hclgevf_main.c 102.2 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.

#include <linux/etherdevice.h>
5
#include <linux/iopoll.h>
6
#include <net/rtnetlink.h>
7 8 9 10 11 12 13
#include "hclgevf_cmd.h"
#include "hclgevf_main.h"
#include "hclge_mbx.h"
#include "hnae3.h"

#define HCLGEVF_NAME	"hclgevf"

14 15
#define HCLGEVF_RESET_MAX_FAIL_CNT	5

16
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 18 19
static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
				  unsigned long delay);

20 21
static struct hnae3_ae_algo ae_algovf;

22 23
static struct workqueue_struct *hclgevf_wq;

24
static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 26 27
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 29 30 31
	/* required last entry */
	{0, }
};

32 33 34 35 36 37 38 39
static const u8 hclgevf_hash_key[] = {
	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
};

40 41
MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);

42 43 44 45 46 47 48 49 50 51 52
static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
					 HCLGEVF_CMDQ_TX_DEPTH_REG,
					 HCLGEVF_CMDQ_TX_TAIL_REG,
					 HCLGEVF_CMDQ_TX_HEAD_REG,
					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
					 HCLGEVF_CMDQ_RX_DEPTH_REG,
					 HCLGEVF_CMDQ_RX_TAIL_REG,
					 HCLGEVF_CMDQ_RX_HEAD_REG,
					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
					 HCLGEVF_CMDQ_INTR_EN_REG,
					 HCLGEVF_CMDQ_INTR_GEN_REG};

static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
					   HCLGEVF_RST_ING,
					   HCLGEVF_GRO_EN_REG};

static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
					 HCLGEVF_RING_RX_ADDR_H_REG,
					 HCLGEVF_RING_RX_BD_NUM_REG,
					 HCLGEVF_RING_RX_BD_LENGTH_REG,
					 HCLGEVF_RING_RX_MERGE_EN_REG,
					 HCLGEVF_RING_RX_TAIL_REG,
					 HCLGEVF_RING_RX_HEAD_REG,
					 HCLGEVF_RING_RX_FBD_NUM_REG,
					 HCLGEVF_RING_RX_OFFSET_REG,
					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
					 HCLGEVF_RING_RX_STASH_REG,
					 HCLGEVF_RING_RX_BD_ERR_REG,
					 HCLGEVF_RING_TX_ADDR_L_REG,
					 HCLGEVF_RING_TX_ADDR_H_REG,
					 HCLGEVF_RING_TX_BD_NUM_REG,
					 HCLGEVF_RING_TX_PRIORITY_REG,
					 HCLGEVF_RING_TX_TC_REG,
					 HCLGEVF_RING_TX_MERGE_EN_REG,
					 HCLGEVF_RING_TX_TAIL_REG,
					 HCLGEVF_RING_TX_HEAD_REG,
					 HCLGEVF_RING_TX_FBD_NUM_REG,
					 HCLGEVF_RING_TX_OFFSET_REG,
					 HCLGEVF_RING_TX_EBD_NUM_REG,
					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
					 HCLGEVF_RING_TX_BD_ERR_REG,
					 HCLGEVF_RING_EN_REG};

static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
					     HCLGEVF_TQP_INTR_GL0_REG,
					     HCLGEVF_TQP_INTR_GL1_REG,
					     HCLGEVF_TQP_INTR_GL2_REG,
					     HCLGEVF_TQP_INTR_RL_REG};

94
static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95
{
96 97 98 99 100 101
	if (!handle->client)
		return container_of(handle, struct hclgevf_dev, nic);
	else if (handle->client->type == HNAE3_CLIENT_ROCE)
		return container_of(handle, struct hclgevf_dev, roce);
	else
		return container_of(handle, struct hclgevf_dev, nic);
102 103 104 105
}

static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
{
106
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 108 109 110 111 112
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_desc desc;
	struct hclgevf_tqp *tqp;
	int status;
	int i;

113 114
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 116 117 118 119 120 121 122 123 124 125 126 127
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_QUERY_RX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status,	i);
			return status;
		}
		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128
			le32_to_cpu(desc.data[1]);
129 130 131 132 133 134 135 136 137 138 139 140 141

		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status, i);
			return status;
		}
		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142
			le32_to_cpu(desc.data[1]);
143 144 145 146 147 148 149 150 151 152 153 154
	}

	return 0;
}

static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_tqp *tqp;
	u64 *buff = data;
	int i;

155 156
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 158 159
		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
	}
	for (i = 0; i < kinfo->num_tqps; i++) {
160
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 162 163 164 165 166 167 168
		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
	}

	return buff;
}

static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
{
169
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170

171
	return kinfo->num_tqps * 2;
172 173 174 175
}

static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
{
176
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177
	u8 *buff = data;
178
	int i;
179

180 181 182
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
183
		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 185 186 187
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

188 189 190
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
191
		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

	return buff;
}

static void hclgevf_update_stats(struct hnae3_handle *handle,
				 struct net_device_stats *net_stats)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int status;

	status = hclgevf_tqps_update_stats(handle);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF update of TQPS stats fail, status = %d.\n",
			status);
}

static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
{
	if (strset == ETH_SS_TEST)
		return -EOPNOTSUPP;
	else if (strset == ETH_SS_STATS)
		return hclgevf_tqps_get_sset_count(handle, strset);

	return 0;
}

static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
				u8 *data)
{
	u8 *p = (char *)data;

	if (strset == ETH_SS_STATS)
		p = hclgevf_tqps_get_strings(handle, p);
}

static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
{
	hclgevf_tqps_get_stats(handle, data);
}

236 237 238 239 240 241 242 243 244 245
static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
				   u8 subcode)
{
	if (msg) {
		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
		msg->code = code;
		msg->subcode = subcode;
	}
}

246 247
static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
{
248
	struct hclge_vf_to_pf_msg send_msg;
249 250 251
	u8 resp_msg;
	int status;

252 253 254
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
				      sizeof(resp_msg));
255 256 257 258 259 260 261 262 263 264 265 266
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get TC info from PF failed %d",
			status);
		return status;
	}

	hdev->hw_tc_map = resp_msg;

	return 0;
}

267 268 269
static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
270
	struct hclge_vf_to_pf_msg send_msg;
271 272 273
	u8 resp_msg;
	int ret;

274 275 276 277
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
				   sizeof(u8));
278 279 280 281 282 283 284 285 286 287 288 289
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get port based vlan state failed %d",
			ret);
		return ret;
	}

	nic->port_base_vlan_state = resp_msg;

	return 0;
}

290
static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291
{
292
#define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 294 295 296
#define HCLGEVF_TQPS_ALLOC_OFFSET	0
#define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
#define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4

297
	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298
	struct hclge_vf_to_pf_msg send_msg;
299 300
	int status;

301 302
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 304 305 306 307 308 309 310
				      HCLGEVF_TQPS_RSS_INFO_LEN);
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp info from PF failed %d",
			status);
		return status;
	}

311 312 313 314 315 316
	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
	       sizeof(u16));
317 318 319 320 321 322 323

	return 0;
}

static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
{
#define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 325 326
#define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
#define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2

327
	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328
	struct hclge_vf_to_pf_msg send_msg;
329 330
	int ret;

331 332
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 334 335 336 337 338 339 340
				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp depth info from PF failed %d",
			ret);
		return ret;
	}

341 342 343 344
	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
	       sizeof(u16));
345 346 347 348

	return 0;
}

349 350 351
static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352
	struct hclge_vf_to_pf_msg send_msg;
353
	u16 qid_in_pf = 0;
354
	u8 resp_data[2];
355 356
	int ret;

357 358 359
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360
				   sizeof(resp_data));
361 362 363 364 365 366
	if (!ret)
		qid_in_pf = *(u16 *)resp_data;

	return qid_in_pf;
}

367 368
static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
{
369
	struct hclge_vf_to_pf_msg send_msg;
370
	u8 resp_msg[2];
371 372
	int ret;

373 374 375
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
				   sizeof(resp_msg));
376 377 378 379 380 381 382
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get the pf port media type failed %d",
			ret);
		return ret;
	}

383 384
	hdev->hw.mac.media_type = resp_msg[0];
	hdev->hw.mac.module_type = resp_msg[1];
385 386 387 388

	return 0;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
{
	struct hclgevf_tqp *tqp;
	int i;

	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
	if (!hdev->htqp)
		return -ENOMEM;

	tqp = hdev->htqp;

	for (i = 0; i < hdev->num_tqps; i++) {
		tqp->dev = &hdev->pdev->dev;
		tqp->index = i;

		tqp->q.ae_algo = &ae_algovf;
		tqp->q.buf_size = hdev->rx_buf_len;
407 408
		tqp->q.tx_desc_num = hdev->num_tx_desc;
		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 410 411 412 413 414 415 416 417 418 419 420 421 422

		/* need an extended offset to configure queues >=
		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
		 */
		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
			tqp->q.io_base = hdev->hw.io_base +
					 HCLGEVF_TQP_REG_OFFSET +
					 i * HCLGEVF_TQP_REG_SIZE;
		else
			tqp->q.io_base = hdev->hw.io_base +
					 HCLGEVF_TQP_REG_OFFSET +
					 HCLGEVF_TQP_EXT_REG_OFFSET +
					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
					 HCLGEVF_TQP_REG_SIZE;
423 424 425 426 427 428 429 430 431 432 433 434

		tqp++;
	}

	return 0;
}

static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo;
	u16 new_tqps = hdev->num_tqps;
435
	unsigned int i;
436
	u8 num_tc = 0;
437 438

	kinfo = &nic->kinfo;
439 440
	kinfo->num_tx_desc = hdev->num_tx_desc;
	kinfo->num_rx_desc = hdev->num_rx_desc;
441 442 443
	kinfo->rx_buf_len = hdev->rx_buf_len;
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
		if (hdev->hw_tc_map & BIT(i))
444
			num_tc++;
445

446 447 448 449
	num_tc = num_tc ? num_tc : 1;
	kinfo->tc_info.num_tc = num_tc;
	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
	new_tqps = kinfo->rss_size * num_tc;
450 451 452 453 454 455 456 457 458 459 460 461 462
	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);

	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
				  sizeof(struct hnae3_queue *), GFP_KERNEL);
	if (!kinfo->tqp)
		return -ENOMEM;

	for (i = 0; i < kinfo->num_tqps; i++) {
		hdev->htqp[i].q.handle = &hdev->nic;
		hdev->htqp[i].q.tqp_index = i;
		kinfo->tqp[i] = &hdev->htqp[i].q;
	}

