map & BIT(i))
			kinfo->num_tc++;

	kinfo->rss_size
		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
	new_tqps = kinfo->rss_size * kinfo->num_tc;
	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);

	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
				  sizeof(struct hnae3_queue *), GFP_KERNEL);
	if (!kinfo->tqp)
		return -ENOMEM;

	for (i = 0; i < kinfo->num_tqps; i++) {
		hdev->htqp[i].q.handle = &hdev->nic;
		hdev->htqp[i].q.tqp_index = i;
		kinfo->tqp[i] = &hdev->htqp[i].q;
	}

459 460 461 462 463 464 465
	/* after init the max rss_size and tqps, adjust the default tqp numbers
	 * and rss size with the actual vector numbers
	 */
	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
				kinfo->rss_size);

466 467 468 469 470
	return 0;
}

static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
{
471
	struct hclge_vf_to_pf_msg send_msg;
472 473
	int status;

474 475
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
476 477 478 479 480 481 482
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed to fetch link status(%d) from PF", status);
}

void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
{
483
	struct hnae3_handle *rhandle = &hdev->roce;
484
	struct hnae3_handle *handle = &hdev->nic;
485
	struct hnae3_client *rclient;
486 487
	struct hnae3_client *client;

488 489 490
	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
		return;

491
	client = handle->client;
492
	rclient = hdev->roce_client;
493

494 495 496
	link_state =
		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;

497 498
	if (link_state != hdev->hw.mac.link) {
		client->ops->link_status_change(handle, !!link_state);
499 500
		if (rclient && rclient->ops->link_status_change)
			rclient->ops->link_status_change(rhandle, !!link_state);
501 502
		hdev->hw.mac.link = link_state;
	}
503 504

	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
505 506
}

507
static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
508
{
509 510 511 512
#define HCLGEVF_ADVERTISING	0
#define HCLGEVF_SUPPORTED	1

	struct hclge_vf_to_pf_msg send_msg;
513

514 515 516 517 518
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
	send_msg.data[0] = HCLGEVF_ADVERTISING;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	send_msg.data[0] = HCLGEVF_SUPPORTED;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
519 520
}

521 522 523 524 525 526 527 528
static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	int ret;

	nic->ae_algo = &ae_algovf;
	nic->pdev = hdev->pdev;
	nic->numa_node_mask = hdev->numa_node_mask;
529
	nic->flags |= HNAE3_SUPPORT_VF;
530 531 532 533 534 535 536 537 538 539

	ret = hclgevf_knic_setup(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
			ret);
	return ret;
}

static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
{
540 541 542 543 544 545
	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
		dev_warn(&hdev->pdev->dev,
			 "vector(vector_id %d) has been freed.\n", vector_id);
		return;
	}

546 547 548 549 550 551 552 553 554 555 556 557 558
	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
	hdev->num_msi_left += 1;
	hdev->num_msi_used -= 1;
}

static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
			      struct hnae3_vector_info *vector_info)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_vector_info *vector = vector_info;
	int alloc = 0;
	int i, j;

559
	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	vector_num = min(hdev->num_msi_left, vector_num);

	for (j = 0; j < vector_num; j++) {
		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
				vector->vector = pci_irq_vector(hdev->pdev, i);
				vector->io_addr = hdev->hw.io_base +
					HCLGEVF_VECTOR_REG_BASE +
					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
				hdev->vector_status[i] = 0;
				hdev->vector_irq[i] = vector->vector;

				vector++;
				alloc++;

				break;
			}
		}
	}
	hdev->num_msi_left -= alloc;
	hdev->num_msi_used += alloc;

	return alloc;
}

static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
{
	int i;

	for (i = 0; i < hdev->num_msi; i++)
		if (vector == hdev->vector_irq[i])
			return i;

	return -EINVAL;
}

596 597 598 599
static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
				    const u8 hfunc, const u8 *key)
{
	struct hclgevf_rss_config_cmd *req;
600
	unsigned int key_offset = 0;
601
	struct hclgevf_desc desc;
602
	int key_counts;
603 604 605
	int key_size;
	int ret;

606
	key_counts = HCLGEVF_RSS_KEY_SIZE;
607 608
	req = (struct hclgevf_rss_config_cmd *)desc.data;

609
	while (key_counts) {
610 611 612 613 614 615 616 617
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
					     false);

		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
		req->hash_config |=
			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);

618
		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
619 620 621
		memcpy(req->hash_key,
		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);

622 623
		key_counts -= key_size;
		key_offset++;
624 625 626 627 628 629 630 631 632 633 634 635
		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"Configure RSS config fail, status = %d\n",
				ret);
			return ret;
		}
	}

	return 0;
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_KEY_SIZE;
}

static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_IND_TBL_SIZE;
}

static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
{
	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
	struct hclgevf_rss_indirection_table_cmd *req;
	struct hclgevf_desc desc;
	int status;
	int i, j;

	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;

	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
					     false);
		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
			req->rss_result[j] =
				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];

		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"VF failed(=%d) to set RSS indirection table\n",
				status);
			return status;
		}
	}

	return 0;
}

static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
{
	struct hclgevf_rss_tc_mode_cmd *req;
	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
	u16 tc_size[HCLGEVF_MAX_TC_NUM];
	struct hclgevf_desc desc;
	u16 roundup_size;
685
	unsigned int i;
686
	int status;
687 688 689 690 691 692 693 694 695 696 697 698 699 700

	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;

	roundup_size = roundup_pow_of_two(rss_size);
	roundup_size = ilog2(roundup_size);

	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
		tc_size[i] = roundup_size;
		tc_offset[i] = rss_size * i;
	}

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
P
Peng Li 已提交
701 702 703 704 705 706
		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
			      (tc_valid[i] & 0x1));
		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
707 708 709 710 711 712 713 714 715
	}
	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed(=%d) to set rss tc mode\n", status);

	return status;
}

J
Jian Shen 已提交
716 717 718 719 720 721
/* for revision 0x20, vf shared the same rss config with pf */
static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RSS_MBX_RESP_LEN	8
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
722
	struct hclge_vf_to_pf_msg send_msg;
J
Jian Shen 已提交
723 724 725 726
	u16 msg_num, hash_key_index;
	u8 index;
	int ret;

727
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
J
Jian Shen 已提交
728 729 730
	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
			HCLGEVF_RSS_MBX_RESP_LEN;
	for (index = 0; index < msg_num; index++) {
731 732
		send_msg.data[0] = index;
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
J
Jian Shen 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
					   HCLGEVF_RSS_MBX_RESP_LEN);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"VF get rss hash key from PF failed, ret=%d",
				ret);
			return ret;
		}

		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
		if (index == msg_num - 1)
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0],
			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
		else
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
	}

	return 0;
}

754 755
static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
			   u8 *hfunc)
756 757
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
758
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
J
Jian Shen 已提交
759
	int i, ret;
760

761
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
762 763 764 765 766 767 768 769 770 771 772 773 774
		/* Get hash algorithm */
		if (hfunc) {
			switch (rss_cfg->hash_algo) {
			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
				*hfunc = ETH_RSS_HASH_TOP;
				break;
			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
				*hfunc = ETH_RSS_HASH_XOR;
				break;
			default:
				*hfunc = ETH_RSS_HASH_UNKNOWN;
				break;
			}
775 776
		}

777
		/* Get the RSS Key required by the user */
778
		if (key)
779 780
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
J
Jian Shen 已提交
781 782 783 784 785 786 787 788 789 790
	} else {
		if (hfunc)
			*hfunc = ETH_RSS_HASH_TOP;
		if (key) {
			ret = hclgevf_get_rss_hash_key(hdev);
			if (ret)
				return ret;
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
791 792 793 794 795 796
	}

	if (indir)
		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
			indir[i] = rss_cfg->rss_indirection_tbl[i];

797
	return 0;
798 799 800
}

static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
801
			   const u8 *key, const u8 hfunc)
802 803 804
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
805 806
	int ret, i;

807
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
		/* Set the RSS Hash Key if specififed by the user */
		if (key) {
			switch (hfunc) {
			case ETH_RSS_HASH_TOP:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
				break;
			case ETH_RSS_HASH_XOR:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
				break;
			case ETH_RSS_HASH_NO_CHANGE:
				break;
			default:
				return -EINVAL;
			}

			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
						       key);
			if (ret)
				return ret;

			/* Update the shadow RSS key with user specified qids */
			memcpy(rss_cfg->rss_hash_key, key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
	}
835 836 837 838 839 840 841 842 843

	/* update the shadow RSS table with user specified qids */
	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_cfg->rss_indirection_tbl[i] = indir[i];

	/* update the hardware */
	return hclgevf_set_rss_indir_table(hdev);
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
{
	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;

	if (nfc->data & RXH_L4_B_2_3)
		hash_sets |= HCLGEVF_D_PORT_BIT;
	else
		hash_sets &= ~HCLGEVF_D_PORT_BIT;

	if (nfc->data & RXH_IP_SRC)
		hash_sets |= HCLGEVF_S_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_S_IP_BIT;

	if (nfc->data & RXH_IP_DST)
		hash_sets |= HCLGEVF_D_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_D_IP_BIT;

