hclgevf_main.c 83.4 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.

#include <linux/etherdevice.h>
5
#include <linux/iopoll.h>
6
#include <net/rtnetlink.h>
7 8 9 10 11 12 13
#include "hclgevf_cmd.h"
#include "hclgevf_main.h"
#include "hclge_mbx.h"
#include "hnae3.h"

#define HCLGEVF_NAME	"hclgevf"

14 15
#define HCLGEVF_RESET_MAX_FAIL_CNT	5

16
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 18
static struct hnae3_ae_algo ae_algovf;

19 20
static struct workqueue_struct *hclgevf_wq;

21 22 23 24 25 26 27
static const struct pci_device_id ae_algovf_pci_tbl[] = {
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
	/* required last entry */
	{0, }
};

28 29 30 31 32 33 34 35
static const u8 hclgevf_hash_key[] = {
	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
};

36 37
MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
					 HCLGEVF_CMDQ_TX_DEPTH_REG,
					 HCLGEVF_CMDQ_TX_TAIL_REG,
					 HCLGEVF_CMDQ_TX_HEAD_REG,
					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
					 HCLGEVF_CMDQ_RX_DEPTH_REG,
					 HCLGEVF_CMDQ_RX_TAIL_REG,
					 HCLGEVF_CMDQ_RX_HEAD_REG,
					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
					 HCLGEVF_CMDQ_INTR_STS_REG,
					 HCLGEVF_CMDQ_INTR_EN_REG,
					 HCLGEVF_CMDQ_INTR_GEN_REG};

static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
					   HCLGEVF_RST_ING,
					   HCLGEVF_GRO_EN_REG};

static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
					 HCLGEVF_RING_RX_ADDR_H_REG,
					 HCLGEVF_RING_RX_BD_NUM_REG,
					 HCLGEVF_RING_RX_BD_LENGTH_REG,
					 HCLGEVF_RING_RX_MERGE_EN_REG,
					 HCLGEVF_RING_RX_TAIL_REG,
					 HCLGEVF_RING_RX_HEAD_REG,
					 HCLGEVF_RING_RX_FBD_NUM_REG,
					 HCLGEVF_RING_RX_OFFSET_REG,
					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
					 HCLGEVF_RING_RX_STASH_REG,
					 HCLGEVF_RING_RX_BD_ERR_REG,
					 HCLGEVF_RING_TX_ADDR_L_REG,
					 HCLGEVF_RING_TX_ADDR_H_REG,
					 HCLGEVF_RING_TX_BD_NUM_REG,
					 HCLGEVF_RING_TX_PRIORITY_REG,
					 HCLGEVF_RING_TX_TC_REG,
					 HCLGEVF_RING_TX_MERGE_EN_REG,
					 HCLGEVF_RING_TX_TAIL_REG,
					 HCLGEVF_RING_TX_HEAD_REG,
					 HCLGEVF_RING_TX_FBD_NUM_REG,
					 HCLGEVF_RING_TX_OFFSET_REG,
					 HCLGEVF_RING_TX_EBD_NUM_REG,
					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
					 HCLGEVF_RING_TX_BD_ERR_REG,
					 HCLGEVF_RING_EN_REG};

static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
					     HCLGEVF_TQP_INTR_GL0_REG,
					     HCLGEVF_TQP_INTR_GL1_REG,
					     HCLGEVF_TQP_INTR_GL2_REG,
					     HCLGEVF_TQP_INTR_RL_REG};

90
static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
91
{
92 93 94 95 96 97
	if (!handle->client)
		return container_of(handle, struct hclgevf_dev, nic);
	else if (handle->client->type == HNAE3_CLIENT_ROCE)
		return container_of(handle, struct hclgevf_dev, roce);
	else
		return container_of(handle, struct hclgevf_dev, nic);
98 99 100 101
}

static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
{
102
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
103 104 105 106 107 108
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_desc desc;
	struct hclgevf_tqp *tqp;
	int status;
	int i;