463 464 465 466
	/* after init the max rss_size and tqps, adjust the default tqp numbers
	 * and rss size with the actual vector numbers
	 */
	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467
	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 469
				kinfo->rss_size);

470 471 472 473 474
	return 0;
}

static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
{
475
	struct hclge_vf_to_pf_msg send_msg;
476 477
	int status;

478 479
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 481 482 483 484 485 486
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed to fetch link status(%d) from PF", status);
}

void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
{
487
	struct hnae3_handle *rhandle = &hdev->roce;
488
	struct hnae3_handle *handle = &hdev->nic;
489
	struct hnae3_client *rclient;
490 491
	struct hnae3_client *client;

492 493 494
	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
		return;

495
	client = handle->client;
496
	rclient = hdev->roce_client;
497

498 499
	link_state =
		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500 501
	if (link_state != hdev->hw.mac.link) {
		client->ops->link_status_change(handle, !!link_state);
502 503
		if (rclient && rclient->ops->link_status_change)
			rclient->ops->link_status_change(rhandle, !!link_state);
504 505
		hdev->hw.mac.link = link_state;
	}
506 507

	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
508 509
}

510
static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
511
{
512 513 514 515
#define HCLGEVF_ADVERTISING	0
#define HCLGEVF_SUPPORTED	1

	struct hclge_vf_to_pf_msg send_msg;
516

517 518 519 520 521
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
	send_msg.data[0] = HCLGEVF_ADVERTISING;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	send_msg.data[0] = HCLGEVF_SUPPORTED;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
522 523
}

524 525 526 527 528 529 530 531
static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	int ret;

	nic->ae_algo = &ae_algovf;
	nic->pdev = hdev->pdev;
	nic->numa_node_mask = hdev->numa_node_mask;
532
	nic->flags |= HNAE3_SUPPORT_VF;
533 534 535 536 537 538 539 540 541 542

	ret = hclgevf_knic_setup(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
			ret);
	return ret;
}

static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
{
543 544 545 546 547 548
	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
		dev_warn(&hdev->pdev->dev,
			 "vector(vector_id %d) has been freed.\n", vector_id);
		return;
	}

549 550 551 552 553 554 555 556 557 558 559 560 561
	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
	hdev->num_msi_left += 1;
	hdev->num_msi_used -= 1;
}

static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
			      struct hnae3_vector_info *vector_info)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_vector_info *vector = vector_info;
	int alloc = 0;
	int i, j;

562
	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	vector_num = min(hdev->num_msi_left, vector_num);

	for (j = 0; j < vector_num; j++) {
		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
				vector->vector = pci_irq_vector(hdev->pdev, i);
				vector->io_addr = hdev->hw.io_base +
					HCLGEVF_VECTOR_REG_BASE +
					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
				hdev->vector_status[i] = 0;
				hdev->vector_irq[i] = vector->vector;

				vector++;
				alloc++;

				break;
			}
		}
	}
	hdev->num_msi_left -= alloc;
	hdev->num_msi_used += alloc;

	return alloc;
}

static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
{
	int i;

	for (i = 0; i < hdev->num_msi; i++)
		if (vector == hdev->vector_irq[i])
			return i;

	return -EINVAL;
}

599 600 601 602
static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
				    const u8 hfunc, const u8 *key)
{
	struct hclgevf_rss_config_cmd *req;
603
	unsigned int key_offset = 0;
604
	struct hclgevf_desc desc;
605
	int key_counts;
606 607 608
	int key_size;
	int ret;

609
	key_counts = HCLGEVF_RSS_KEY_SIZE;
610 611
	req = (struct hclgevf_rss_config_cmd *)desc.data;

612
	while (key_counts) {
613 614 615 616 617 618 619 620
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
					     false);

		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
		req->hash_config |=
			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);

621
		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
622 623 624
		memcpy(req->hash_key,
		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);

625 626
		key_counts -= key_size;
		key_offset++;
627 628 629 630 631 632 633 634 635 636 637 638
		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"Configure RSS config fail, status = %d\n",
				ret);
			return ret;
		}
	}

	return 0;
}

639 640 641 642 643 644 645 646 647 648
static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_KEY_SIZE;
}

static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
{
	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
	struct hclgevf_rss_indirection_table_cmd *req;
	struct hclgevf_desc desc;
649
	int rss_cfg_tbl_num;
650 651 652 653
	int status;
	int i, j;

	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
654 655
	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
			  HCLGEVF_RSS_CFG_TBL_SIZE;
656

657
	for (i = 0; i < rss_cfg_tbl_num; i++) {
658 659
		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
					     false);
660 661 662
		req->start_table_index =
			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
			req->rss_result[j] =
				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];

		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"VF failed(=%d) to set RSS indirection table\n",
				status);
			return status;
		}
	}

	return 0;
}

static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
{
	struct hclgevf_rss_tc_mode_cmd *req;
	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
	u16 tc_size[HCLGEVF_MAX_TC_NUM];
	struct hclgevf_desc desc;
	u16 roundup_size;
687
	unsigned int i;
688
	int status;
689 690 691 692 693 694 695 696 697 698 699 700 701 702

	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;

	roundup_size = roundup_pow_of_two(rss_size);
	roundup_size = ilog2(roundup_size);

	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
		tc_size[i] = roundup_size;
		tc_offset[i] = rss_size * i;
	}

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
703 704 705
		u16 mode = 0;

		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
P
Peng Li 已提交
706
			      (tc_valid[i] & 0x1));
707
		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
P
Peng Li 已提交
708
				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
709 710 711
		hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
			      tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
			      0x1);
712
		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
P
Peng Li 已提交
713
				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
714 715

		req->rss_tc_mode[i] = cpu_to_le16(mode);
716 717 718 719 720 721 722 723 724
	}
	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed(=%d) to set rss tc mode\n", status);

	return status;
}

J
Jian Shen 已提交
725 726 727 728 729 730
/* for revision 0x20, vf shared the same rss config with pf */
static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RSS_MBX_RESP_LEN	8
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
731
	struct hclge_vf_to_pf_msg send_msg;
J
Jian Shen 已提交
732 733 734 735
	u16 msg_num, hash_key_index;
	u8 index;
	int ret;

736
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
J
Jian Shen 已提交
737 738 739
	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
			HCLGEVF_RSS_MBX_RESP_LEN;
	for (index = 0; index < msg_num; index++) {
740 741
		send_msg.data[0] = index;
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
J
Jian Shen 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
					   HCLGEVF_RSS_MBX_RESP_LEN);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"VF get rss hash key from PF failed, ret=%d",
				ret);
			return ret;
		}

		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
		if (index == msg_num - 1)
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0],
			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
		else
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
	}

	return 0;
}

763 764
static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
			   u8 *hfunc)
765 766
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
767
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
J
Jian Shen 已提交
768
	int i, ret;
769

770
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
771 772 773 774 775 776 777 778 779 780 781 782 783
		/* Get hash algorithm */
		if (hfunc) {
			switch (rss_cfg->hash_algo) {
			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
				*hfunc = ETH_RSS_HASH_TOP;
				break;
			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
				*hfunc = ETH_RSS_HASH_XOR;
				break;
			default:
				*hfunc = ETH_RSS_HASH_UNKNOWN;
				break;
			}
784 785
		}

786
		/* Get the RSS Key required by the user */
787
		if (key)
788 789
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
J
Jian Shen 已提交
790 791 792 793 794 795 796 797 798 799
	} else {
		if (hfunc)
			*hfunc = ETH_RSS_HASH_TOP;
		if (key) {
			ret = hclgevf_get_rss_hash_key(hdev);
			if (ret)
				return ret;
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
800 801 802
	}

	if (indir)
803
		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
804 805
			indir[i] = rss_cfg->rss_indirection_tbl[i];

806
	return 0;
807 808 809
}

static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
810
			   const u8 *key, const u8 hfunc)
811 812 813
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
814 815
	int ret, i;

816
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
		/* Set the RSS Hash Key if specififed by the user */
		if (key) {
			switch (hfunc) {
			case ETH_RSS_HASH_TOP:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
				break;
			case ETH_RSS_HASH_XOR:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
				break;
			case ETH_RSS_HASH_NO_CHANGE:
				break;
			default:
				return -EINVAL;
			}

			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
						       key);
			if (ret)
				return ret;

			/* Update the shadow RSS key with user specified qids */
			memcpy(rss_cfg->rss_hash_key, key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
	}
844 845

	/* update the shadow RSS table with user specified qids */
846
	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
847 848 849 850 851 852
		rss_cfg->rss_indirection_tbl[i] = indir[i];

	/* update the hardware */
	return hclgevf_set_rss_indir_table(hdev);
}

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
{
	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;

	if (nfc->data & RXH_L4_B_2_3)
		hash_sets |= HCLGEVF_D_PORT_BIT;
	else
		hash_sets &= ~HCLGEVF_D_PORT_BIT;

	if (nfc->data & RXH_IP_SRC)
		hash_sets |= HCLGEVF_S_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_S_IP_BIT;

	if (nfc->data & RXH_IP_DST)
		hash_sets |= HCLGEVF_D_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_D_IP_BIT;

	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
		hash_sets |= HCLGEVF_V_TAG_BIT;

	return hash_sets;
}

878 879 880
static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
				      struct ethtool_rxnfc *nfc,
				      struct hclgevf_rss_input_tuple_cmd *req)
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 tuple_sets;

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		req->ipv4_tcp_en = tuple_sets;
		break;
	case TCP_V6_FLOW:
		req->ipv6_tcp_en = tuple_sets;
		break;
	case UDP_V4_FLOW:
		req->ipv4_udp_en = tuple_sets;
		break;
	case UDP_V6_FLOW:
		req->ipv6_udp_en = tuple_sets;
		break;
	case SCTP_V4_FLOW:
		req->ipv4_sctp_en = tuple_sets;
		break;
	case SCTP_V6_FLOW:
913 914
		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
915 916 917 918 919 920 921 922 923 924 925 926 927 928
			return -EINVAL;

		req->ipv6_sctp_en = tuple_sets;
		break;
	case IPV4_FLOW:
		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	case IPV6_FLOW:
		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	default:
		return -EINVAL;
	}

929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	return 0;
}

static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return -EOPNOTSUPP;

	if (nfc->data &
	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
		return -EINVAL;

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed to init rss tuple cmd, ret = %d\n", ret);
		return ret;
	}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Set rss tuple fail, status = %d\n", ret);
		return ret;
	}