	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
		hash_sets |= HCLGEVF_V_TAG_BIT;

	return hash_sets;
}

static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	u8 tuple_sets;
	int ret;

879
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
		return -EOPNOTSUPP;

	if (nfc->data &
	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
		return -EINVAL;

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		req->ipv4_tcp_en = tuple_sets;
		break;
	case TCP_V6_FLOW:
		req->ipv6_tcp_en = tuple_sets;
		break;
	case UDP_V4_FLOW:
		req->ipv4_udp_en = tuple_sets;
		break;
	case UDP_V6_FLOW:
		req->ipv6_udp_en = tuple_sets;
		break;
	case SCTP_V4_FLOW:
		req->ipv4_sctp_en = tuple_sets;
		break;
	case SCTP_V6_FLOW:
916 917
		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
			return -EINVAL;

		req->ipv6_sctp_en = tuple_sets;
		break;
	case IPV4_FLOW:
		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	case IPV6_FLOW:
		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	default:
		return -EINVAL;
	}

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Set rss tuple fail, status = %d\n", ret);
		return ret;
	}

	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
	return 0;
}

static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 tuple_sets;

957
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		return -EOPNOTSUPP;

	nfc->data = 0;

	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
		break;
	case UDP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
		break;
	case TCP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
		break;
	case UDP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
		break;
	case SCTP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
		break;
	case SCTP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
		break;
	case IPV4_FLOW:
	case IPV6_FLOW:
		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
		break;
	default:
		return -EINVAL;
	}

	if (!tuple_sets)
		return 0;

	if (tuple_sets & HCLGEVF_D_PORT_BIT)
		nfc->data |= RXH_L4_B_2_3;
	if (tuple_sets & HCLGEVF_S_PORT_BIT)
		nfc->data |= RXH_L4_B_0_1;
	if (tuple_sets & HCLGEVF_D_IP_BIT)
		nfc->data |= RXH_IP_DST;
	if (tuple_sets & HCLGEVF_S_IP_BIT)
		nfc->data |= RXH_IP_SRC;

	return 0;
}

static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
				       struct hclgevf_rss_cfg *rss_cfg)
{
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Configure rss input fail, status = %d\n", ret);
	return ret;
}

1031 1032 1033 1034 1035 1036 1037 1038 1039
static int hclgevf_get_tc_size(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;

	return rss_cfg->rss_size;
}

static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1040
				       int vector_id,
1041 1042 1043
				       struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1044
	struct hclge_vf_to_pf_msg send_msg;
1045 1046
	struct hnae3_ring_chain_node *node;
	int status;
1047
	int i = 0;
1048

1049 1050
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1051
		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1052
	send_msg.vector_id = vector_id;
1053 1054

	for (node = ring_chain; node; node = node->next) {
1055
		send_msg.param[i].ring_type =
P
Peng Li 已提交
1056
				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1057 1058 1059 1060 1061 1062

		send_msg.param[i].tqp_index = node->tqp_index;
		send_msg.param[i].int_gl_index =
					hnae3_get_field(node->int_gl_idx,
							HNAE3_RING_GL_IDX_M,
							HNAE3_RING_GL_IDX_S);
1063 1064

		i++;
1065 1066
		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
			send_msg.ring_num = i;
1067

1068 1069
			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
						      NULL, 0);
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
			if (status) {
				dev_err(&hdev->pdev->dev,
					"Map TQP fail, status is %d.\n",
					status);
				return status;
			}
			i = 0;
		}
	}

	return 0;
}

static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
				      struct hnae3_ring_chain_node *ring_chain)
{
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
}

static int hclgevf_unmap_ring_from_vector(
				struct hnae3_handle *handle,
				int vector,
				struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret, vector_id;

1107 1108 1109
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
		return 0;

1110 1111 1112 1113 1114 1115 1116
	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

1117
	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1118
	if (ret)
1119 1120 1121 1122
		dev_err(&handle->pdev->dev,
			"Unmap ring from vector fail. vector=%d, ret =%d\n",
			vector_id,
			ret);
1123 1124 1125 1126 1127 1128 1129

	return ret;
}

static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1130 1131 1132 1133 1134 1135 1136 1137 1138
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"hclgevf_put_vector get vector index fail. ret =%d\n",
			vector_id);
		return vector_id;
	}
1139

1140
	hclgevf_free_vector(hdev, vector_id);
1141 1142 1143 1144

	return 0;
}

1145
static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1146
					bool en_uc_pmc, bool en_mc_pmc,
1147
					bool en_bc_pmc)
1148
{
1149
	struct hclge_vf_to_pf_msg send_msg;
1150
	int ret;
1151

1152 1153 1154 1155 1156 1157 1158
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
	send_msg.en_bc = en_bc_pmc ? 1 : 0;
	send_msg.en_uc = en_uc_pmc ? 1 : 0;
	send_msg.en_mc = en_mc_pmc ? 1 : 0;

	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1159
	if (ret)
1160
		dev_err(&hdev->pdev->dev,
1161
			"Set promisc mode fail, status is %d.\n", ret);
1162

1163
	return ret;
1164 1165
}

1166 1167
static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
				    bool en_mc_pmc)
1168
{
1169 1170 1171
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	bool en_bc_pmc;

1172
	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1173 1174 1175

	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
					    en_bc_pmc);
1176 1177
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
}

static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *handle = &hdev->nic;
	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
	int ret;

	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
		if (!ret)
			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
	}
}

1199
static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
			      int stream_id, bool enable)
{
	struct hclgevf_cfg_com_tqp_queue_cmd *req;
	struct hclgevf_desc desc;
	int status;

	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
				     false);
	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
	req->stream_id = cpu_to_le16(stream_id);
1212 1213
	if (enable)
		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"TQP enable fail, status =%d.\n", status);

	return status;
}

static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
{
1225
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1226 1227 1228
	struct hclgevf_tqp *tqp;
	int i;

1229 1230
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1231 1232 1233 1234
		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
	}
}

1235 1236
static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
{
1237
	struct hclge_vf_to_pf_msg send_msg;
1238 1239 1240
	u8 host_mac[ETH_ALEN];
	int status;

1241 1242 1243
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
				      ETH_ALEN);
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	if (status) {
		dev_err(&hdev->pdev->dev,
			"fail to get VF MAC from host %d", status);
		return status;
	}

	ether_addr_copy(p, host_mac);

	return 0;
}

1255 1256 1257
static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1258
	u8 host_mac_addr[ETH_ALEN];
1259

1260 1261 1262 1263 1264 1265 1266 1267
	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
		return;

	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
	if (hdev->has_pf_mac)
		ether_addr_copy(p, host_mac_addr);
	else
		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1268 1269
}

1270 1271
static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
				bool is_first)
1272 1273 1274
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1275
	struct hclge_vf_to_pf_msg send_msg;
1276 1277 1278
	u8 *new_mac_addr = (u8 *)p;
	int status;

1279
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1280
	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1281
	ether_addr_copy(send_msg.data, new_mac_addr);
1282 1283 1284 1285
	if (is_first && !hdev->has_pf_mac)
		eth_zero_addr(&send_msg.data[ETH_ALEN]);
	else
		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1286
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1287 1288 1289 1290 1291 1292
	if (!status)
		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);

	return status;
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node)
		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
			return mac_node;

	return NULL;
}

static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_NODE_STATE state)
{
	switch (state) {
	/* from set_rx_mode or tmp_add_list */
	case HCLGEVF_MAC_TO_ADD:
		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	/* only from set_rx_mode */
	case HCLGEVF_MAC_TO_DEL:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
		}
		break;
	/* only from tmp_add_list, the mac_node->state won't be
	 * HCLGEVF_MAC_ACTIVE
	 */
	case HCLGEVF_MAC_ACTIVE:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	}
}

static int hclgevf_update_mac_list(struct hnae3_handle *handle,
				   enum HCLGEVF_MAC_NODE_STATE state,
				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
				   const unsigned char *addr)
1337 1338
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1339 1340
	struct hclgevf_mac_addr_node *mac_node;
	struct list_head *list;
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	/* if the mac addr is already in the mac list, no need to add a new
	 * one into it, just check the mac addr state, convert it to a new
	 * new state, or just remove it, or do nothing.
	 */
	mac_node = hclgevf_find_mac_node(list, addr);
	if (mac_node) {
		hclgevf_update_mac_node(mac_node, state);
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return 0;
	}
	/* if this address is never added, unnecessary to delete */
	if (state == HCLGEVF_MAC_TO_DEL) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOENT;
	}