109 110
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
111 112 113 114 115 116 117 118 119 120 121 122 123
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_QUERY_RX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status,	i);
			return status;
		}
		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
124
			le32_to_cpu(desc.data[1]);
125 126 127 128 129 130 131 132 133 134 135 136 137

		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status, i);
			return status;
		}
		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
138
			le32_to_cpu(desc.data[1]);
139 140 141 142 143 144 145 146 147 148 149 150
	}

	return 0;
}

static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_tqp *tqp;
	u64 *buff = data;
	int i;

151 152
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
153 154 155
		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
	}
	for (i = 0; i < kinfo->num_tqps; i++) {
156
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 158 159 160 161 162 163 164
		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
	}

	return buff;
}

static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
{
165
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
166

167
	return kinfo->num_tqps * 2;
168 169 170 171
}

static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
{
172
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
173 174 175
	u8 *buff = data;
	int i = 0;

176 177 178
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
179
		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
180 181 182 183
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

184 185 186
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
187
		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

	return buff;
}

static void hclgevf_update_stats(struct hnae3_handle *handle,
				 struct net_device_stats *net_stats)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int status;

	status = hclgevf_tqps_update_stats(handle);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF update of TQPS stats fail, status = %d.\n",
			status);
}

static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
{
	if (strset == ETH_SS_TEST)
		return -EOPNOTSUPP;
	else if (strset == ETH_SS_STATS)
		return hclgevf_tqps_get_sset_count(handle, strset);

	return 0;
}

static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
				u8 *data)
{
	u8 *p = (char *)data;

	if (strset == ETH_SS_STATS)
		p = hclgevf_tqps_get_strings(handle, p);
}

static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
{
	hclgevf_tqps_get_stats(handle, data);
}

static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
{
	u8 resp_msg;
	int status;

	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
238
				      true, &resp_msg, sizeof(resp_msg));
239 240 241 242 243 244 245 246 247 248 249 250
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get TC info from PF failed %d",
			status);
		return status;
	}

	hdev->hw_tc_map = resp_msg;

	return 0;
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	u8 resp_msg;
	int ret;

	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
				   NULL, 0, true, &resp_msg, sizeof(u8));
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get port based vlan state failed %d",
			ret);
		return ret;
	}

	nic->port_base_vlan_state = resp_msg;

	return 0;
}

272
static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
273
{
274
#define HCLGEVF_TQPS_RSS_INFO_LEN	6
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
	int status;

	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
				      true, resp_msg,
				      HCLGEVF_TQPS_RSS_INFO_LEN);
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp info from PF failed %d",
			status);
		return status;
	}

	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));

	return 0;
}

static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
{
#define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
	int ret;

	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
				   true, resp_msg,
				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp depth info from PF failed %d",
			ret);
		return ret;
	}

	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
313 314 315 316

	return 0;
}

317 318 319 320 321 322 323 324 325 326
static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data[2], resp_data[2];
	u16 qid_in_pf = 0;
	int ret;

	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));

	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
327 328
				   sizeof(msg_data), true, resp_data,
				   sizeof(resp_data));
329 330 331 332 333 334
	if (!ret)
		qid_in_pf = *(u16 *)resp_data;

	return qid_in_pf;
}

335 336
static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
{
337
	u8 resp_msg[2];
338 339 340
	int ret;

	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
341
				   true, resp_msg, sizeof(resp_msg));
342 343 344 345 346 347 348
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get the pf port media type failed %d",
			ret);
		return ret;
	}

349 350
	hdev->hw.mac.media_type = resp_msg[0];
	hdev->hw.mac.module_type = resp_msg[1];
351 352 353 354

	return 0;
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
{
	struct hclgevf_tqp *tqp;
	int i;