	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
	return 0;
}

976 977
static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
					      int flow_type, u8 *tuple_sets)
978
{
979
	switch (flow_type) {
980
	case TCP_V4_FLOW:
981
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
982 983
		break;
	case UDP_V4_FLOW:
984
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
985 986
		break;
	case TCP_V6_FLOW:
987
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
988 989
		break;
	case UDP_V6_FLOW:
990
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
991 992
		break;
	case SCTP_V4_FLOW:
993
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
994 995
		break;
	case SCTP_V6_FLOW:
996
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
997 998 999
		break;
	case IPV4_FLOW:
	case IPV6_FLOW:
1000
		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1001 1002 1003 1004 1005
		break;
	default:
		return -EINVAL;
	}

1006 1007 1008 1009 1010 1011
	return 0;
}

static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
{
	u64 tuple_data = 0;
1012 1013

	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1014
		tuple_data |= RXH_L4_B_2_3;
1015
	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1016
		tuple_data |= RXH_L4_B_0_1;
1017
	if (tuple_sets & HCLGEVF_D_IP_BIT)
1018
		tuple_data |= RXH_IP_DST;
1019
	if (tuple_sets & HCLGEVF_S_IP_BIT)
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		tuple_data |= RXH_IP_SRC;

	return tuple_data;
}

static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 tuple_sets;
	int ret;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return -EOPNOTSUPP;

	nfc->data = 0;

	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
						 &tuple_sets);
	if (ret || !tuple_sets)
		return ret;

	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	return 0;
}

static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
				       struct hclgevf_rss_cfg *rss_cfg)
{
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Configure rss input fail, status = %d\n", ret);
	return ret;
}

1074 1075 1076 1077 1078 1079 1080 1081 1082
static int hclgevf_get_tc_size(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;

	return rss_cfg->rss_size;
}

static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1083
				       int vector_id,
1084 1085 1086
				       struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1087
	struct hclge_vf_to_pf_msg send_msg;
1088 1089
	struct hnae3_ring_chain_node *node;
	int status;
1090
	int i = 0;
1091

1092 1093
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1094
		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1095
	send_msg.vector_id = vector_id;
1096 1097

	for (node = ring_chain; node; node = node->next) {
1098
		send_msg.param[i].ring_type =
P
Peng Li 已提交
1099
				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1100 1101 1102 1103 1104 1105

		send_msg.param[i].tqp_index = node->tqp_index;
		send_msg.param[i].int_gl_index =
					hnae3_get_field(node->int_gl_idx,
							HNAE3_RING_GL_IDX_M,
							HNAE3_RING_GL_IDX_S);
1106 1107

		i++;
1108 1109
		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
			send_msg.ring_num = i;
1110

1111 1112
			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
						      NULL, 0);
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
			if (status) {
				dev_err(&hdev->pdev->dev,
					"Map TQP fail, status is %d.\n",
					status);
				return status;
			}
			i = 0;
		}
	}

	return 0;
}

static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
				      struct hnae3_ring_chain_node *ring_chain)
{
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

static int hclgevf_unmap_ring_from_vector(
				struct hnae3_handle *handle,
				int vector,
				struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret, vector_id;

1150 1151 1152
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
		return 0;

1153 1154 1155 1156 1157 1158 1159
	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

1160
	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1161
	if (ret)
1162 1163 1164 1165
		dev_err(&handle->pdev->dev,
			"Unmap ring from vector fail. vector=%d, ret =%d\n",
			vector_id,
			ret);
1166 1167 1168 1169 1170 1171 1172

	return ret;
}

static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1173 1174 1175 1176 1177 1178 1179 1180 1181
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"hclgevf_put_vector get vector index fail. ret =%d\n",
			vector_id);
		return vector_id;
	}
1182

1183
	hclgevf_free_vector(hdev, vector_id);
1184 1185 1186 1187

	return 0;
}

1188
static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1189
					bool en_uc_pmc, bool en_mc_pmc,
1190
					bool en_bc_pmc)
1191
{
1192
	struct hnae3_handle *handle = &hdev->nic;
1193
	struct hclge_vf_to_pf_msg send_msg;
1194
	int ret;
1195

1196 1197 1198 1199 1200
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
	send_msg.en_bc = en_bc_pmc ? 1 : 0;
	send_msg.en_uc = en_uc_pmc ? 1 : 0;
	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1201 1202
	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
					     &handle->priv_flags) ? 1 : 0;
1203 1204

	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1205
	if (ret)
1206
		dev_err(&hdev->pdev->dev,
1207
			"Set promisc mode fail, status is %d.\n", ret);
1208

1209
	return ret;
1210 1211
}

1212 1213
static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
				    bool en_mc_pmc)
1214
{
1215 1216 1217
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	bool en_bc_pmc;

1218
	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1219 1220 1221

	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
					    en_bc_pmc);
1222 1223
}

1224 1225 1226 1227 1228
static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1229
	hclgevf_task_schedule(hdev, 0);
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
}

static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *handle = &hdev->nic;
	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
	int ret;

	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
		if (!ret)
			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
	}
}

1246 1247
static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
				       u16 stream_id, bool enable)
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
{
	struct hclgevf_cfg_com_tqp_queue_cmd *req;
	struct hclgevf_desc desc;

	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
				     false);
	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
	req->stream_id = cpu_to_le16(stream_id);
1258 1259
	if (enable)
		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1260

1261 1262
	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
}
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;
	u16 i;

	for (i = 0; i < handle->kinfo.num_tqps; i++) {
		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
		if (ret)
			return ret;
	}

	return 0;
1277 1278 1279 1280
}

static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
{
1281
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1282 1283 1284
	struct hclgevf_tqp *tqp;
	int i;

1285 1286
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1287 1288 1289 1290
		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
	}
}

1291 1292
static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
{
1293
	struct hclge_vf_to_pf_msg send_msg;
1294 1295 1296
	u8 host_mac[ETH_ALEN];
	int status;

1297 1298 1299
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
				      ETH_ALEN);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	if (status) {
		dev_err(&hdev->pdev->dev,
			"fail to get VF MAC from host %d", status);
		return status;
	}

	ether_addr_copy(p, host_mac);

	return 0;
}

1311 1312 1313
static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1314
	u8 host_mac_addr[ETH_ALEN];
1315

1316 1317 1318 1319 1320 1321 1322 1323
	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
		return;

	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
	if (hdev->has_pf_mac)
		ether_addr_copy(p, host_mac_addr);
	else
		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1324 1325
}

1326 1327
static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
				bool is_first)
1328 1329 1330
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1331
	struct hclge_vf_to_pf_msg send_msg;
1332 1333 1334
	u8 *new_mac_addr = (u8 *)p;
	int status;

1335
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1336
	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1337
	ether_addr_copy(send_msg.data, new_mac_addr);
1338 1339 1340 1341
	if (is_first && !hdev->has_pf_mac)
		eth_zero_addr(&send_msg.data[ETH_ALEN]);
	else
		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1342
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1343 1344 1345 1346 1347 1348
	if (!status)
		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);

	return status;
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node)
		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
			return mac_node;

	return NULL;
}

static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_NODE_STATE state)
{
	switch (state) {
	/* from set_rx_mode or tmp_add_list */
	case HCLGEVF_MAC_TO_ADD:
		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	/* only from set_rx_mode */
	case HCLGEVF_MAC_TO_DEL:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
		}
		break;
	/* only from tmp_add_list, the mac_node->state won't be
	 * HCLGEVF_MAC_ACTIVE
	 */
	case HCLGEVF_MAC_ACTIVE:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	}
}

static int hclgevf_update_mac_list(struct hnae3_handle *handle,
				   enum HCLGEVF_MAC_NODE_STATE state,
				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
				   const unsigned char *addr)
1393 1394
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1395 1396
	struct hclgevf_mac_addr_node *mac_node;
	struct list_head *list;
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	/* if the mac addr is already in the mac list, no need to add a new
	 * one into it, just check the mac addr state, convert it to a new
	 * new state, or just remove it, or do nothing.
	 */
	mac_node = hclgevf_find_mac_node(list, addr);
	if (mac_node) {
		hclgevf_update_mac_node(mac_node, state);
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return 0;
	}
	/* if this address is never added, unnecessary to delete */
	if (state == HCLGEVF_MAC_TO_DEL) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOENT;
	}

	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
	if (!mac_node) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOMEM;
	}

	mac_node->state = state;
	ether_addr_copy(mac_node->mac_addr, addr);
	list_add_tail(&mac_node->node, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
	return 0;
}

static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_UC, addr);
1438 1439 1440 1441 1442
}

static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1443 1444
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_UC, addr);
1445 1446 1447 1448 1449
}

static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
1450 1451
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_MC, addr);
1452 1453 1454 1455 1456
}

static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1457 1458 1459 1460 1461 1462 1463 1464
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_MC, addr);
}

static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
				    struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
1465
	struct hclge_vf_to_pf_msg send_msg;
1466
	u8 code, subcode;
1467

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
		code = HCLGE_MBX_SET_UNICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
	} else {
		code = HCLGE_MBX_SET_MULTICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
	}

	hclgevf_build_send_msg(&send_msg, code, subcode);
	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1484
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1485 1486
}

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
				    struct list_head *list,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;
	int ret;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
		if  (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to configure mac %pM, state = %d, ret = %d\n",
				mac_node->mac_addr, mac_node->state, ret);
			return;
		}
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_add_list(struct list_head *add_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
		/* if the mac address from tmp_add_list is not in the
		 * uc/mc_mac_list, it means have received a TO_DEL request
		 * during the time window of sending mac config request to PF
		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
		 * then it will be removed at next time. If is TO_ADD, it means
		 * send TO_ADD request failed, so just remove the mac node.
		 */
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			hclgevf_update_mac_node(new_node, mac_node->state);
			list_del(&mac_node->node);
			kfree(mac_node);
		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, mac_list);
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_del_list(struct list_head *del_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			/* If the mac addr is exist in the mac list, it means
			 * received a new request TO_ADD during the time window
			 * of sending mac addr configurrequest to PF, so just
			 * change the mac state to ACTIVE.
			 */
			new_node->state = HCLGEVF_MAC_ACTIVE;
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, mac_list);
		}
	}
}

static void hclgevf_clear_list(struct list_head *list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		list_del(&mac_node->node);
		kfree(mac_node);
	}
}

static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
	struct list_head tmp_add_list, tmp_del_list;
	struct list_head *list;

	INIT_LIST_HEAD(&tmp_add_list);
	INIT_LIST_HEAD(&tmp_del_list);

	/* move the mac addr to the tmp_add_list and tmp_del_list, then
	 * we can add/delete these mac addr outside the spin lock
	 */
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		switch (mac_node->state) {
		case HCLGEVF_MAC_TO_DEL:
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, &tmp_del_list);
			break;
		case HCLGEVF_MAC_TO_ADD:
			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
			if (!new_node)
				goto stop_traverse;