	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
	if (!mac_node) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOMEM;
	}

	mac_node->state = state;
	ether_addr_copy(mac_node->mac_addr, addr);
	list_add_tail(&mac_node->node, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
	return 0;
}

static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_UC, addr);
1382 1383 1384 1385 1386
}

static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1387 1388
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_UC, addr);
1389 1390 1391 1392 1393
}

static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
1394 1395
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_MC, addr);
1396 1397 1398 1399 1400
}

static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1401 1402 1403 1404 1405 1406 1407 1408
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_MC, addr);
}

static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
				    struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
1409
	struct hclge_vf_to_pf_msg send_msg;
1410
	u8 code, subcode;
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
		code = HCLGE_MBX_SET_UNICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
	} else {
		code = HCLGE_MBX_SET_MULTICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
	}

	hclgevf_build_send_msg(&send_msg, code, subcode);
	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1428
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1429 1430
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
				    struct list_head *list,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;
	int ret;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
		if  (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to configure mac %pM, state = %d, ret = %d\n",
				mac_node->mac_addr, mac_node->state, ret);
			return;
		}
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_add_list(struct list_head *add_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
		/* if the mac address from tmp_add_list is not in the
		 * uc/mc_mac_list, it means have received a TO_DEL request
		 * during the time window of sending mac config request to PF
		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
		 * then it will be removed at next time. If is TO_ADD, it means
		 * send TO_ADD request failed, so just remove the mac node.
		 */
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			hclgevf_update_mac_node(new_node, mac_node->state);
			list_del(&mac_node->node);
			kfree(mac_node);
		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, mac_list);
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_del_list(struct list_head *del_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			/* If the mac addr is exist in the mac list, it means
			 * received a new request TO_ADD during the time window
			 * of sending mac addr configurrequest to PF, so just
			 * change the mac state to ACTIVE.
			 */
			new_node->state = HCLGEVF_MAC_ACTIVE;
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, mac_list);
		}
	}
}

static void hclgevf_clear_list(struct list_head *list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		list_del(&mac_node->node);
		kfree(mac_node);
	}
}

static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
	struct list_head tmp_add_list, tmp_del_list;
	struct list_head *list;

	INIT_LIST_HEAD(&tmp_add_list);
	INIT_LIST_HEAD(&tmp_del_list);

	/* move the mac addr to the tmp_add_list and tmp_del_list, then
	 * we can add/delete these mac addr outside the spin lock
	 */
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		switch (mac_node->state) {
		case HCLGEVF_MAC_TO_DEL:
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, &tmp_del_list);
			break;
		case HCLGEVF_MAC_TO_ADD:
			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
			if (!new_node)
				goto stop_traverse;

			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
			new_node->state = mac_node->state;
			list_add_tail(&new_node->node, &tmp_add_list);
			break;
		default:
			break;
		}
	}

stop_traverse:
	spin_unlock_bh(&hdev->mac_table.mac_list_lock);

	/* delete first, in order to get max mac table space for adding */
	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);

	/* if some mac addresses were added/deleted fail, move back to the
	 * mac_list, and retry at next time.
	 */
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_sync_from_del_list(&tmp_del_list, list);
	hclgevf_sync_from_add_list(&tmp_add_list, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
{
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
}

static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
{
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

1589 1590 1591 1592
static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
				   __be16 proto, u16 vlan_id,
				   bool is_kill)
{
1593 1594 1595 1596
#define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
#define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
#define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3

1597
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1598
	struct hclge_vf_to_pf_msg send_msg;
1599
	int ret;
1600

1601
	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1602 1603 1604 1605 1606
		return -EINVAL;

	if (proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

1607 1608
	/* When device is resetting or reset failed, firmware is unable to
	 * handle mailbox. Just record the vlan id, and remove it after
1609 1610
	 * reset finished.
	 */
1611 1612
	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1613 1614 1615 1616
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
		return -EBUSY;
	}

1617 1618 1619 1620 1621 1622 1623
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_FILTER);
	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
	       sizeof(vlan_id));
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
	       sizeof(proto));
G
Guojia Liao 已提交
1624
	/* when remove hw vlan filter failed, record the vlan id,
1625 1626 1627
	 * and try to remove it from hw later, to be consistence
	 * with stack.
	 */
1628
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	if (is_kill && ret)
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);

	return ret;
}

static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_SYNC_COUNT	60
	struct hnae3_handle *handle = &hdev->nic;
	int ret, sync_cnt = 0;
	u16 vlan_id;

	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	while (vlan_id != VLAN_N_VID) {
		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
					      vlan_id, true);
		if (ret)
			return;

		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
		sync_cnt++;
		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
			return;

		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	}
1656 1657
}

1658 1659 1660
static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1661
	struct hclge_vf_to_pf_msg send_msg;
1662

1663 1664 1665 1666
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_RX_OFF_CFG);
	send_msg.data[0] = enable ? 1 : 0;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1667 1668
}

1669
static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1670 1671
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1672
	struct hclge_vf_to_pf_msg send_msg;
1673
	int ret;
1674

1675 1676 1677
	/* disable vf queue before send queue reset msg to PF */
	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
	if (ret)
1678
		return ret;
1679

1680 1681 1682
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1683 1684
}

1685 1686 1687
static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1688
	struct hclge_vf_to_pf_msg send_msg;
1689

1690 1691 1692
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1693 1694
}

1695 1696 1697 1698 1699
static int hclgevf_notify_client(struct hclgevf_dev *hdev,
				 enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->nic_client;
	struct hnae3_handle *handle = &hdev->nic;
1700
	int ret;
1701

1702 1703 1704 1705
	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
	    !client)
		return 0;

1706 1707 1708
	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

1709 1710 1711 1712 1713 1714
	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
			type, ret);

	return ret;
1715 1716
}

1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
				      enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->roce_client;
	struct hnae3_handle *handle = &hdev->roce;
	int ret;

	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
		return 0;

	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
			type, ret);
	return ret;
}

1737 1738
static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
{
1739 1740 1741 1742 1743 1744 1745
#define HCLGEVF_RESET_WAIT_US	20000
#define HCLGEVF_RESET_WAIT_CNT	2000
#define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)

	u32 val;
	int ret;
1746

1747
	if (hdev->reset_type == HNAE3_VF_RESET)
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_VF_RST_ING, val,
					 !(val & HCLGEVF_VF_RST_ING_BIT),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
	else
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_RST_ING, val,
					 !(val & HCLGEVF_RST_ING_BITS),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1759 1760

	/* hardware completion status should be available by this time */
1761 1762
	if (ret) {
		dev_err(&hdev->pdev->dev,
1763
			"couldn't get reset done status from h/w, timeout!\n");
1764
		return ret;
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	}

	/* we will wait a bit more to let reset of the stack to complete. This
	 * might happen in case reset assertion was made by PF. Yes, this also
	 * means we might end up waiting bit more even for VF reset.
	 */
	msleep(5000);

	return 0;
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
{
	u32 reg_val;

	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
	if (enable)
		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
	else
		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;

	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
			  reg_val);
}

1790 1791
static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
{
1792 1793
	int ret;

1794
	/* uninitialize the nic client */
1795 1796 1797
	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1798

1799
	/* re-initialize the hclge device */
1800
	ret = hclgevf_reset_hdev(hdev);
1801 1802 1803 1804 1805
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"hclge device re-init failed, VF is disabled!\n");
		return ret;
	}
1806 1807

	/* bring up the nic client again */
1808 1809 1810
	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;
1811

1812 1813 1814
	/* clear handshake status with IMP */
	hclgevf_reset_handshake(hdev, false);

1815 1816
	/* bring up the nic to enable TX/RX again */
	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1817 1818
}

1819 1820
static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
{
1821 1822
#define HCLGEVF_RESET_SYNC_TIME 100

1823
	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1824 1825 1826
		struct hclge_vf_to_pf_msg send_msg;
		int ret;

1827 1828
		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1829 1830 1831 1832 1833
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to assert VF reset, ret = %d\n", ret);
			return ret;
		}
1834
		hdev->rst_stats.vf_func_rst_cnt++;
1835 1836
	}

1837
	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1838 1839
	/* inform hardware that preparatory work is done */
	msleep(HCLGEVF_RESET_SYNC_TIME);
1840
	hclgevf_reset_handshake(hdev, true);
1841 1842
	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
		 hdev->reset_type);
1843

1844
	return 0;
1845 1846
}

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
{
	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
		 hdev->rst_stats.vf_func_rst_cnt);
	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
		 hdev->rst_stats.flr_rst_cnt);
	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
		 hdev->rst_stats.vf_rst_cnt);
	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
		 hdev->rst_stats.rst_done_cnt);
	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
		 hdev->rst_stats.hw_rst_done_cnt);
	dev_info(&hdev->pdev->dev, "reset count: %u\n",
		 hdev->rst_stats.rst_cnt);
	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
		 hdev->rst_stats.rst_fail_cnt);
	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1866
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1867 1868 1869 1870 1871 1872 1873
	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
}

1874 1875
static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
{
1876 1877
	/* recover handshake status with IMP when reset fail */
	hclgevf_reset_handshake(hdev, true);
1878
	hdev->rst_stats.rst_fail_cnt++;
1879
	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1880 1881 1882 1883 1884 1885 1886 1887
		hdev->rst_stats.rst_fail_cnt);