	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
	if (!hdev->htqp)
		return -ENOMEM;

	tqp = hdev->htqp;

	for (i = 0; i < hdev->num_tqps; i++) {
		tqp->dev = &hdev->pdev->dev;
		tqp->index = i;

		tqp->q.ae_algo = &ae_algovf;
		tqp->q.buf_size = hdev->rx_buf_len;
373 374
		tqp->q.tx_desc_num = hdev->num_tx_desc;
		tqp->q.rx_desc_num = hdev->num_rx_desc;
375 376 377 378 379 380 381 382 383 384 385 386 387 388
		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
			i * HCLGEVF_TQP_REG_SIZE;

		tqp++;
	}

	return 0;
}

static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo;
	u16 new_tqps = hdev->num_tqps;
389
	unsigned int i;
390 391 392

	kinfo = &nic->kinfo;
	kinfo->num_tc = 0;
393 394
	kinfo->num_tx_desc = hdev->num_tx_desc;
	kinfo->num_rx_desc = hdev->num_rx_desc;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	kinfo->rx_buf_len = hdev->rx_buf_len;
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
		if (hdev->hw_tc_map & BIT(i))
			kinfo->num_tc++;

	kinfo->rss_size
		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
	new_tqps = kinfo->rss_size * kinfo->num_tc;
	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);

	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
				  sizeof(struct hnae3_queue *), GFP_KERNEL);
	if (!kinfo->tqp)
		return -ENOMEM;

	for (i = 0; i < kinfo->num_tqps; i++) {
		hdev->htqp[i].q.handle = &hdev->nic;
		hdev->htqp[i].q.tqp_index = i;
		kinfo->tqp[i] = &hdev->htqp[i].q;
	}

416 417 418 419 420 421 422
	/* after init the max rss_size and tqps, adjust the default tqp numbers
	 * and rss size with the actual vector numbers
	 */
	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
				kinfo->rss_size);

423 424 425 426 427 428 429 430 431
	return 0;
}

static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
{
	int status;
	u8 resp_msg;

	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
432
				      0, false, &resp_msg, sizeof(resp_msg));
433 434 435 436 437 438 439
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed to fetch link status(%d) from PF", status);
}

void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
{
440
	struct hnae3_handle *rhandle = &hdev->roce;
441
	struct hnae3_handle *handle = &hdev->nic;
442
	struct hnae3_client *rclient;
443 444
	struct hnae3_client *client;

445 446 447
	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
		return;

448
	client = handle->client;
449
	rclient = hdev->roce_client;
450

451 452 453
	link_state =
		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;

454 455
	if (link_state != hdev->hw.mac.link) {
		client->ops->link_status_change(handle, !!link_state);
456 457
		if (rclient && rclient->ops->link_status_change)
			rclient->ops->link_status_change(rhandle, !!link_state);
458 459
		hdev->hw.mac.link = link_state;
	}
460 461

	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
462 463
}

464
static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
465 466 467 468 469 470 471
{
#define HCLGEVF_ADVERTISING 0
#define HCLGEVF_SUPPORTED   1
	u8 send_msg;
	u8 resp_msg;

	send_msg = HCLGEVF_ADVERTISING;
472 473 474
	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
			     &send_msg, sizeof(send_msg), false,
			     &resp_msg, sizeof(resp_msg));
475
	send_msg = HCLGEVF_SUPPORTED;
476 477 478
	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
			     &send_msg, sizeof(send_msg), false,
			     &resp_msg, sizeof(resp_msg));
479 480
}

481 482 483 484 485 486 487 488
static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	int ret;

	nic->ae_algo = &ae_algovf;
	nic->pdev = hdev->pdev;
	nic->numa_node_mask = hdev->numa_node_mask;
489
	nic->flags |= HNAE3_SUPPORT_VF;
490 491 492 493 494 495 496 497 498 499

	ret = hclgevf_knic_setup(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
			ret);
	return ret;
}

static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
{
500 501 502 503 504 505
	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
		dev_warn(&hdev->pdev->dev,
			 "vector(vector_id %d) has been freed.\n", vector_id);
		return;
	}