			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
			new_node->state = mac_node->state;
			list_add_tail(&new_node->node, &tmp_add_list);
			break;
		default:
			break;
		}
	}

stop_traverse:
	spin_unlock_bh(&hdev->mac_table.mac_list_lock);

	/* delete first, in order to get max mac table space for adding */
	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);

	/* if some mac addresses were added/deleted fail, move back to the
	 * mac_list, and retry at next time.
	 */
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_sync_from_del_list(&tmp_del_list, list);
	hclgevf_sync_from_add_list(&tmp_add_list, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
{
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
}

static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
{
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

1645 1646 1647 1648
static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
				   __be16 proto, u16 vlan_id,
				   bool is_kill)
{
1649 1650 1651 1652
#define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
#define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
#define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3

1653
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1654
	struct hclge_vf_to_pf_msg send_msg;
1655
	int ret;
1656

1657
	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1658 1659 1660 1661 1662
		return -EINVAL;

	if (proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

1663 1664
	/* When device is resetting or reset failed, firmware is unable to
	 * handle mailbox. Just record the vlan id, and remove it after
1665 1666
	 * reset finished.
	 */
1667 1668
	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1669 1670 1671 1672
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
		return -EBUSY;
	}

1673 1674 1675 1676 1677 1678 1679
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_FILTER);
	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
	       sizeof(vlan_id));
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
	       sizeof(proto));
G
Guojia Liao 已提交
1680
	/* when remove hw vlan filter failed, record the vlan id,
1681 1682 1683
	 * and try to remove it from hw later, to be consistence
	 * with stack.
	 */
1684
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	if (is_kill && ret)
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);

	return ret;
}

static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_SYNC_COUNT	60
	struct hnae3_handle *handle = &hdev->nic;
	int ret, sync_cnt = 0;
	u16 vlan_id;

	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	while (vlan_id != VLAN_N_VID) {
		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
					      vlan_id, true);
		if (ret)
			return;

		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
		sync_cnt++;
		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
			return;

		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	}
1712 1713
}

1714 1715 1716
static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1717
	struct hclge_vf_to_pf_msg send_msg;
1718

1719 1720 1721 1722
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_RX_OFF_CFG);
	send_msg.data[0] = enable ? 1 : 0;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1723 1724
}

1725
static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1726
{
1727
#define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1728
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1729
	struct hclge_vf_to_pf_msg send_msg;
1730
	u8 return_status = 0;
1731
	int ret;
1732
	u16 i;
1733

1734
	/* disable vf queue before send queue reset msg to PF */
1735 1736 1737 1738
	ret = hclgevf_tqp_enable(handle, false);
	if (ret) {
		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
			ret);
1739
		return ret;
1740
	}
1741

1742
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
				   sizeof(return_status));
	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
		return ret;

	for (i = 1; i < handle->kinfo.num_tqps; i++) {
		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
		memcpy(send_msg.data, &i, sizeof(i));
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
		if (ret)
			return ret;
	}

	return 0;
1758 1759
}

1760 1761 1762
static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1763
	struct hclge_vf_to_pf_msg send_msg;
1764

1765 1766 1767
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1768 1769
}

1770 1771 1772 1773 1774
static int hclgevf_notify_client(struct hclgevf_dev *hdev,
				 enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->nic_client;
	struct hnae3_handle *handle = &hdev->nic;
1775
	int ret;
1776

1777 1778 1779 1780
	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
	    !client)
		return 0;

1781 1782 1783
	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

1784 1785 1786 1787 1788 1789
	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
			type, ret);

	return ret;
1790 1791
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
				      enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->roce_client;
	struct hnae3_handle *handle = &hdev->roce;
	int ret;

	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
		return 0;

	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
			type, ret);
	return ret;
}

1812 1813
static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
{
1814 1815 1816 1817 1818 1819 1820
#define HCLGEVF_RESET_WAIT_US	20000
#define HCLGEVF_RESET_WAIT_CNT	2000
#define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)

	u32 val;
	int ret;
1821

1822
	if (hdev->reset_type == HNAE3_VF_RESET)
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_VF_RST_ING, val,
					 !(val & HCLGEVF_VF_RST_ING_BIT),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
	else
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_RST_ING, val,
					 !(val & HCLGEVF_RST_ING_BITS),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1834 1835

	/* hardware completion status should be available by this time */
1836 1837
	if (ret) {
		dev_err(&hdev->pdev->dev,
1838
			"couldn't get reset done status from h/w, timeout!\n");
1839
		return ret;
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	}

	/* we will wait a bit more to let reset of the stack to complete. This
	 * might happen in case reset assertion was made by PF. Yes, this also
	 * means we might end up waiting bit more even for VF reset.
	 */
	msleep(5000);

	return 0;
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
{
	u32 reg_val;

	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
	if (enable)
		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
	else
		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;

	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
			  reg_val);
}

1865 1866
static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
{
1867 1868
	int ret;

1869
	/* uninitialize the nic client */
1870 1871 1872
	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1873

1874
	/* re-initialize the hclge device */
1875
	ret = hclgevf_reset_hdev(hdev);
1876 1877 1878 1879 1880
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"hclge device re-init failed, VF is disabled!\n");
		return ret;
	}
1881 1882

	/* bring up the nic client again */
1883 1884 1885
	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;
1886

1887 1888 1889
	/* clear handshake status with IMP */
	hclgevf_reset_handshake(hdev, false);

1890 1891
	/* bring up the nic to enable TX/RX again */
	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1892 1893
}

1894 1895
static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
{
1896 1897
#define HCLGEVF_RESET_SYNC_TIME 100

1898
	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1899 1900 1901
		struct hclge_vf_to_pf_msg send_msg;
		int ret;

1902 1903
		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1904 1905 1906 1907 1908
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to assert VF reset, ret = %d\n", ret);
			return ret;
		}
1909
		hdev->rst_stats.vf_func_rst_cnt++;
1910 1911
	}

1912
	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1913 1914
	/* inform hardware that preparatory work is done */
	msleep(HCLGEVF_RESET_SYNC_TIME);
1915
	hclgevf_reset_handshake(hdev, true);
1916 1917
	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
		 hdev->reset_type);
1918

1919
	return 0;
1920 1921
}

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
{
	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
		 hdev->rst_stats.vf_func_rst_cnt);
	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
		 hdev->rst_stats.flr_rst_cnt);
	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
		 hdev->rst_stats.vf_rst_cnt);
	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
		 hdev->rst_stats.rst_done_cnt);
	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
		 hdev->rst_stats.hw_rst_done_cnt);
	dev_info(&hdev->pdev->dev, "reset count: %u\n",
		 hdev->rst_stats.rst_cnt);
	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
		 hdev->rst_stats.rst_fail_cnt);
	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1941
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1942 1943 1944 1945 1946 1947 1948
	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
}

1949 1950
static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
{
1951 1952
	/* recover handshake status with IMP when reset fail */
	hclgevf_reset_handshake(hdev, true);
1953
	hdev->rst_stats.rst_fail_cnt++;
1954
	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1955 1956 1957 1958 1959 1960 1961 1962
		hdev->rst_stats.rst_fail_cnt);

	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
		set_bit(hdev->reset_type, &hdev->reset_pending);

	if (hclgevf_is_reset_pending(hdev)) {
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		hclgevf_reset_task_schedule(hdev);
1963
	} else {
1964
		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1965
		hclgevf_dump_rst_info(hdev);
1966 1967 1968
	}
}

1969
static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1970 1971 1972
{
	int ret;

1973
	hdev->rst_stats.rst_cnt++;
1974

1975 1976 1977 1978 1979
	/* perform reset of the stack & ae device for a client */
	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;

1980
	rtnl_lock();
1981
	/* bring down the nic to stop any ongoing TX/RX */
1982
	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1983
	rtnl_unlock();
1984
	if (ret)
1985
		return ret;
1986

1987 1988 1989 1990 1991 1992
	return hclgevf_reset_prepare_wait(hdev);
}

static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
{
	int ret;
1993

1994
	hdev->rst_stats.hw_rst_done_cnt++;
1995 1996 1997
	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1998

1999
	rtnl_lock();
G
Guojia Liao 已提交
2000
	/* now, re-initialize the nic client and ae device */
2001
	ret = hclgevf_reset_stack(hdev);
2002
	rtnl_unlock();
2003
	if (ret) {
2004
		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2005
		return ret;
2006
	}
2007

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
	 * times
	 */
	if (ret &&
	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
		return ret;

	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
	if (ret)
		return ret;

2020
	hdev->last_reset_time = jiffies;
2021
	hdev->rst_stats.rst_done_cnt++;
2022
	hdev->rst_stats.rst_fail_cnt = 0;
2023
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
	return 0;
}

static void hclgevf_reset(struct hclgevf_dev *hdev)
{
	if (hclgevf_reset_prepare(hdev))
		goto err_reset;

	/* check if VF could successfully fetch the hardware reset completion
	 * status from the hardware
	 */
	if (hclgevf_reset_wait(hdev)) {
		/* can't do much in this situation, will disable VF */
		dev_err(&hdev->pdev->dev,
			"failed to fetch H/W reset completion status\n");
		goto err_reset;
	}

	if (hclgevf_reset_rebuild(hdev))
		goto err_reset;

	return;

2048
err_reset:
2049
	hclgevf_reset_err_handle(hdev);
2050 2051
}

2052 2053 2054 2055 2056
static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
						     unsigned long *addr)
{
	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;

2057
	/* return the highest priority reset level amongst all */
2058 2059 2060 2061 2062 2063
	if (test_bit(HNAE3_VF_RESET, addr)) {
		rst_level = HNAE3_VF_RESET;
		clear_bit(HNAE3_VF_RESET, addr);
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2064 2065 2066
		rst_level = HNAE3_VF_FULL_RESET;
		clear_bit(HNAE3_VF_FULL_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2067 2068 2069 2070
	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_PF_FUNC_RESET;
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2071 2072 2073
	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_FUNC_RESET;
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2074 2075 2076
	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
		rst_level = HNAE3_FLR_RESET;
		clear_bit(HNAE3_FLR_RESET, addr);
2077 2078 2079 2080 2081
	}

	return rst_level;
}

2082 2083
static void hclgevf_reset_event(struct pci_dev *pdev,
				struct hnae3_handle *handle)
2084
{
2085 2086
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	struct hclgevf_dev *hdev = ae_dev->priv;
2087 2088 2089

	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");

2090
	if (hdev->default_reset_request)
2091
		hdev->reset_level =
2092 2093 2094
			hclgevf_get_reset_level(hdev,
						&hdev->default_reset_request);
	else
2095
		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2096