	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
		set_bit(hdev->reset_type, &hdev->reset_pending);

	if (hclgevf_is_reset_pending(hdev)) {
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		hclgevf_reset_task_schedule(hdev);
1888
	} else {
1889
		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1890
		hclgevf_dump_rst_info(hdev);
1891 1892 1893
	}
}

1894
static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1895 1896 1897
{
	int ret;

1898
	hdev->rst_stats.rst_cnt++;
1899

1900 1901 1902 1903 1904
	/* perform reset of the stack & ae device for a client */
	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;

1905
	rtnl_lock();
1906
	/* bring down the nic to stop any ongoing TX/RX */
1907
	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1908
	rtnl_unlock();
1909
	if (ret)
1910
		return ret;
1911

1912 1913 1914 1915 1916 1917
	return hclgevf_reset_prepare_wait(hdev);
}

static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
{
	int ret;
1918

1919
	hdev->rst_stats.hw_rst_done_cnt++;
1920 1921 1922
	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1923

1924
	rtnl_lock();
G
Guojia Liao 已提交
1925
	/* now, re-initialize the nic client and ae device */
1926
	ret = hclgevf_reset_stack(hdev);
1927
	rtnl_unlock();
1928
	if (ret) {
1929
		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1930
		return ret;
1931
	}
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
	 * times
	 */
	if (ret &&
	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
		return ret;

	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
	if (ret)
		return ret;

1945
	hdev->last_reset_time = jiffies;
1946
	hdev->rst_stats.rst_done_cnt++;
1947
	hdev->rst_stats.rst_fail_cnt = 0;
1948
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1949

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	return 0;
}

static void hclgevf_reset(struct hclgevf_dev *hdev)
{
	if (hclgevf_reset_prepare(hdev))
		goto err_reset;

	/* check if VF could successfully fetch the hardware reset completion
	 * status from the hardware
	 */
	if (hclgevf_reset_wait(hdev)) {
		/* can't do much in this situation, will disable VF */
		dev_err(&hdev->pdev->dev,
			"failed to fetch H/W reset completion status\n");
		goto err_reset;
	}

	if (hclgevf_reset_rebuild(hdev))
		goto err_reset;

	return;

1973
err_reset:
1974
	hclgevf_reset_err_handle(hdev);
1975 1976
}

1977 1978 1979 1980 1981
static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
						     unsigned long *addr)
{
	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;

1982
	/* return the highest priority reset level amongst all */
1983 1984 1985 1986 1987 1988
	if (test_bit(HNAE3_VF_RESET, addr)) {
		rst_level = HNAE3_VF_RESET;
		clear_bit(HNAE3_VF_RESET, addr);
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1989 1990 1991
		rst_level = HNAE3_VF_FULL_RESET;
		clear_bit(HNAE3_VF_FULL_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1992 1993 1994 1995
	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_PF_FUNC_RESET;
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1996 1997 1998
	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_FUNC_RESET;
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1999 2000 2001
	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
		rst_level = HNAE3_FLR_RESET;
		clear_bit(HNAE3_FLR_RESET, addr);
2002 2003 2004 2005 2006
	}

	return rst_level;
}

2007 2008
static void hclgevf_reset_event(struct pci_dev *pdev,
				struct hnae3_handle *handle)
2009
{
2010 2011
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	struct hclgevf_dev *hdev = ae_dev->priv;
2012 2013 2014

	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");

2015
	if (hdev->default_reset_request)
2016
		hdev->reset_level =
2017 2018 2019
			hclgevf_get_reset_level(hdev,
						&hdev->default_reset_request);
	else
2020
		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2021

2022 2023 2024
	/* reset of this VF requested */
	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
	hclgevf_reset_task_schedule(hdev);
2025

2026
	hdev->last_reset_time = jiffies;
2027 2028
}

2029 2030 2031 2032 2033 2034 2035 2036
static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
					  enum hnae3_reset_type rst_type)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	set_bit(rst_type, &hdev->default_reset_request);
}

2037 2038 2039 2040 2041
static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
{
	writel(en ? 1 : 0, vector->addr);
}

2042 2043
static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
{
2044 2045 2046
#define HCLGEVF_FLR_RETRY_WAIT_MS	500
#define HCLGEVF_FLR_RETRY_CNT		5

2047
	struct hclgevf_dev *hdev = ae_dev->priv;
2048 2049
	int retry_cnt = 0;
	int ret;
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
retry:
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	hdev->reset_type = HNAE3_FLR_RESET;
	ret = hclgevf_reset_prepare(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
			ret);
		if (hdev->reset_pending ||
		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
			dev_err(&hdev->pdev->dev,
				"reset_pending:0x%lx, retry_cnt:%d\n",
				hdev->reset_pending, retry_cnt);
			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
			up(&hdev->reset_sem);
			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
			goto retry;
		}
	}
2070

2071 2072 2073 2074
	/* disable misc vector before FLR done */
	hclgevf_enable_vector(&hdev->misc_vector, false);
	hdev->rst_stats.flr_rst_cnt++;
}
2075

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	hclgevf_enable_vector(&hdev->misc_vector, true);

	ret = hclgevf_reset_rebuild(hdev);
	if (ret)
		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
			 ret);

	hdev->reset_type = HNAE3_NONE_RESET;
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	up(&hdev->reset_sem);
2091 2092
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->fw_version;
}

static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
{
	struct hclgevf_misc_vector *vector = &hdev->misc_vector;

	vector->vector_irq = pci_irq_vector(hdev->pdev,
					    HCLGEVF_MISC_VECTOR_NUM);
	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
	/* vector status always valid for Vector 0 */
	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;

	hdev->num_msi_left -= 1;
	hdev->num_msi_used += 1;
}

2115 2116
void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
{
2117 2118 2119
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
			      &hdev->state))
2120
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2121 2122
}

2123
void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2124
{
2125 2126 2127
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
			      &hdev->state))
2128
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2129 2130
}

2131 2132
static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
				  unsigned long delay)
2133
{
2134 2135
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2136
		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2137 2138
}

2139
static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2140
{
2141 2142
#define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3

2143
	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2144 2145
		return;

2146 2147
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2148

2149 2150 2151
	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
			       &hdev->reset_state)) {
		/* PF has initmated that it is about to reset the hardware.
2152 2153 2154
		 * We now have to poll & check if hardware has actually
		 * completed the reset sequence. On hardware reset completion,
		 * VF needs to reset the client and ae device.
2155 2156 2157
		 */
		hdev->reset_attempts = 0;

2158 2159 2160
		hdev->last_reset_time = jiffies;
		while ((hdev->reset_type =
			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2161 2162
		       != HNAE3_NONE_RESET)
			hclgevf_reset(hdev);
2163 2164 2165
	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
				      &hdev->reset_state)) {
		/* we could be here when either of below happens:
2166
		 * 1. reset was initiated due to watchdog timeout caused by
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		 *    a. IMP was earlier reset and our TX got choked down and
		 *       which resulted in watchdog reacting and inducing VF
		 *       reset. This also means our cmdq would be unreliable.
		 *    b. problem in TX due to other lower layer(example link
		 *       layer not functioning properly etc.)
		 * 2. VF reset might have been initiated due to some config
		 *    change.
		 *
		 * NOTE: Theres no clear way to detect above cases than to react
		 * to the response of PF for this reset request. PF will ack the
		 * 1b and 2. cases but we will not get any intimation about 1a
		 * from PF as cmdq would be in unreliable state i.e. mailbox
		 * communication between PF and VF would be broken.
G
Guojia Liao 已提交
2180 2181
		 *
		 * if we are never geting into pending state it means either:
2182 2183 2184 2185 2186 2187
		 * 1. PF is not receiving our request which could be due to IMP
		 *    reset
		 * 2. PF is screwed
		 * We cannot do much for 2. but to check first we can try reset
		 * our PCIe + stack and see if it alleviates the problem.
		 */
2188
		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2189
			/* prepare for full reset of stack + pcie interface */
2190
			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2191 2192 2193 2194 2195 2196

			/* "defer" schedule the reset task again */
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		} else {
			hdev->reset_attempts++;

2197 2198
			set_bit(hdev->reset_level, &hdev->reset_pending);
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2199
		}
2200
		hclgevf_reset_task_schedule(hdev);
2201
	}
2202

2203
	hdev->reset_type = HNAE3_NONE_RESET;
2204
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2205
	up(&hdev->reset_sem);
2206 2207
}

2208
static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2209
{
2210 2211
	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
		return;
2212 2213 2214 2215

	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
		return;

2216
	hclgevf_mbx_async_handler(hdev);
2217 2218 2219 2220

	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
}

2221
static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2222
{
2223
	struct hclge_vf_to_pf_msg send_msg;
2224 2225
	int ret;

2226
	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2227 2228
		return;

2229 2230
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2231 2232 2233 2234 2235
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF sends keep alive cmd failed(=%d)\n", ret);
}

2236
static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2237
{
2238 2239
	unsigned long delta = round_jiffies_relative(HZ);
	struct hnae3_handle *handle = &hdev->nic;
2240