506 507 508 509 510 511 512 513 514 515 516 517 518
	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
	hdev->num_msi_left += 1;
	hdev->num_msi_used -= 1;
}

static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
			      struct hnae3_vector_info *vector_info)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_vector_info *vector = vector_info;
	int alloc = 0;
	int i, j;

519
	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	vector_num = min(hdev->num_msi_left, vector_num);

	for (j = 0; j < vector_num; j++) {
		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
				vector->vector = pci_irq_vector(hdev->pdev, i);
				vector->io_addr = hdev->hw.io_base +
					HCLGEVF_VECTOR_REG_BASE +
					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
				hdev->vector_status[i] = 0;
				hdev->vector_irq[i] = vector->vector;

				vector++;
				alloc++;

				break;
			}
		}
	}
	hdev->num_msi_left -= alloc;
	hdev->num_msi_used += alloc;

	return alloc;
}

static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
{
	int i;

	for (i = 0; i < hdev->num_msi; i++)
		if (vector == hdev->vector_irq[i])
			return i;

	return -EINVAL;
}

556 557 558 559
static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
				    const u8 hfunc, const u8 *key)
{
	struct hclgevf_rss_config_cmd *req;
560
	unsigned int key_offset = 0;
561
	struct hclgevf_desc desc;
562
	int key_counts;
563 564 565
	int key_size;
	int ret;

566
	key_counts = HCLGEVF_RSS_KEY_SIZE;
567 568
	req = (struct hclgevf_rss_config_cmd *)desc.data;

569
	while (key_counts) {
570 571 572 573 574 575 576 577
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
					     false);

		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
		req->hash_config |=
			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);

578
		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
579 580 581
		memcpy(req->hash_key,
		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);

582 583
		key_counts -= key_size;
		key_offset++;
584 585 586 587 588 589 590 591 592 593 594 595
		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"Configure RSS config fail, status = %d\n",
				ret);
			return ret;
		}
	}

	return 0;
}

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_KEY_SIZE;
}

static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_IND_TBL_SIZE;
}

static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
{
	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
	struct hclgevf_rss_indirection_table_cmd *req;
	struct hclgevf_desc desc;
	int status;
	int i, j;

	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;

	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
					     false);
		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
			req->rss_result[j] =
				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];

		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"VF failed(=%d) to set RSS indirection table\n",
				status);
			return status;
		}
	}

	return 0;
}

static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
{
	struct hclgevf_rss_tc_mode_cmd *req;
	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
	u16 tc_size[HCLGEVF_MAX_TC_NUM];
	struct hclgevf_desc desc;
	u16 roundup_size;
	int status;
646
	unsigned int i;
647 648 649 650 651 652 653 654 655 656 657 658 659 660

	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;

	roundup_size = roundup_pow_of_two(rss_size);
	roundup_size = ilog2(roundup_size);

	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
		tc_size[i] = roundup_size;
		tc_offset[i] = rss_size * i;
	}

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
P
Peng Li 已提交
661 662 663 664 665 666
		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
			      (tc_valid[i] & 0x1));
		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
667 668 669 670 671 672 673 674 675
	}
	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed(=%d) to set rss tc mode\n", status);

	return status;
}

J
Jian Shen 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
/* for revision 0x20, vf shared the same rss config with pf */
static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RSS_MBX_RESP_LEN	8

	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
	u16 msg_num, hash_key_index;
	u8 index;
	int ret;

	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
			HCLGEVF_RSS_MBX_RESP_LEN;
	for (index = 0; index < msg_num; index++) {
		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
					   &index, sizeof(index),
					   true, resp_msg,
					   HCLGEVF_RSS_MBX_RESP_LEN);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"VF get rss hash key from PF failed, ret=%d",
				ret);
			return ret;
		}