2097 2098 2099
	/* reset of this VF requested */
	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
	hclgevf_reset_task_schedule(hdev);
2100

2101
	hdev->last_reset_time = jiffies;
2102 2103
}

2104 2105 2106 2107 2108 2109 2110 2111
static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
					  enum hnae3_reset_type rst_type)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	set_bit(rst_type, &hdev->default_reset_request);
}

2112 2113 2114 2115 2116
static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
{
	writel(en ? 1 : 0, vector->addr);
}

2117 2118
static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
					  enum hnae3_reset_type rst_type)
2119
{
2120 2121
#define HCLGEVF_RESET_RETRY_WAIT_MS	500
#define HCLGEVF_RESET_RETRY_CNT		5
2122

2123
	struct hclgevf_dev *hdev = ae_dev->priv;
2124 2125
	int retry_cnt = 0;
	int ret;
2126

2127 2128 2129
retry:
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2130
	hdev->reset_type = rst_type;
2131 2132
	ret = hclgevf_reset_prepare(hdev);
	if (ret) {
2133
		dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n",
2134 2135
			ret);
		if (hdev->reset_pending ||
2136
		    retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2137 2138 2139 2140 2141
			dev_err(&hdev->pdev->dev,
				"reset_pending:0x%lx, retry_cnt:%d\n",
				hdev->reset_pending, retry_cnt);
			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
			up(&hdev->reset_sem);
2142
			msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2143 2144 2145
			goto retry;
		}
	}
2146

2147
	/* disable misc vector before reset done */
2148
	hclgevf_enable_vector(&hdev->misc_vector, false);
2149 2150 2151

	if (hdev->reset_type == HNAE3_FLR_RESET)
		hdev->rst_stats.flr_rst_cnt++;
2152
}
2153

2154
static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	hclgevf_enable_vector(&hdev->misc_vector, true);

	ret = hclgevf_reset_rebuild(hdev);
	if (ret)
		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
			 ret);

	hdev->reset_type = HNAE3_NONE_RESET;
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	up(&hdev->reset_sem);
2169 2170
}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->fw_version;
}

static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
{
	struct hclgevf_misc_vector *vector = &hdev->misc_vector;

	vector->vector_irq = pci_irq_vector(hdev->pdev,
					    HCLGEVF_MISC_VECTOR_NUM);
	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
	/* vector status always valid for Vector 0 */
	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;

	hdev->num_msi_left -= 1;
	hdev->num_msi_used += 1;
}

2193 2194
void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
{
2195 2196 2197
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
			      &hdev->state))
2198
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2199 2200
}

2201
void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2202
{
2203 2204 2205
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
			      &hdev->state))
2206
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2207 2208
}

2209 2210
static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
				  unsigned long delay)
2211
{
2212 2213
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2214
		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2215 2216
}

2217
static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2218
{
2219 2220
#define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3

2221
	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2222 2223
		return;

2224 2225
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2226

2227 2228
	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
			       &hdev->reset_state)) {
2229
		/* PF has intimated that it is about to reset the hardware.
2230 2231 2232
		 * We now have to poll & check if hardware has actually
		 * completed the reset sequence. On hardware reset completion,
		 * VF needs to reset the client and ae device.
2233 2234 2235
		 */
		hdev->reset_attempts = 0;

2236 2237 2238
		hdev->last_reset_time = jiffies;
		while ((hdev->reset_type =
			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2239 2240
		       != HNAE3_NONE_RESET)
			hclgevf_reset(hdev);
2241 2242 2243
	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
				      &hdev->reset_state)) {
		/* we could be here when either of below happens:
2244
		 * 1. reset was initiated due to watchdog timeout caused by
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
		 *    a. IMP was earlier reset and our TX got choked down and
		 *       which resulted in watchdog reacting and inducing VF
		 *       reset. This also means our cmdq would be unreliable.
		 *    b. problem in TX due to other lower layer(example link
		 *       layer not functioning properly etc.)
		 * 2. VF reset might have been initiated due to some config
		 *    change.
		 *
		 * NOTE: Theres no clear way to detect above cases than to react
		 * to the response of PF for this reset request. PF will ack the
		 * 1b and 2. cases but we will not get any intimation about 1a
		 * from PF as cmdq would be in unreliable state i.e. mailbox
		 * communication between PF and VF would be broken.
G
Guojia Liao 已提交
2258 2259
		 *
		 * if we are never geting into pending state it means either:
2260 2261 2262 2263 2264 2265
		 * 1. PF is not receiving our request which could be due to IMP
		 *    reset
		 * 2. PF is screwed
		 * We cannot do much for 2. but to check first we can try reset
		 * our PCIe + stack and see if it alleviates the problem.
		 */
2266
		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2267
			/* prepare for full reset of stack + pcie interface */
2268
			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2269 2270 2271 2272 2273 2274

			/* "defer" schedule the reset task again */
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		} else {
			hdev->reset_attempts++;

2275 2276
			set_bit(hdev->reset_level, &hdev->reset_pending);
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2277
		}
2278
		hclgevf_reset_task_schedule(hdev);
2279
	}
2280

2281
	hdev->reset_type = HNAE3_NONE_RESET;
2282
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2283
	up(&hdev->reset_sem);
2284 2285
}

2286
static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2287
{
2288 2289
	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
		return;
2290 2291 2292 2293

	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
		return;

2294
	hclgevf_mbx_async_handler(hdev);
2295 2296 2297 2298

	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
}

2299
static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2300
{
2301
	struct hclge_vf_to_pf_msg send_msg;
2302 2303
	int ret;

2304
	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2305 2306
		return;

2307 2308
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2309 2310 2311 2312 2313
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF sends keep alive cmd failed(=%d)\n", ret);
}

2314
static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2315
{
2316 2317
	unsigned long delta = round_jiffies_relative(HZ);
	struct hnae3_handle *handle = &hdev->nic;
2318

2319 2320 2321
	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
		return;

2322 2323
	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
		delta = jiffies - hdev->last_serv_processed;
2324

2325 2326 2327 2328
		if (delta < round_jiffies_relative(HZ)) {
			delta = round_jiffies_relative(HZ) - delta;
			goto out;
		}
2329
	}
2330

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	hdev->serv_processed_cnt++;
	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
		hclgevf_keep_alive(hdev);

	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
		hdev->last_serv_processed = jiffies;
		goto out;
	}

	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
		hclgevf_tqps_update_stats(handle);

2343 2344
	/* VF does not need to request link status when this bit is set, because
	 * PF will push its link status to VFs when link status changed.
2345
	 */
2346 2347
	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
		hclgevf_request_link_info(hdev);
2348

2349 2350
	hclgevf_update_link_mode(hdev);

2351 2352
	hclgevf_sync_vlan_filter(hdev);

2353 2354
	hclgevf_sync_mac_table(hdev);

2355 2356
	hclgevf_sync_promisc_mode(hdev);

2357
	hdev->last_serv_processed = jiffies;
2358

2359 2360 2361 2362 2363 2364 2365 2366
out:
	hclgevf_task_schedule(hdev, delta);
}

static void hclgevf_service_task(struct work_struct *work)
{
	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
						service_task.work);
2367

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
	hclgevf_periodic_service_task(hdev);

	/* Handle reset and mbx again in case periodical task delays the
	 * handling by calling hclgevf_task_schedule() in
	 * hclgevf_periodic_service_task()
	 */
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
2378 2379 2380 2381 2382 2383 2384
}

static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
{
	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
}

2385 2386
static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
						      u32 *clearval)
2387
{
2388
	u32 val, cmdq_stat_reg, rst_ing_reg;
2389 2390

	/* fetch the events from their corresponding regs */
2391
	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2392
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2393
	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2394 2395 2396 2397 2398
		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
		dev_info(&hdev->pdev->dev,
			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2399
		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2400
		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2401
		hdev->rst_stats.vf_rst_cnt++;
2402 2403 2404 2405 2406 2407
		/* set up VF hardware reset status, its PF will clear
		 * this status when PF has initialized done.
		 */
		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
				  val | HCLGEVF_VF_RST_ING_BIT);
2408 2409 2410
		return HCLGEVF_VECTOR0_EVENT_RST;
	}

2411
	/* check for vector0 mailbox(=CMDQ RX) event source */
2412 2413 2414 2415 2416 2417 2418 2419
	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
		/* for revision 0x21, clearing interrupt is writing bit 0
		 * to the clear register, writing bit 1 means to keep the
		 * old value.
		 * for revision 0x20, the clear register is a read & write
		 * register, so we should just write 0 to the bit we are
		 * handling, and keep other bits as cmdq_stat_reg.
		 */
2420
		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2421 2422 2423 2424 2425
			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
		else
			*clearval = cmdq_stat_reg &
				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);

2426
		return HCLGEVF_VECTOR0_EVENT_MBX;
2427 2428
	}

2429 2430 2431 2432
	/* print other vector0 event source */
	dev_info(&hdev->pdev->dev,
		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
		 cmdq_stat_reg);
2433

2434
	return HCLGEVF_VECTOR0_EVENT_OTHER;
2435 2436 2437 2438
}

static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
{
2439
	enum hclgevf_evt_cause event_cause;
2440 2441 2442 2443
	struct hclgevf_dev *hdev = data;
	u32 clearval;

	hclgevf_enable_vector(&hdev->misc_vector, false);
2444
	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2445

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	switch (event_cause) {
	case HCLGEVF_VECTOR0_EVENT_RST:
		hclgevf_reset_task_schedule(hdev);
		break;
	case HCLGEVF_VECTOR0_EVENT_MBX:
		hclgevf_mbx_handler(hdev);
		break;
	default:
		break;
	}
2456

2457 2458 2459 2460
	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
		hclgevf_clear_event_cause(hdev, clearval);
		hclgevf_enable_vector(&hdev->misc_vector, true);
	}
2461 2462 2463 2464 2465 2466 2467 2468

	return IRQ_HANDLED;
}

static int hclgevf_configure(struct hclgevf_dev *hdev)
{
	int ret;

2469 2470 2471 2472 2473
	/* get current port based vlan state from PF */
	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
	if (ret)
		return ret;

2474
	/* get queue configuration from PF */
2475
	ret = hclgevf_get_queue_info(hdev);
2476 2477
	if (ret)
		return ret;
2478 2479 2480 2481 2482 2483

	/* get queue depth info from PF */
	ret = hclgevf_get_queue_depth(hdev);
	if (ret)
		return ret;

2484 2485 2486 2487
	ret = hclgevf_get_pf_media_type(hdev);
	if (ret)
		return ret;