2241 2242 2243
	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
		return;

2244 2245
	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
		delta = jiffies - hdev->last_serv_processed;
2246

2247 2248 2249 2250
		if (delta < round_jiffies_relative(HZ)) {
			delta = round_jiffies_relative(HZ) - delta;
			goto out;
		}
2251
	}
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	hdev->serv_processed_cnt++;
	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
		hclgevf_keep_alive(hdev);

	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
		hdev->last_serv_processed = jiffies;
		goto out;
	}

	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
		hclgevf_tqps_update_stats(handle);

2265 2266 2267 2268 2269
	/* request the link status from the PF. PF would be able to tell VF
	 * about such updates in future so we might remove this later
	 */
	hclgevf_request_link_info(hdev);

2270 2271
	hclgevf_update_link_mode(hdev);

2272 2273
	hclgevf_sync_vlan_filter(hdev);

2274 2275
	hclgevf_sync_mac_table(hdev);

2276 2277
	hclgevf_sync_promisc_mode(hdev);

2278
	hdev->last_serv_processed = jiffies;
2279

2280 2281 2282 2283 2284 2285 2286 2287
out:
	hclgevf_task_schedule(hdev, delta);
}

static void hclgevf_service_task(struct work_struct *work)
{
	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
						service_task.work);
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
	hclgevf_periodic_service_task(hdev);

	/* Handle reset and mbx again in case periodical task delays the
	 * handling by calling hclgevf_task_schedule() in
	 * hclgevf_periodic_service_task()
	 */
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
2299 2300 2301 2302 2303 2304 2305
}

static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
{
	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
}

2306 2307
static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
						      u32 *clearval)
2308
{
2309
	u32 val, cmdq_stat_reg, rst_ing_reg;
2310 2311

	/* fetch the events from their corresponding regs */
2312
	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2313
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2314

2315
	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2316 2317 2318 2319 2320
		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
		dev_info(&hdev->pdev->dev,
			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2321
		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2322
		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2323
		hdev->rst_stats.vf_rst_cnt++;
2324 2325 2326 2327 2328 2329
		/* set up VF hardware reset status, its PF will clear
		 * this status when PF has initialized done.
		 */
		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
				  val | HCLGEVF_VF_RST_ING_BIT);
2330 2331 2332
		return HCLGEVF_VECTOR0_EVENT_RST;
	}

2333
	/* check for vector0 mailbox(=CMDQ RX) event source */
2334 2335 2336 2337 2338 2339 2340 2341
	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
		/* for revision 0x21, clearing interrupt is writing bit 0
		 * to the clear register, writing bit 1 means to keep the
		 * old value.
		 * for revision 0x20, the clear register is a read & write
		 * register, so we should just write 0 to the bit we are
		 * handling, and keep other bits as cmdq_stat_reg.
		 */
2342
		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2343 2344 2345 2346 2347
			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
		else
			*clearval = cmdq_stat_reg &
				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);

2348
		return HCLGEVF_VECTOR0_EVENT_MBX;
2349 2350
	}

2351 2352 2353 2354
	/* print other vector0 event source */
	dev_info(&hdev->pdev->dev,
		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
		 cmdq_stat_reg);
2355

2356
	return HCLGEVF_VECTOR0_EVENT_OTHER;
2357 2358 2359 2360
}

static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
{
2361
	enum hclgevf_evt_cause event_cause;
2362 2363 2364 2365
	struct hclgevf_dev *hdev = data;
	u32 clearval;

	hclgevf_enable_vector(&hdev->misc_vector, false);
2366
	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2367

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	switch (event_cause) {
	case HCLGEVF_VECTOR0_EVENT_RST:
		hclgevf_reset_task_schedule(hdev);
		break;
	case HCLGEVF_VECTOR0_EVENT_MBX:
		hclgevf_mbx_handler(hdev);
		break;
	default:
		break;
	}
2378

2379 2380 2381 2382
	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
		hclgevf_clear_event_cause(hdev, clearval);
		hclgevf_enable_vector(&hdev->misc_vector, true);
	}
2383 2384 2385 2386 2387 2388 2389 2390

	return IRQ_HANDLED;
}

static int hclgevf_configure(struct hclgevf_dev *hdev)
{
	int ret;

2391 2392 2393 2394 2395
	/* get current port based vlan state from PF */
	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
	if (ret)
		return ret;

2396
	/* get queue configuration from PF */
2397
	ret = hclgevf_get_queue_info(hdev);
2398 2399
	if (ret)
		return ret;
2400 2401 2402 2403 2404 2405

	/* get queue depth info from PF */
	ret = hclgevf_get_queue_depth(hdev);
	if (ret)
		return ret;

2406 2407 2408 2409
	ret = hclgevf_get_pf_media_type(hdev);
	if (ret)
		return ret;

2410 2411 2412 2413
	/* get tc configuration from PF */
	return hclgevf_get_tc_info(hdev);
}

2414 2415 2416
static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
2417
	struct hclgevf_dev *hdev;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
	if (!hdev)
		return -ENOMEM;

	hdev->pdev = pdev;
	hdev->ae_dev = ae_dev;
	ae_dev->priv = hdev;

	return 0;
}

2430 2431 2432 2433 2434
static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *roce = &hdev->roce;
	struct hnae3_handle *nic = &hdev->nic;

2435
	roce->rinfo.num_vectors = hdev->num_roce_msix;
2436 2437 2438 2439 2440

	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
	    hdev->num_msi_left == 0)
		return -EINVAL;

2441
	roce->rinfo.base_vector = hdev->roce_base_vector;
2442 2443 2444

	roce->rinfo.netdev = nic->kinfo.netdev;
	roce->rinfo.roce_io_base = hdev->hw.io_base;
2445
	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2446 2447 2448 2449 2450 2451 2452 2453

	roce->pdev = nic->pdev;
	roce->ae_algo = nic->ae_algo;
	roce->numa_node_mask = nic->numa_node_mask;

	return 0;
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
{
	struct hclgevf_cfg_gro_status_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	if (!hnae3_dev_gro_supported(hdev))
		return 0;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
				     false);
	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;

2467
	req->gro_en = en ? 1 : 0;
2468 2469 2470 2471 2472 2473 2474 2475 2476

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF GRO hardware config cmd failed, ret = %d.\n", ret);

	return ret;
}

2477
static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2478 2479
{
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2480
	struct hclgevf_rss_tuple_cfg *tuple_sets;
2481
	u32 i;
2482

2483
	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2484
	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2485
	tuple_sets = &rss_cfg->rss_tuple_sets;
2486
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2487 2488 2489
		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
		       HCLGEVF_RSS_KEY_SIZE);
2490

2491 2492 2493 2494 2495 2496
		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2497 2498 2499 2500
		tuple_sets->ipv6_sctp_en =
			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
	}

	/* Initialize RSS indirect table */
	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
}

static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
{
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	int ret;

2514
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2515 2516 2517 2518
		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
					       rss_cfg->rss_hash_key);
		if (ret)
			return ret;
2519 2520 2521 2522

		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
		if (ret)
			return ret;
2523 2524
	}

2525 2526 2527 2528
	ret = hclgevf_set_rss_indir_table(hdev);
	if (ret)
		return ret;

2529
	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2530 2531 2532 2533 2534 2535 2536 2537
}

static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
{
	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
				       false);
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
{
#define HCLGEVF_FLUSH_LINK_TIMEOUT	100000

	unsigned long last = hdev->serv_processed_cnt;
	int i = 0;

	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
	       last == hdev->serv_processed_cnt)
		usleep_range(1, 1);
}

2551 2552 2553 2554 2555
static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (enable) {
2556
		hclgevf_task_schedule(hdev, 0);
2557
	} else {
2558
		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2559 2560 2561 2562

		/* flush memory to make sure DOWN is seen by service task */
		smp_mb__before_atomic();
		hclgevf_flush_link_update(hdev);
2563 2564 2565
	}
}

2566 2567 2568 2569
static int hclgevf_ae_start(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

2570 2571
	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);

2572 2573 2574 2575
	hclgevf_reset_tqp_stats(handle);

	hclgevf_request_link_info(hdev);

2576 2577
	hclgevf_update_link_mode(hdev);

2578 2579 2580 2581 2582 2583
	return 0;
}

static void hclgevf_ae_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2584
	int i;
2585

2586 2587
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);

2588 2589 2590 2591
	if (hdev->reset_type != HNAE3_VF_RESET)
		for (i = 0; i < handle->kinfo.num_tqps; i++)
			if (hclgevf_reset_tqp(handle, i))
				break;
2592

2593
	hclgevf_reset_tqp_stats(handle);
2594
	hclgevf_update_link_status(hdev, 0);
2595 2596
}

2597 2598
static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
{
2599 2600 2601
#define HCLGEVF_STATE_ALIVE	1
#define HCLGEVF_STATE_NOT_ALIVE	0

2602
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2603
	struct hclge_vf_to_pf_msg send_msg;
2604