		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
		if (index == msg_num - 1)
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0],
			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
		else
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
	}

	return 0;
}

714 715
static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
			   u8 *hfunc)
716 717
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
718
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
J
Jian Shen 已提交
719
	int i, ret;
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734
	if (handle->pdev->revision >= 0x21) {
		/* Get hash algorithm */
		if (hfunc) {
			switch (rss_cfg->hash_algo) {
			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
				*hfunc = ETH_RSS_HASH_TOP;
				break;
			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
				*hfunc = ETH_RSS_HASH_XOR;
				break;
			default:
				*hfunc = ETH_RSS_HASH_UNKNOWN;
				break;
			}
735 736
		}

737
		/* Get the RSS Key required by the user */
738
		if (key)
739 740
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
J
Jian Shen 已提交
741 742 743 744 745 746 747 748 749 750
	} else {
		if (hfunc)
			*hfunc = ETH_RSS_HASH_TOP;
		if (key) {
			ret = hclgevf_get_rss_hash_key(hdev);
			if (ret)
				return ret;
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
751 752 753 754 755 756
	}

	if (indir)
		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
			indir[i] = rss_cfg->rss_indirection_tbl[i];

757
	return 0;
758 759 760
}

static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
761
			   const u8 *key, const u8 hfunc)
762 763 764
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	int ret, i;

	if (handle->pdev->revision >= 0x21) {
		/* Set the RSS Hash Key if specififed by the user */
		if (key) {
			switch (hfunc) {
			case ETH_RSS_HASH_TOP:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
				break;
			case ETH_RSS_HASH_XOR:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
				break;
			case ETH_RSS_HASH_NO_CHANGE:
				break;
			default:
				return -EINVAL;
			}

			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
						       key);
			if (ret)
				return ret;

			/* Update the shadow RSS key with user specified qids */
			memcpy(rss_cfg->rss_hash_key, key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
	}
795 796 797 798 799 800 801 802 803

	/* update the shadow RSS table with user specified qids */
	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_cfg->rss_indirection_tbl[i] = indir[i];

	/* update the hardware */
	return hclgevf_set_rss_indir_table(hdev);
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
{
	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;

	if (nfc->data & RXH_L4_B_2_3)
		hash_sets |= HCLGEVF_D_PORT_BIT;
	else
		hash_sets &= ~HCLGEVF_D_PORT_BIT;

	if (nfc->data & RXH_IP_SRC)
		hash_sets |= HCLGEVF_S_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_S_IP_BIT;

	if (nfc->data & RXH_IP_DST)
		hash_sets |= HCLGEVF_D_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_D_IP_BIT;

	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
		hash_sets |= HCLGEVF_V_TAG_BIT;

	return hash_sets;
}

static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	u8 tuple_sets;
	int ret;

	if (handle->pdev->revision == 0x20)
		return -EOPNOTSUPP;

	if (nfc->data &
	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
		return -EINVAL;

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		req->ipv4_tcp_en = tuple_sets;
		break;
	case TCP_V6_FLOW:
		req->ipv6_tcp_en = tuple_sets;
		break;
	case UDP_V4_FLOW:
		req->ipv4_udp_en = tuple_sets;
		break;
	case UDP_V6_FLOW:
		req->ipv6_udp_en = tuple_sets;
		break;
	case SCTP_V4_FLOW:
		req->ipv4_sctp_en = tuple_sets;
		break;
	case SCTP_V6_FLOW:
		if ((nfc->data & RXH_L4_B_0_1) ||
		    (nfc->data & RXH_L4_B_2_3))
			return -EINVAL;

		req->ipv6_sctp_en = tuple_sets;
		break;
	case IPV4_FLOW:
		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	case IPV6_FLOW:
		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	default:
		return -EINVAL;
	}

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Set rss tuple fail, status = %d\n", ret);
		return ret;
	}

	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
	return 0;
}

static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 tuple_sets;

	if (handle->pdev->revision == 0x20)
		return -EOPNOTSUPP;

	nfc->data = 0;