2488 2489 2490 2491
	/* get tc configuration from PF */
	return hclgevf_get_tc_info(hdev);
}

2492 2493 2494
static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
2495
	struct hclgevf_dev *hdev;
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
	if (!hdev)
		return -ENOMEM;

	hdev->pdev = pdev;
	hdev->ae_dev = ae_dev;
	ae_dev->priv = hdev;

	return 0;
}

2508 2509 2510 2511 2512
static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *roce = &hdev->roce;
	struct hnae3_handle *nic = &hdev->nic;

2513
	roce->rinfo.num_vectors = hdev->num_roce_msix;
2514 2515 2516 2517 2518

	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
	    hdev->num_msi_left == 0)
		return -EINVAL;

2519
	roce->rinfo.base_vector = hdev->roce_base_vector;
2520 2521 2522

	roce->rinfo.netdev = nic->kinfo.netdev;
	roce->rinfo.roce_io_base = hdev->hw.io_base;
2523
	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2524 2525 2526 2527 2528 2529 2530 2531

	roce->pdev = nic->pdev;
	roce->ae_algo = nic->ae_algo;
	roce->numa_node_mask = nic->numa_node_mask;

	return 0;
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
{
	struct hclgevf_cfg_gro_status_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	if (!hnae3_dev_gro_supported(hdev))
		return 0;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
				     false);
	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;

2545
	req->gro_en = en ? 1 : 0;
2546 2547 2548 2549 2550 2551 2552 2553 2554

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF GRO hardware config cmd failed, ret = %d.\n", ret);

	return ret;
}

2555
static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2556
{
2557
	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2558
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2559
	struct hclgevf_rss_tuple_cfg *tuple_sets;
2560
	u32 i;
2561

2562
	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2563
	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2564
	tuple_sets = &rss_cfg->rss_tuple_sets;
2565
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2566 2567
		u8 *rss_ind_tbl;

2568
		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2569 2570 2571 2572 2573 2574 2575

		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
					   sizeof(*rss_ind_tbl), GFP_KERNEL);
		if (!rss_ind_tbl)
			return -ENOMEM;

		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2576 2577
		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
		       HCLGEVF_RSS_KEY_SIZE);
2578

2579 2580 2581 2582 2583 2584
		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2585 2586 2587 2588
		tuple_sets->ipv6_sctp_en =
			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2589 2590 2591 2592
		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
	}

	/* Initialize RSS indirect table */
2593
	for (i = 0; i < rss_ind_tbl_size; i++)
2594
		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2595 2596

	return 0;
2597 2598 2599 2600 2601 2602 2603
}

static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
{
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	int ret;

2604
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2605 2606 2607 2608
		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
					       rss_cfg->rss_hash_key);
		if (ret)
			return ret;
2609 2610 2611 2612

		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
		if (ret)
			return ret;
2613 2614
	}

2615 2616 2617 2618
	ret = hclgevf_set_rss_indir_table(hdev);
	if (ret)
		return ret;

2619
	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2620 2621 2622 2623 2624 2625 2626 2627
}

static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
{
	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
				       false);
}

2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
{
#define HCLGEVF_FLUSH_LINK_TIMEOUT	100000

	unsigned long last = hdev->serv_processed_cnt;
	int i = 0;

	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
	       last == hdev->serv_processed_cnt)
		usleep_range(1, 1);
}

2641 2642 2643 2644 2645
static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (enable) {
2646
		hclgevf_task_schedule(hdev, 0);
2647
	} else {
2648
		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2649 2650 2651 2652

		/* flush memory to make sure DOWN is seen by service task */
		smp_mb__before_atomic();
		hclgevf_flush_link_update(hdev);
2653 2654 2655
	}
}

2656 2657 2658 2659
static int hclgevf_ae_start(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

2660
	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2661
	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2662

2663 2664 2665 2666
	hclgevf_reset_tqp_stats(handle);

	hclgevf_request_link_info(hdev);

2667 2668
	hclgevf_update_link_mode(hdev);

2669 2670 2671 2672 2673 2674 2675
	return 0;
}

static void hclgevf_ae_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

2676 2677
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);

2678
	if (hdev->reset_type != HNAE3_VF_RESET)
2679
		hclgevf_reset_tqp(handle);
2680

2681
	hclgevf_reset_tqp_stats(handle);
2682
	hclgevf_update_link_status(hdev, 0);
2683 2684
}

2685 2686
static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
{
2687 2688 2689
#define HCLGEVF_STATE_ALIVE	1
#define HCLGEVF_STATE_NOT_ALIVE	0

2690
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2691
	struct hclge_vf_to_pf_msg send_msg;
2692

2693 2694 2695 2696
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
				HCLGEVF_STATE_NOT_ALIVE;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2697 2698 2699 2700
}

static int hclgevf_client_start(struct hnae3_handle *handle)
{
2701
	return hclgevf_set_alive(handle, true);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
}

static void hclgevf_client_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;

	ret = hclgevf_set_alive(handle, false);
	if (ret)
		dev_warn(&hdev->pdev->dev,
			 "%s failed %d\n", __func__, ret);
}

2715 2716 2717 2718
static void hclgevf_state_init(struct hclgevf_dev *hdev)
{
	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2719
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2720

2721
	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2722

2723
	mutex_init(&hdev->mbx_resp.mbx_mutex);
2724
	sema_init(&hdev->reset_sem, 1);
2725

2726 2727 2728 2729
	spin_lock_init(&hdev->mac_table.mac_list_lock);
	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);

2730 2731 2732 2733 2734 2735 2736
	/* bring the device down */
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
}

static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
{
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2737
	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2738

2739 2740
	if (hdev->service_task.work.func)
		cancel_delayed_work_sync(&hdev->service_task);
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
}

static int hclgevf_init_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int vectors;
	int i;

2751
	if (hnae3_dev_roce_supported(hdev))
2752 2753 2754 2755 2756
		vectors = pci_alloc_irq_vectors(pdev,
						hdev->roce_base_msix_offset + 1,
						hdev->num_msi,
						PCI_IRQ_MSIX);
	else
2757 2758
		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
						hdev->num_msi,
2759
						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2760 2761 2762 2763 2764 2765 2766 2767 2768

	if (vectors < 0) {
		dev_err(&pdev->dev,
			"failed(%d) to allocate MSI/MSI-X vectors\n",
			vectors);
		return vectors;
	}
	if (vectors < hdev->num_msi)
		dev_warn(&hdev->pdev->dev,
2769
			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2770 2771 2772 2773
			 hdev->num_msi, vectors);

	hdev->num_msi = vectors;
	hdev->num_msi_left = vectors;
2774

2775
	hdev->base_msi_vector = pdev->irq;
2776
	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
					   sizeof(u16), GFP_KERNEL);
	if (!hdev->vector_status) {
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	for (i = 0; i < hdev->num_msi; i++)
		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;

	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
					sizeof(int), GFP_KERNEL);
	if (!hdev->vector_irq) {
2791
		devm_kfree(&pdev->dev, hdev->vector_status);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	return 0;
}

static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

2803 2804
	devm_kfree(&pdev->dev, hdev->vector_status);
	devm_kfree(&pdev->dev, hdev->vector_irq);
2805 2806 2807 2808 2809
	pci_free_irq_vectors(pdev);
}

static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
{
2810
	int ret;
2811 2812 2813

	hclgevf_get_misc_vector(hdev);

2814 2815
	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
		 HCLGEVF_NAME, pci_name(hdev->pdev));
2816
	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2817
			  0, hdev->misc_vector.name, hdev);
2818 2819 2820 2821 2822 2823
	if (ret) {
		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
			hdev->misc_vector.vector_irq);
		return ret;
	}

2824 2825
	hclgevf_clear_event_cause(hdev, 0);

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
	/* enable misc. vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, true);

	return ret;
}

static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
{
	/* disable misc vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, false);
2836
	synchronize_irq(hdev->misc_vector.vector_irq);
2837 2838 2839 2840
	free_irq(hdev->misc_vector.vector_irq, hdev);
	hclgevf_free_vector(hdev, 0);
}

2841 2842 2843 2844 2845 2846
static void hclgevf_info_show(struct hclgevf_dev *hdev)
{
	struct device *dev = &hdev->pdev->dev;

	dev_info(dev, "VF info begin:\n");

2847 2848 2849 2850 2851 2852
	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
	dev_info(dev, "PF media type of this VF: %u\n",
2853 2854 2855 2856 2857
		 hdev->hw.mac.media_type);

	dev_info(dev, "VF info end.\n");
}

2858 2859 2860 2861
static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
					    struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
2862
	int rst_cnt = hdev->rst_stats.rst_cnt;
2863 2864 2865 2866 2867 2868 2869
	int ret;

	ret = client->ops->init_instance(&hdev->nic);
	if (ret)
		return ret;

	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2870 2871 2872 2873 2874 2875 2876 2877
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    rst_cnt != hdev->rst_stats.rst_cnt) {
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

		client->ops->uninit_instance(&hdev->nic, 0);
		return -EBUSY;
	}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	hnae3_set_client_init_flag(client, ae_dev, 1);

	if (netif_msg_drv(&hdev->nic))
		hclgevf_info_show(hdev);

	return 0;
}

static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
					     struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
	    !hdev->nic_client)
		return 0;

	ret = hclgevf_init_roce_base_info(hdev);
	if (ret)
		return ret;

	ret = client->ops->init_instance(&hdev->roce);
	if (ret)
		return ret;

2904
	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2905 2906 2907 2908 2909
	hnae3_set_client_init_flag(client, ae_dev, 1);

	return 0;
}

2910 2911
static int hclgevf_init_client_instance(struct hnae3_client *client,
					struct hnae3_ae_dev *ae_dev)
2912
{
2913
	struct hclgevf_dev *hdev = ae_dev->priv;
2914 2915 2916 2917 2918 2919 2920
	int ret;

	switch (client->type) {
	case HNAE3_CLIENT_KNIC:
		hdev->nic_client = client;
		hdev->nic.client = client;

2921
		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2922
		if (ret)
2923
			goto clear_nic;
2924

2925 2926 2927 2928
		ret = hclgevf_init_roce_client_instance(ae_dev,
							hdev->roce_client);
		if (ret)
			goto clear_roce;
2929

2930 2931
		break;
	case HNAE3_CLIENT_ROCE:
2932 2933 2934 2935
		if (hnae3_dev_roce_supported(hdev)) {
			hdev->roce_client = client;
			hdev->roce.client = client;
		}
2936

2937 2938 2939
		ret = hclgevf_init_roce_client_instance(ae_dev, client);
		if (ret)
			goto clear_roce;
2940