2605 2606 2607 2608
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
				HCLGEVF_STATE_NOT_ALIVE;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2609 2610 2611 2612
}

static int hclgevf_client_start(struct hnae3_handle *handle)
{
2613
	return hclgevf_set_alive(handle, true);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
}

static void hclgevf_client_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;

	ret = hclgevf_set_alive(handle, false);
	if (ret)
		dev_warn(&hdev->pdev->dev,
			 "%s failed %d\n", __func__, ret);
}

2627 2628 2629 2630
static void hclgevf_state_init(struct hclgevf_dev *hdev)
{
	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2631
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2632

2633
	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2634

2635
	mutex_init(&hdev->mbx_resp.mbx_mutex);
2636
	sema_init(&hdev->reset_sem, 1);
2637

2638 2639 2640 2641
	spin_lock_init(&hdev->mac_table.mac_list_lock);
	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);

2642 2643 2644 2645 2646 2647 2648
	/* bring the device down */
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
}

static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
{
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2649
	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2650

2651 2652
	if (hdev->service_task.work.func)
		cancel_delayed_work_sync(&hdev->service_task);
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
}

static int hclgevf_init_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int vectors;
	int i;

2663
	if (hnae3_dev_roce_supported(hdev))
2664 2665 2666 2667 2668
		vectors = pci_alloc_irq_vectors(pdev,
						hdev->roce_base_msix_offset + 1,
						hdev->num_msi,
						PCI_IRQ_MSIX);
	else
2669 2670
		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
						hdev->num_msi,
2671
						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2672 2673 2674 2675 2676 2677 2678 2679 2680

	if (vectors < 0) {
		dev_err(&pdev->dev,
			"failed(%d) to allocate MSI/MSI-X vectors\n",
			vectors);
		return vectors;
	}
	if (vectors < hdev->num_msi)
		dev_warn(&hdev->pdev->dev,
2681
			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2682 2683 2684 2685
			 hdev->num_msi, vectors);

	hdev->num_msi = vectors;
	hdev->num_msi_left = vectors;
2686

2687
	hdev->base_msi_vector = pdev->irq;
2688
	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
					   sizeof(u16), GFP_KERNEL);
	if (!hdev->vector_status) {
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	for (i = 0; i < hdev->num_msi; i++)
		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;

	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
					sizeof(int), GFP_KERNEL);
	if (!hdev->vector_irq) {
2703
		devm_kfree(&pdev->dev, hdev->vector_status);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	return 0;
}

static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

2715 2716
	devm_kfree(&pdev->dev, hdev->vector_status);
	devm_kfree(&pdev->dev, hdev->vector_irq);
2717 2718 2719 2720 2721
	pci_free_irq_vectors(pdev);
}

static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
{
2722
	int ret;
2723 2724 2725

	hclgevf_get_misc_vector(hdev);

2726 2727
	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
		 HCLGEVF_NAME, pci_name(hdev->pdev));
2728
	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2729
			  0, hdev->misc_vector.name, hdev);
2730 2731 2732 2733 2734 2735
	if (ret) {
		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
			hdev->misc_vector.vector_irq);
		return ret;
	}

2736 2737
	hclgevf_clear_event_cause(hdev, 0);

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
	/* enable misc. vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, true);

	return ret;
}

static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
{
	/* disable misc vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, false);
2748
	synchronize_irq(hdev->misc_vector.vector_irq);
2749 2750 2751 2752
	free_irq(hdev->misc_vector.vector_irq, hdev);
	hclgevf_free_vector(hdev, 0);
}

2753 2754 2755 2756 2757 2758
static void hclgevf_info_show(struct hclgevf_dev *hdev)
{
	struct device *dev = &hdev->pdev->dev;

	dev_info(dev, "VF info begin:\n");

2759 2760 2761 2762 2763 2764
	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
	dev_info(dev, "PF media type of this VF: %u\n",
2765 2766 2767 2768 2769
		 hdev->hw.mac.media_type);

	dev_info(dev, "VF info end.\n");
}

2770 2771 2772 2773
static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
					    struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
2774
	int rst_cnt = hdev->rst_stats.rst_cnt;
2775 2776 2777 2778 2779 2780 2781
	int ret;

	ret = client->ops->init_instance(&hdev->nic);
	if (ret)
		return ret;

	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2782 2783 2784 2785 2786 2787 2788 2789
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    rst_cnt != hdev->rst_stats.rst_cnt) {
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

		client->ops->uninit_instance(&hdev->nic, 0);
		return -EBUSY;
	}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
	hnae3_set_client_init_flag(client, ae_dev, 1);

	if (netif_msg_drv(&hdev->nic))
		hclgevf_info_show(hdev);

	return 0;
}

static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
					     struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
	    !hdev->nic_client)
		return 0;

	ret = hclgevf_init_roce_base_info(hdev);
	if (ret)
		return ret;

	ret = client->ops->init_instance(&hdev->roce);
	if (ret)
		return ret;

2816
	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2817 2818 2819 2820 2821
	hnae3_set_client_init_flag(client, ae_dev, 1);

	return 0;
}

2822 2823
static int hclgevf_init_client_instance(struct hnae3_client *client,
					struct hnae3_ae_dev *ae_dev)
2824
{
2825
	struct hclgevf_dev *hdev = ae_dev->priv;
2826 2827 2828 2829 2830 2831 2832
	int ret;

	switch (client->type) {
	case HNAE3_CLIENT_KNIC:
		hdev->nic_client = client;
		hdev->nic.client = client;

2833
		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2834
		if (ret)
2835
			goto clear_nic;
2836

2837 2838 2839 2840
		ret = hclgevf_init_roce_client_instance(ae_dev,
							hdev->roce_client);
		if (ret)
			goto clear_roce;
2841

2842 2843
		break;
	case HNAE3_CLIENT_ROCE:
2844 2845 2846 2847
		if (hnae3_dev_roce_supported(hdev)) {
			hdev->roce_client = client;
			hdev->roce.client = client;
		}
2848

2849 2850 2851
		ret = hclgevf_init_roce_client_instance(ae_dev, client);
		if (ret)
			goto clear_roce;
2852

2853 2854 2855
		break;
	default:
		return -EINVAL;
2856 2857 2858
	}

	return 0;
2859 2860 2861 2862 2863 2864 2865 2866 2867

clear_nic:
	hdev->nic_client = NULL;
	hdev->nic.client = NULL;
	return ret;
clear_roce:
	hdev->roce_client = NULL;
	hdev->roce.client = NULL;
	return ret;
2868 2869
}

2870 2871
static void hclgevf_uninit_client_instance(struct hnae3_client *client,
					   struct hnae3_ae_dev *ae_dev)
2872
{
2873 2874
	struct hclgevf_dev *hdev = ae_dev->priv;

2875
	/* un-init roce, if it exists */
2876
	if (hdev->roce_client) {
2877
		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2878
		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2879 2880 2881
		hdev->roce_client = NULL;
		hdev->roce.client = NULL;
	}
2882 2883

	/* un-init nic/unic, if this was not called by roce client */
2884 2885
	if (client->ops->uninit_instance && hdev->nic_client &&
	    client->type != HNAE3_CLIENT_ROCE) {
2886 2887
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

2888
		client->ops->uninit_instance(&hdev->nic, 0);
2889 2890 2891
		hdev->nic_client = NULL;
		hdev->nic.client = NULL;
	}
2892 2893
}

2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MEM_BAR		4

	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw = &hdev->hw;

	/* for device does not have device memory, return directly */
	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
		return 0;

	hw->mem_base = devm_ioremap_wc(&pdev->dev,
				       pci_resource_start(pdev,
							  HCLGEVF_MEM_BAR),
				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
	if (!hw->mem_base) {
		dev_err(&pdev->dev, "failed to map device memroy\n");
		return -EFAULT;
	}

	return 0;
}

2917 2918 2919 2920 2921 2922 2923 2924 2925
static int hclgevf_pci_init(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw;
	int ret;

	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable PCI device\n");
2926
		return ret;
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	}

	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (ret) {
		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
		goto err_disable_device;
	}

	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
	if (ret) {
		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
		goto err_disable_device;
	}

	pci_set_master(pdev);
	hw = &hdev->hw;
	hw->hdev = hdev;
P
Peng Li 已提交
2944
	hw->io_base = pci_iomap(pdev, 2, 0);
2945 2946 2947 2948 2949 2950
	if (!hw->io_base) {
		dev_err(&pdev->dev, "can't map configuration register space\n");
		ret = -ENOMEM;
		goto err_clr_master;
	}

2951 2952 2953 2954
	ret = hclgevf_dev_mem_map(hdev);
	if (ret)
		goto err_unmap_io_base;

2955 2956
	return 0;

2957 2958
err_unmap_io_base:
	pci_iounmap(pdev, hdev->hw.io_base);
2959 2960 2961 2962 2963
err_clr_master:
	pci_clear_master(pdev);
	pci_release_regions(pdev);
err_disable_device:
	pci_disable_device(pdev);
2964