2941 2942 2943
		break;
	default:
		return -EINVAL;
2944 2945 2946
	}

	return 0;
2947 2948 2949 2950 2951 2952 2953 2954 2955

clear_nic:
	hdev->nic_client = NULL;
	hdev->nic.client = NULL;
	return ret;
clear_roce:
	hdev->roce_client = NULL;
	hdev->roce.client = NULL;
	return ret;
2956 2957
}

2958 2959
static void hclgevf_uninit_client_instance(struct hnae3_client *client,
					   struct hnae3_ae_dev *ae_dev)
2960
{
2961 2962
	struct hclgevf_dev *hdev = ae_dev->priv;

2963
	/* un-init roce, if it exists */
2964
	if (hdev->roce_client) {
2965
		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2966
		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2967 2968 2969
		hdev->roce_client = NULL;
		hdev->roce.client = NULL;
	}
2970 2971

	/* un-init nic/unic, if this was not called by roce client */
2972 2973
	if (client->ops->uninit_instance && hdev->nic_client &&
	    client->type != HNAE3_CLIENT_ROCE) {
2974 2975
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

2976
		client->ops->uninit_instance(&hdev->nic, 0);
2977 2978 2979
		hdev->nic_client = NULL;
		hdev->nic.client = NULL;
	}
2980 2981
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MEM_BAR		4

	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw = &hdev->hw;

	/* for device does not have device memory, return directly */
	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
		return 0;

	hw->mem_base = devm_ioremap_wc(&pdev->dev,
				       pci_resource_start(pdev,
							  HCLGEVF_MEM_BAR),
				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
	if (!hw->mem_base) {
2998
		dev_err(&pdev->dev, "failed to map device memory\n");
2999 3000 3001 3002 3003 3004
		return -EFAULT;
	}

	return 0;
}

3005 3006 3007 3008 3009 3010 3011 3012 3013
static int hclgevf_pci_init(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw;
	int ret;

	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable PCI device\n");
3014
		return ret;
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
	}

	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (ret) {
		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
		goto err_disable_device;
	}

	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
	if (ret) {
		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
		goto err_disable_device;
	}

	pci_set_master(pdev);
	hw = &hdev->hw;
	hw->hdev = hdev;
P
Peng Li 已提交
3032
	hw->io_base = pci_iomap(pdev, 2, 0);
3033 3034 3035 3036 3037 3038
	if (!hw->io_base) {
		dev_err(&pdev->dev, "can't map configuration register space\n");
		ret = -ENOMEM;
		goto err_clr_master;
	}

3039 3040 3041 3042
	ret = hclgevf_dev_mem_map(hdev);
	if (ret)
		goto err_unmap_io_base;

3043 3044
	return 0;

3045 3046
err_unmap_io_base:
	pci_iounmap(pdev, hdev->hw.io_base);
3047 3048 3049 3050 3051
err_clr_master:
	pci_clear_master(pdev);
	pci_release_regions(pdev);
err_disable_device:
	pci_disable_device(pdev);
3052

3053 3054 3055 3056 3057 3058 3059
	return ret;
}

static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

3060 3061 3062
	if (hdev->hw.mem_base)
		devm_iounmap(&pdev->dev, hdev->hw.mem_base);

3063 3064 3065 3066 3067 3068
	pci_iounmap(pdev, hdev->hw.io_base);
	pci_clear_master(pdev);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
{
	struct hclgevf_query_res_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"query vf resource failed, ret = %d.\n", ret);
		return ret;
	}

	req = (struct hclgevf_query_res_cmd *)desc.data;

3085
	if (hnae3_dev_roce_supported(hdev)) {
3086
		hdev->roce_base_msix_offset =
3087
		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3088 3089 3090
				HCLGEVF_MSIX_OFT_ROCEE_M,
				HCLGEVF_MSIX_OFT_ROCEE_S);
		hdev->num_roce_msix =
3091
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3092 3093
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);

3094 3095 3096
		/* nic's msix numbers is always equals to the roce's. */
		hdev->num_nic_msix = hdev->num_roce_msix;

3097 3098 3099 3100 3101 3102 3103
		/* VF should have NIC vectors and Roce vectors, NIC vectors
		 * are queued before Roce vectors. The offset is fixed to 64.
		 */
		hdev->num_msi = hdev->num_roce_msix +
				hdev->roce_base_msix_offset;
	} else {
		hdev->num_msi =
3104
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3105
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3106 3107 3108 3109 3110 3111 3112 3113 3114

		hdev->num_nic_msix = hdev->num_msi;
	}

	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
		dev_err(&hdev->pdev->dev,
			"Just %u msi resources, not enough for vf(min:2).\n",
			hdev->num_nic_msix);
		return -EINVAL;
3115 3116 3117 3118 3119
	}

	return 0;
}

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_NON_TSO_BD_NUM			8U

	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);

	ae_dev->dev_specs.max_non_tso_bd_num =
					HCLGEVF_MAX_NON_TSO_BD_NUM;
	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3130
	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3131
	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3132 3133 3134 3135 3136 3137 3138
}

static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
				    struct hclgevf_desc *desc)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct hclgevf_dev_specs_0_cmd *req0;
3139
	struct hclgevf_dev_specs_1_cmd *req1;
3140 3141

	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3142
	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3143 3144 3145 3146

	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
	ae_dev->dev_specs.rss_ind_tbl_size =
					le16_to_cpu(req0->rss_ind_tbl_size);
3147
	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3148
	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3149
	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3150
	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3151 3152
}

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
{
	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;

	if (!dev_specs->max_non_tso_bd_num)
		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
	if (!dev_specs->rss_ind_tbl_size)
		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	if (!dev_specs->rss_key_size)
		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3163 3164
	if (!dev_specs->max_int_gl)
		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3165 3166
	if (!dev_specs->max_frm_size)
		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3167 3168
}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
{
	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
	int ret;
	int i;

	/* set default specifications as devices lower than version V3 do not
	 * support querying specifications from firmware.
	 */
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
		hclgevf_set_default_dev_specs(hdev);
		return 0;
	}

	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
		hclgevf_cmd_setup_basic_desc(&desc[i],
					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
	}
	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
				     true);

	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
	if (ret)
		return ret;

	hclgevf_parse_dev_specs(hdev, desc);
3196
	hclgevf_check_dev_specs(hdev);
3197 3198 3199 3200

	return 0;
}

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret = 0;

	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		pci_set_master(pdev);
		ret = hclgevf_init_msi(hdev);
		if (ret) {
			dev_err(&pdev->dev,
				"failed(%d) to init MSI/MSI-X\n", ret);
			return ret;
		}

		ret = hclgevf_misc_irq_init(hdev);
		if (ret) {
			hclgevf_uninit_msi(hdev);
			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
				ret);
			return ret;
		}

		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	return ret;
}

3236 3237 3238 3239 3240 3241 3242 3243 3244
static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
{
	struct hclge_vf_to_pf_msg send_msg;

	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
			       HCLGE_MBX_VPORT_LIST_CLEAR);
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
}

3245
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3246
{
3247
	struct pci_dev *pdev = hdev->pdev;
3248 3249
	int ret;

3250 3251 3252 3253 3254 3255
	ret = hclgevf_pci_reset(hdev);
	if (ret) {
		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
		return ret;
	}

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	ret = hclgevf_cmd_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "cmd failed %d\n", ret);
		return ret;
	}

	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		return ret;
	}

3269 3270 3271 3272
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		return ret;

3273 3274 3275 3276 3277
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		return ret;
3278
	}
3279

3280 3281
	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
	dev_info(&hdev->pdev->dev, "Reset done\n");

	return 0;
}

static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret;

3292
	ret = hclgevf_pci_init(hdev);
3293
	if (ret)
3294 3295
		return ret;

3296
	ret = hclgevf_cmd_queue_init(hdev);
3297
	if (ret)
3298 3299
		goto err_cmd_queue_init;

3300 3301 3302 3303 3304 3305
	ret = hclgevf_cmd_init(hdev);
	if (ret)
		goto err_cmd_init;

	/* Get vf resource */
	ret = hclgevf_query_vf_resource(hdev);
3306
	if (ret)
3307
		goto err_cmd_init;
3308

3309 3310 3311 3312 3313 3314 3315
	ret = hclgevf_query_dev_specs(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to query dev specifications, ret = %d\n", ret);
		goto err_cmd_init;
	}

3316 3317 3318
	ret = hclgevf_init_msi(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3319
		goto err_cmd_init;
3320 3321 3322
	}

	hclgevf_state_init(hdev);
3323
	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3324
	hdev->reset_type = HNAE3_NONE_RESET;
3325 3326

	ret = hclgevf_misc_irq_init(hdev);
3327
	if (ret)
3328 3329
		goto err_misc_irq_init;

3330 3331
	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	ret = hclgevf_configure(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
		goto err_config;
	}

	ret = hclgevf_alloc_tqps(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
		goto err_config;
	}

	ret = hclgevf_set_handle_info(hdev);
3345
	if (ret)
3346 3347
		goto err_config;

3348 3349 3350 3351
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		goto err_config;

3352
	/* Initialize RSS for this VF */
3353 3354 3355 3356 3357 3358
	ret = hclgevf_rss_init_cfg(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
		goto err_config;
	}

3359 3360 3361 3362 3363 3364 3365
	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		goto err_config;
	}

3366 3367 3368 3369 3370 3371 3372 3373 3374
	/* ensure vf tbl list as empty before init*/
	ret = hclgevf_clear_vport_list(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to clear tbl list configuration, ret = %d.\n",
			ret);
		goto err_config;
	}

3375 3376 3377 3378 3379 3380 3381
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		goto err_config;
	}

3382
	hdev->last_reset_time = jiffies;
3383 3384
	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
		 HCLGEVF_DRIVER_NAME);
3385

3386 3387
	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));

3388 3389 3390 3391 3392 3393 3394
	return 0;

err_config:
	hclgevf_misc_irq_uninit(hdev);
err_misc_irq_init:
	hclgevf_state_uninit(hdev);
	hclgevf_uninit_msi(hdev);
3395
err_cmd_init:
3396 3397
	hclgevf_cmd_uninit(hdev);
err_cmd_queue_init:
3398
	hclgevf_pci_uninit(hdev);
3399
	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3400 3401 3402
	return ret;
}

3403
static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3404
{
3405 3406
	struct hclge_vf_to_pf_msg send_msg;

3407
	hclgevf_state_uninit(hdev);
3408

3409 3410
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3411

3412 3413 3414 3415 3416
	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
	}