2965 2966 2967 2968 2969 2970 2971
	return ret;
}

static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

2972 2973 2974
	if (hdev->hw.mem_base)
		devm_iounmap(&pdev->dev, hdev->hw.mem_base);

2975 2976 2977 2978 2979 2980
	pci_iounmap(pdev, hdev->hw.io_base);
	pci_clear_master(pdev);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
{
	struct hclgevf_query_res_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"query vf resource failed, ret = %d.\n", ret);
		return ret;
	}

	req = (struct hclgevf_query_res_cmd *)desc.data;

2997
	if (hnae3_dev_roce_supported(hdev)) {
2998
		hdev->roce_base_msix_offset =
2999
		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3000 3001 3002
				HCLGEVF_MSIX_OFT_ROCEE_M,
				HCLGEVF_MSIX_OFT_ROCEE_S);
		hdev->num_roce_msix =
3003
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3004 3005
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);

3006 3007 3008
		/* nic's msix numbers is always equals to the roce's. */
		hdev->num_nic_msix = hdev->num_roce_msix;

3009 3010 3011 3012 3013 3014 3015
		/* VF should have NIC vectors and Roce vectors, NIC vectors
		 * are queued before Roce vectors. The offset is fixed to 64.
		 */
		hdev->num_msi = hdev->num_roce_msix +
				hdev->roce_base_msix_offset;
	} else {
		hdev->num_msi =
3016
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3017
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3018 3019 3020 3021 3022 3023 3024 3025 3026

		hdev->num_nic_msix = hdev->num_msi;
	}

	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
		dev_err(&hdev->pdev->dev,
			"Just %u msi resources, not enough for vf(min:2).\n",
			hdev->num_nic_msix);
		return -EINVAL;
3027 3028 3029 3030 3031
	}

	return 0;
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_NON_TSO_BD_NUM			8U

	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);

	ae_dev->dev_specs.max_non_tso_bd_num =
					HCLGEVF_MAX_NON_TSO_BD_NUM;
	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3042
	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3043 3044 3045 3046 3047 3048 3049
}

static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
				    struct hclgevf_desc *desc)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct hclgevf_dev_specs_0_cmd *req0;
3050
	struct hclgevf_dev_specs_1_cmd *req1;
3051 3052

	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3053
	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3054 3055 3056 3057

	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
	ae_dev->dev_specs.rss_ind_tbl_size =
					le16_to_cpu(req0->rss_ind_tbl_size);
3058
	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3059
	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3060
	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3061 3062
}

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
{
	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;

	if (!dev_specs->max_non_tso_bd_num)
		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
	if (!dev_specs->rss_ind_tbl_size)
		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	if (!dev_specs->rss_key_size)
		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3073 3074
	if (!dev_specs->max_int_gl)
		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3075 3076
}

3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
{
	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
	int ret;
	int i;

	/* set default specifications as devices lower than version V3 do not
	 * support querying specifications from firmware.
	 */
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
		hclgevf_set_default_dev_specs(hdev);
		return 0;
	}

	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
		hclgevf_cmd_setup_basic_desc(&desc[i],
					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
	}
	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
				     true);

	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
	if (ret)
		return ret;

	hclgevf_parse_dev_specs(hdev, desc);
3104
	hclgevf_check_dev_specs(hdev);
3105 3106 3107 3108

	return 0;
}

3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret = 0;

	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		pci_set_master(pdev);
		ret = hclgevf_init_msi(hdev);
		if (ret) {
			dev_err(&pdev->dev,
				"failed(%d) to init MSI/MSI-X\n", ret);
			return ret;
		}

		ret = hclgevf_misc_irq_init(hdev);
		if (ret) {
			hclgevf_uninit_msi(hdev);
			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
				ret);
			return ret;
		}

		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	return ret;
}

3144 3145 3146 3147 3148 3149 3150 3151 3152
static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
{
	struct hclge_vf_to_pf_msg send_msg;

	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
			       HCLGE_MBX_VPORT_LIST_CLEAR);
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
}

3153
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3154
{
3155
	struct pci_dev *pdev = hdev->pdev;
3156 3157
	int ret;

3158 3159 3160 3161 3162 3163
	ret = hclgevf_pci_reset(hdev);
	if (ret) {
		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
		return ret;
	}

3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	ret = hclgevf_cmd_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "cmd failed %d\n", ret);
		return ret;
	}

	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		return ret;
	}

3177 3178 3179 3180
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		return ret;

3181 3182 3183 3184 3185
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		return ret;
3186
	}
3187

3188 3189
	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	dev_info(&hdev->pdev->dev, "Reset done\n");

	return 0;
}

static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret;

3200
	ret = hclgevf_pci_init(hdev);
3201
	if (ret)
3202 3203
		return ret;

3204
	ret = hclgevf_cmd_queue_init(hdev);
3205
	if (ret)
3206 3207
		goto err_cmd_queue_init;

3208 3209 3210 3211 3212 3213
	ret = hclgevf_cmd_init(hdev);
	if (ret)
		goto err_cmd_init;

	/* Get vf resource */
	ret = hclgevf_query_vf_resource(hdev);
3214
	if (ret)
3215
		goto err_cmd_init;
3216

3217 3218 3219 3220 3221 3222 3223
	ret = hclgevf_query_dev_specs(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to query dev specifications, ret = %d\n", ret);
		goto err_cmd_init;
	}

3224 3225 3226
	ret = hclgevf_init_msi(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3227
		goto err_cmd_init;
3228 3229 3230
	}

	hclgevf_state_init(hdev);
3231
	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3232
	hdev->reset_type = HNAE3_NONE_RESET;
3233 3234

	ret = hclgevf_misc_irq_init(hdev);
3235
	if (ret)
3236 3237
		goto err_misc_irq_init;

3238 3239
	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	ret = hclgevf_configure(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
		goto err_config;
	}

	ret = hclgevf_alloc_tqps(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
		goto err_config;
	}

	ret = hclgevf_set_handle_info(hdev);
3253
	if (ret)
3254 3255
		goto err_config;

3256 3257 3258 3259
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		goto err_config;

3260
	/* Initialize RSS for this VF */
3261
	hclgevf_rss_init_cfg(hdev);
3262 3263 3264 3265 3266 3267 3268
	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		goto err_config;
	}

3269 3270 3271 3272 3273 3274 3275 3276 3277
	/* ensure vf tbl list as empty before init*/
	ret = hclgevf_clear_vport_list(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to clear tbl list configuration, ret = %d.\n",
			ret);
		goto err_config;
	}

3278 3279 3280 3281 3282 3283 3284
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		goto err_config;
	}

3285
	hdev->last_reset_time = jiffies;
3286 3287
	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
		 HCLGEVF_DRIVER_NAME);
3288

3289 3290
	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));

3291 3292 3293 3294 3295 3296 3297
	return 0;

err_config:
	hclgevf_misc_irq_uninit(hdev);
err_misc_irq_init:
	hclgevf_state_uninit(hdev);
	hclgevf_uninit_msi(hdev);
3298
err_cmd_init:
3299 3300
	hclgevf_cmd_uninit(hdev);
err_cmd_queue_init:
3301
	hclgevf_pci_uninit(hdev);
3302
	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3303 3304 3305
	return ret;
}

3306
static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3307
{
3308 3309
	struct hclge_vf_to_pf_msg send_msg;

3310
	hclgevf_state_uninit(hdev);
3311

3312 3313
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3314

3315 3316 3317 3318 3319
	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
	}

3320
	hclgevf_cmd_uninit(hdev);
3321
	hclgevf_pci_uninit(hdev);
3322
	hclgevf_uninit_mac_list(hdev);
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
}

static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
	int ret;

	ret = hclgevf_alloc_hdev(ae_dev);
	if (ret) {
		dev_err(&pdev->dev, "hclge device allocation failed\n");
		return ret;
	}

	ret = hclgevf_init_hdev(ae_dev->priv);
3337
	if (ret) {
3338
		dev_err(&pdev->dev, "hclge device initialization failed\n");
3339 3340
		return ret;
	}
3341

3342
	return 0;
3343 3344 3345 3346 3347 3348 3349
}

static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	hclgevf_uninit_hdev(hdev);
3350 3351 3352
	ae_dev->priv = NULL;
}

3353 3354 3355 3356 3357
static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo = &nic->kinfo;

3358 3359
	return min_t(u32, hdev->rss_size_max,
		     hdev->num_tqps / kinfo->num_tc);
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
}

/**
 * hclgevf_get_channels - Get the current channels enabled and max supported.
 * @handle: hardware information for network interface
 * @ch: ethtool channels structure
 *
 * We don't support separate tx and rx queues as channels. The other count
 * represents how many queues are being used for control. max_combined counts
 * how many queue pairs we can support. They may not be mapped 1 to 1 with
 * q_vectors since we support a lot more queue pairs than q_vectors.
 **/
static void hclgevf_get_channels(struct hnae3_handle *handle,
				 struct ethtool_channels *ch)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	ch->max_combined = hclgevf_get_max_channels(hdev);
	ch->other_count = 0;
	ch->max_other = 0;
3380
	ch->combined_count = handle->kinfo.rss_size;
3381 3382
}