3417
	hclgevf_cmd_uninit(hdev);
3418
	hclgevf_pci_uninit(hdev);
3419
	hclgevf_uninit_mac_list(hdev);
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
}

static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
	int ret;

	ret = hclgevf_alloc_hdev(ae_dev);
	if (ret) {
		dev_err(&pdev->dev, "hclge device allocation failed\n");
		return ret;
	}

	ret = hclgevf_init_hdev(ae_dev->priv);
3434
	if (ret) {
3435
		dev_err(&pdev->dev, "hclge device initialization failed\n");
3436 3437
		return ret;
	}
3438

3439
	return 0;
3440 3441 3442 3443 3444 3445 3446
}

static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	hclgevf_uninit_hdev(hdev);
3447 3448 3449
	ae_dev->priv = NULL;
}

3450 3451 3452 3453 3454
static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo = &nic->kinfo;

3455
	return min_t(u32, hdev->rss_size_max,
3456
		     hdev->num_tqps / kinfo->tc_info.num_tc);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
}

/**
 * hclgevf_get_channels - Get the current channels enabled and max supported.
 * @handle: hardware information for network interface
 * @ch: ethtool channels structure
 *
 * We don't support separate tx and rx queues as channels. The other count
 * represents how many queues are being used for control. max_combined counts
 * how many queue pairs we can support. They may not be mapped 1 to 1 with
 * q_vectors since we support a lot more queue pairs than q_vectors.
 **/
static void hclgevf_get_channels(struct hnae3_handle *handle,
				 struct ethtool_channels *ch)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	ch->max_combined = hclgevf_get_max_channels(hdev);
	ch->other_count = 0;
	ch->max_other = 0;
3477
	ch->combined_count = handle->kinfo.rss_size;
3478 3479
}

3480
static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3481
					  u16 *alloc_tqps, u16 *max_rss_size)
3482 3483 3484
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3485
	*alloc_tqps = hdev->num_tqps;
3486 3487 3488
	*max_rss_size = hdev->rss_size_max;
}

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
static void hclgevf_update_rss_size(struct hnae3_handle *handle,
				    u32 new_tqps_num)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u16 max_rss_size;

	kinfo->req_rss_size = new_tqps_num;

	max_rss_size = min_t(u16, hdev->rss_size_max,
3499
			     hdev->num_tqps / kinfo->tc_info.num_tc);
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

	/* Use the user's configuration when it is not larger than
	 * max_rss_size, otherwise, use the maximum specification value.
	 */
	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
	    kinfo->req_rss_size <= max_rss_size)
		kinfo->rss_size = kinfo->req_rss_size;
	else if (kinfo->rss_size > max_rss_size ||
		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
		kinfo->rss_size = max_rss_size;

3511
	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
}

static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
				bool rxfh_configured)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	u16 cur_rss_size = kinfo->rss_size;
	u16 cur_tqps = kinfo->num_tqps;
	u32 *rss_indir;
	unsigned int i;
	int ret;

	hclgevf_update_rss_size(handle, new_tqps_num);

	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
	if (ret)
		return ret;

3531
	/* RSS indirection table has been configured by user */
3532 3533 3534 3535
	if (rxfh_configured)
		goto out;

	/* Reinitializes the rss indirect table according to the new RSS size */
3536 3537
	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
			    sizeof(u32), GFP_KERNEL);
3538 3539 3540
	if (!rss_indir)
		return -ENOMEM;

3541
	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3542 3543
		rss_indir[i] = i % kinfo->rss_size;

3544 3545
	hdev->rss_cfg.rss_size = kinfo->rss_size;

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
	if (ret)
		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
			ret);

	kfree(rss_indir);

out:
	if (!ret)
		dev_info(&hdev->pdev->dev,
			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
			 cur_rss_size, kinfo->rss_size,
3558
			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3559 3560 3561 3562

	return ret;
}

3563 3564 3565 3566 3567 3568 3569
static int hclgevf_get_status(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->hw.mac.link;
}

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
					    u8 *auto_neg, u32 *speed,
					    u8 *duplex)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (speed)
		*speed = hdev->hw.mac.speed;
	if (duplex)
		*duplex = hdev->hw.mac.duplex;
	if (auto_neg)
		*auto_neg = AUTONEG_DISABLE;
}

void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
				 u8 duplex)
{
	hdev->hw.mac.speed = speed;
	hdev->hw.mac.duplex = duplex;
}

3591
static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3592 3593 3594 3595 3596 3597
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_config_gro(hdev, enable);
}

3598 3599
static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
				   u8 *module_type)
3600 3601
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3602

3603 3604
	if (media_type)
		*media_type = hdev->hw.mac.media_type;
3605 3606 3607

	if (module_type)
		*module_type = hdev->hw.mac.module_type;
3608 3609
}

3610 3611 3612 3613
static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3614
	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3615 3616
}

3617 3618 3619 3620 3621 3622 3623
static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
}

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634
static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
}

static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3635
	return hdev->rst_stats.hw_rst_done_cnt;
3636 3637
}

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
static void hclgevf_get_link_mode(struct hnae3_handle *handle,
				  unsigned long *supported,
				  unsigned long *advertising)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	*supported = hdev->hw.mac.supported;
	*advertising = hdev->hw.mac.advertising;
}

3648
#define MAX_SEPARATE_NUM	4
3649
#define SEPARATOR_VALUE		0xFDFCFBFA
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
#define REG_NUM_PER_LINE	4
#define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))

static int hclgevf_get_regs_len(struct hnae3_handle *handle)
{
	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;

	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
}

static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
			     void *data)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int i, j, reg_um, separator_num;
	u32 *reg = data;

	*version = hdev->fw_version;

	/* fetching per-VF registers values from VF PCIe register space */
	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_tqps; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  ring_reg_addr_list[i] +
						  0x200 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}

	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_msi_used - 1; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  tqp_intr_reg_addr_list[i] +
						  4 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}
}

3714 3715 3716 3717
void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
					u8 *port_base_vlan_info, u8 data_size)
{
	struct hnae3_handle *nic = &hdev->nic;
3718
	struct hclge_vf_to_pf_msg send_msg;
3719
	int ret;
3720 3721

	rtnl_lock();
3722

3723 3724
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
		dev_warn(&hdev->pdev->dev,
			 "is resetting when updating port based vlan info\n");
		rtnl_unlock();
		return;
	}

	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret) {
		rtnl_unlock();
		return;
	}
3736 3737

	/* send msg to PF and wait update port based vlan info */
3738 3739 3740
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
	memcpy(send_msg.data, port_base_vlan_info, data_size);
3741 3742 3743 3744 3745 3746 3747
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	if (!ret) {
		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
			nic->port_base_vlan_state = state;
		else
			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
	}
3748 3749 3750 3751 3752

	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
	rtnl_unlock();
}

3753 3754 3755
static const struct hnae3_ae_ops hclgevf_ops = {
	.init_ae_dev = hclgevf_init_ae_dev,
	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3756 3757
	.reset_prepare = hclgevf_reset_prepare_general,
	.reset_done = hclgevf_reset_done,
3758 3759
	.init_client_instance = hclgevf_init_client_instance,
	.uninit_client_instance = hclgevf_uninit_client_instance,
3760 3761
	.start = hclgevf_ae_start,
	.stop = hclgevf_ae_stop,
3762 3763
	.client_start = hclgevf_client_start,
	.client_stop = hclgevf_client_stop,
3764 3765 3766
	.map_ring_to_vector = hclgevf_map_ring_to_vector,
	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
	.get_vector = hclgevf_get_vector,
3767
	.put_vector = hclgevf_put_vector,
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	.reset_queue = hclgevf_reset_tqp,
	.get_mac_addr = hclgevf_get_mac_addr,
	.set_mac_addr = hclgevf_set_mac_addr,
	.add_uc_addr = hclgevf_add_uc_addr,
	.rm_uc_addr = hclgevf_rm_uc_addr,
	.add_mc_addr = hclgevf_add_mc_addr,
	.rm_mc_addr = hclgevf_rm_mc_addr,
	.get_stats = hclgevf_get_stats,
	.update_stats = hclgevf_update_stats,
	.get_strings = hclgevf_get_strings,
	.get_sset_count = hclgevf_get_sset_count,
	.get_rss_key_size = hclgevf_get_rss_key_size,
	.get_rss = hclgevf_get_rss,
	.set_rss = hclgevf_set_rss,
3782 3783
	.get_rss_tuple = hclgevf_get_rss_tuple,
	.set_rss_tuple = hclgevf_set_rss_tuple,
3784 3785 3786
	.get_tc_size = hclgevf_get_tc_size,
	.get_fw_version = hclgevf_get_fw_version,
	.set_vlan_filter = hclgevf_set_vlan_filter,
3787
	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3788
	.reset_event = hclgevf_reset_event,
3789
	.set_default_reset_request = hclgevf_set_def_reset_request,
3790
	.set_channels = hclgevf_set_channels,
3791
	.get_channels = hclgevf_get_channels,
3792
	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3793 3794
	.get_regs_len = hclgevf_get_regs_len,
	.get_regs = hclgevf_get_regs,
3795
	.get_status = hclgevf_get_status,
3796
	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3797
	.get_media_type = hclgevf_get_media_type,
3798 3799 3800
	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
	.ae_dev_resetting = hclgevf_ae_dev_resetting,
	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3801
	.set_gro_en = hclgevf_gro_en,
3802
	.set_mtu = hclgevf_set_mtu,
3803
	.get_global_queue_id = hclgevf_get_qid_global,
3804
	.set_timer_task = hclgevf_set_timer_task,
3805
	.get_link_mode = hclgevf_get_link_mode,
3806
	.set_promisc_mode = hclgevf_set_promisc_mode,
3807
	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3808
	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
};

static struct hnae3_ae_algo ae_algovf = {
	.ops = &hclgevf_ops,
	.pdev_id_table = ae_algovf_pci_tbl,
};

static int hclgevf_init(void)
{
	pr_info("%s is initializing\n", HCLGEVF_NAME);

3820
	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3821 3822 3823 3824 3825
	if (!hclgevf_wq) {
		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
		return -ENOMEM;
	}

3826 3827 3828
	hnae3_register_ae_algo(&ae_algovf);

	return 0;
3829 3830 3831 3832 3833
}

static void hclgevf_exit(void)
{
	hnae3_unregister_ae_algo(&ae_algovf);
3834
	destroy_workqueue(hclgevf_wq);
3835 3836 3837 3838 3839 3840 3841 3842
}
module_init(hclgevf_init);
module_exit(hclgevf_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGEVF Driver");
MODULE_VERSION(HCLGEVF_MOD_VERSION);