3383
static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3384
					  u16 *alloc_tqps, u16 *max_rss_size)
3385 3386 3387
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3388
	*alloc_tqps = hdev->num_tqps;
3389 3390 3391
	*max_rss_size = hdev->rss_size_max;
}

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
static void hclgevf_update_rss_size(struct hnae3_handle *handle,
				    u32 new_tqps_num)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u16 max_rss_size;

	kinfo->req_rss_size = new_tqps_num;

	max_rss_size = min_t(u16, hdev->rss_size_max,
			     hdev->num_tqps / kinfo->num_tc);

	/* Use the user's configuration when it is not larger than
	 * max_rss_size, otherwise, use the maximum specification value.
	 */
	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
	    kinfo->req_rss_size <= max_rss_size)
		kinfo->rss_size = kinfo->req_rss_size;
	else if (kinfo->rss_size > max_rss_size ||
		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
		kinfo->rss_size = max_rss_size;

	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
}

static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
				bool rxfh_configured)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	u16 cur_rss_size = kinfo->rss_size;
	u16 cur_tqps = kinfo->num_tqps;
	u32 *rss_indir;
	unsigned int i;
	int ret;

	hclgevf_update_rss_size(handle, new_tqps_num);

	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
	if (ret)
		return ret;

	/* RSS indirection table has been configuared by user */
	if (rxfh_configured)
		goto out;

	/* Reinitializes the rss indirect table according to the new RSS size */
	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
	if (!rss_indir)
		return -ENOMEM;

	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_indir[i] = i % kinfo->rss_size;

3446 3447
	hdev->rss_cfg.rss_size = kinfo->rss_size;

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
	if (ret)
		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
			ret);

	kfree(rss_indir);

out:
	if (!ret)
		dev_info(&hdev->pdev->dev,
			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
			 cur_rss_size, kinfo->rss_size,
			 cur_tqps, kinfo->rss_size * kinfo->num_tc);

	return ret;
}

3465 3466 3467 3468 3469 3470 3471
static int hclgevf_get_status(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->hw.mac.link;
}

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
					    u8 *auto_neg, u32 *speed,
					    u8 *duplex)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (speed)
		*speed = hdev->hw.mac.speed;
	if (duplex)
		*duplex = hdev->hw.mac.duplex;
	if (auto_neg)
		*auto_neg = AUTONEG_DISABLE;
}

void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
				 u8 duplex)
{
	hdev->hw.mac.speed = speed;
	hdev->hw.mac.duplex = duplex;
}

3493
static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3494 3495 3496 3497 3498 3499
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_config_gro(hdev, enable);
}

3500 3501
static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
				   u8 *module_type)
3502 3503
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3504

3505 3506
	if (media_type)
		*media_type = hdev->hw.mac.media_type;
3507 3508 3509

	if (module_type)
		*module_type = hdev->hw.mac.module_type;
3510 3511
}

3512 3513 3514 3515
static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3516
	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3517 3518
}

3519 3520 3521 3522 3523 3524 3525
static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
}

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
}

static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3537
	return hdev->rst_stats.hw_rst_done_cnt;
3538 3539
}

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
static void hclgevf_get_link_mode(struct hnae3_handle *handle,
				  unsigned long *supported,
				  unsigned long *advertising)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	*supported = hdev->hw.mac.supported;
	*advertising = hdev->hw.mac.advertising;
}

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
#define MAX_SEPARATE_NUM	4
#define SEPARATOR_VALUE		0xFFFFFFFF
#define REG_NUM_PER_LINE	4
#define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))

static int hclgevf_get_regs_len(struct hnae3_handle *handle)
{
	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;

	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
}

static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
			     void *data)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int i, j, reg_um, separator_num;
	u32 *reg = data;

	*version = hdev->fw_version;

	/* fetching per-VF registers values from VF PCIe register space */
	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_tqps; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  ring_reg_addr_list[i] +
						  0x200 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}

	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_msi_used - 1; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  tqp_intr_reg_addr_list[i] +
						  4 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}
}

3616 3617 3618 3619
void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
					u8 *port_base_vlan_info, u8 data_size)
{
	struct hnae3_handle *nic = &hdev->nic;
3620
	struct hclge_vf_to_pf_msg send_msg;
3621
	int ret;
3622 3623

	rtnl_lock();
3624

3625 3626
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
		dev_warn(&hdev->pdev->dev,
			 "is resetting when updating port based vlan info\n");
		rtnl_unlock();
		return;
	}

	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret) {
		rtnl_unlock();
		return;
	}
3638 3639

	/* send msg to PF and wait update port based vlan info */
3640 3641 3642
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
	memcpy(send_msg.data, port_base_vlan_info, data_size);
3643 3644 3645 3646 3647 3648 3649
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	if (!ret) {
		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
			nic->port_base_vlan_state = state;
		else
			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
	}
3650 3651 3652 3653 3654

	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
	rtnl_unlock();
}

3655 3656 3657
static const struct hnae3_ae_ops hclgevf_ops = {
	.init_ae_dev = hclgevf_init_ae_dev,
	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3658 3659
	.flr_prepare = hclgevf_flr_prepare,
	.flr_done = hclgevf_flr_done,
3660 3661
	.init_client_instance = hclgevf_init_client_instance,
	.uninit_client_instance = hclgevf_uninit_client_instance,
3662 3663
	.start = hclgevf_ae_start,
	.stop = hclgevf_ae_stop,
3664 3665
	.client_start = hclgevf_client_start,
	.client_stop = hclgevf_client_stop,
3666 3667 3668
	.map_ring_to_vector = hclgevf_map_ring_to_vector,
	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
	.get_vector = hclgevf_get_vector,
3669
	.put_vector = hclgevf_put_vector,
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
	.reset_queue = hclgevf_reset_tqp,
	.get_mac_addr = hclgevf_get_mac_addr,
	.set_mac_addr = hclgevf_set_mac_addr,
	.add_uc_addr = hclgevf_add_uc_addr,
	.rm_uc_addr = hclgevf_rm_uc_addr,
	.add_mc_addr = hclgevf_add_mc_addr,
	.rm_mc_addr = hclgevf_rm_mc_addr,
	.get_stats = hclgevf_get_stats,
	.update_stats = hclgevf_update_stats,
	.get_strings = hclgevf_get_strings,
	.get_sset_count = hclgevf_get_sset_count,
	.get_rss_key_size = hclgevf_get_rss_key_size,
	.get_rss_indir_size = hclgevf_get_rss_indir_size,
	.get_rss = hclgevf_get_rss,
	.set_rss = hclgevf_set_rss,
3685 3686
	.get_rss_tuple = hclgevf_get_rss_tuple,
	.set_rss_tuple = hclgevf_set_rss_tuple,
3687 3688 3689
	.get_tc_size = hclgevf_get_tc_size,
	.get_fw_version = hclgevf_get_fw_version,
	.set_vlan_filter = hclgevf_set_vlan_filter,
3690
	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3691
	.reset_event = hclgevf_reset_event,
3692
	.set_default_reset_request = hclgevf_set_def_reset_request,
3693
	.set_channels = hclgevf_set_channels,
3694
	.get_channels = hclgevf_get_channels,
3695
	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3696 3697
	.get_regs_len = hclgevf_get_regs_len,
	.get_regs = hclgevf_get_regs,
3698
	.get_status = hclgevf_get_status,
3699
	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3700
	.get_media_type = hclgevf_get_media_type,
3701 3702 3703
	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
	.ae_dev_resetting = hclgevf_ae_dev_resetting,
	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3704
	.set_gro_en = hclgevf_gro_en,
3705
	.set_mtu = hclgevf_set_mtu,
3706
	.get_global_queue_id = hclgevf_get_qid_global,
3707
	.set_timer_task = hclgevf_set_timer_task,
3708
	.get_link_mode = hclgevf_get_link_mode,
3709
	.set_promisc_mode = hclgevf_set_promisc_mode,
3710
	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3711
	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
};

static struct hnae3_ae_algo ae_algovf = {
	.ops = &hclgevf_ops,
	.pdev_id_table = ae_algovf_pci_tbl,
};

static int hclgevf_init(void)
{
	pr_info("%s is initializing\n", HCLGEVF_NAME);

3723
	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3724 3725 3726 3727 3728
	if (!hclgevf_wq) {
		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
		return -ENOMEM;
	}

3729 3730 3731
	hnae3_register_ae_algo(&ae_algovf);

	return 0;
3732 3733 3734 3735 3736
}

static void hclgevf_exit(void)
{
	hnae3_unregister_ae_algo(&ae_algovf);
3737
	destroy_workqueue(hclgevf_wq);
3738 3739 3740 3741 3742 3743 3744 3745
}
module_init(hclgevf_init);
module_exit(hclgevf_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGEVF Driver");
MODULE_VERSION(HCLGEVF_MOD_VERSION);