	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
		break;
	case UDP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
		break;
	case TCP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
		break;
	case UDP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
		break;
	case SCTP_V4_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
		break;
	case SCTP_V6_FLOW:
		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
		break;
	case IPV4_FLOW:
	case IPV6_FLOW:
		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
		break;
	default:
		return -EINVAL;
	}

	if (!tuple_sets)
		return 0;

	if (tuple_sets & HCLGEVF_D_PORT_BIT)
		nfc->data |= RXH_L4_B_2_3;
	if (tuple_sets & HCLGEVF_S_PORT_BIT)
		nfc->data |= RXH_L4_B_0_1;
	if (tuple_sets & HCLGEVF_D_IP_BIT)
		nfc->data |= RXH_IP_DST;
	if (tuple_sets & HCLGEVF_S_IP_BIT)
		nfc->data |= RXH_IP_SRC;

	return 0;
}

static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
				       struct hclgevf_rss_cfg *rss_cfg)
{
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Configure rss input fail, status = %d\n", ret);
	return ret;
}

991 992 993 994 995 996 997 998 999
static int hclgevf_get_tc_size(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;

	return rss_cfg->rss_size;
}

static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1000
				       int vector_id,
1001 1002 1003 1004 1005 1006
				       struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_ring_chain_node *node;
	struct hclge_mbx_vf_to_pf_cmd *req;
	struct hclgevf_desc desc;
1007
	int i = 0;
1008 1009 1010 1011
	int status;
	u8 type;

	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1012 1013
	type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1014 1015

	for (node = ring_chain; node; node = node->next) {
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;

		if (i == 0) {
			hclgevf_cmd_setup_basic_desc(&desc,
						     HCLGEVF_OPC_MBX_VF_TO_PF,
						     false);
			req->msg[0] = type;
			req->msg[1] = vector_id;
		}

		req->msg[idx_offset] =
P
Peng Li 已提交
1028
				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1029
		req->msg[idx_offset + 1] = node->tqp_index;
P
Peng Li 已提交
1030 1031 1032
		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
							   HNAE3_RING_GL_IDX_M,
							   HNAE3_RING_GL_IDX_S);
1033 1034 1035 1036 1037 1038

		i++;
		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
		    !node->next) {
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
			req->msg[2] = i;

			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
			if (status) {
				dev_err(&hdev->pdev->dev,
					"Map TQP fail, status is %d.\n",
					status);
				return status;
			}
			i = 0;
			hclgevf_cmd_setup_basic_desc(&desc,
						     HCLGEVF_OPC_MBX_VF_TO_PF,
						     false);
			req->msg[0] = type;
			req->msg[1] = vector_id;
		}
	}

	return 0;
}

static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
				      struct hnae3_ring_chain_node *ring_chain)
{
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
}

static int hclgevf_unmap_ring_from_vector(
				struct hnae3_handle *handle,
				int vector,
				struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret, vector_id;

1084 1085 1086
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
		return 0;

1087 1088 1089 1090 1091 1092 1093
	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

1094
	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1095
	if (ret)
1096 1097 1098 1099
		dev_err(&handle->pdev->dev,
			"Unmap ring from vector fail. vector=%d, ret =%d\n",
			vector_id,
			ret);
1100 1101 1102 1103 1104 1105 1106

	return ret;
}

static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1107 1108 1109 1110 1111 1112 1113 1114 1115
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"hclgevf_put_vector get vector index fail. ret =%d\n",
			vector_id);
		return vector_id;
	}
1116

1117
	hclgevf_free_vector(hdev, vector_id);
1118 1119 1120 1121

	return 0;
}

1122
static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1123
					bool en_uc_pmc, bool en_mc_pmc,
1124
					bool en_bc_pmc)
1125 1126 1127
{
	struct hclge_mbx_vf_to_pf_cmd *req;
	struct hclgevf_desc desc;
1128
	int ret;
1129 1130 1131 1132

	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1133
	req->msg[1] = en_bc_pmc ? 1 : 0;
1134 1135
	req->msg[2] = en_uc_pmc ? 1 : 0;
	req->msg[3] = en_mc_pmc ? 1 : 0;
1136

1137 1138
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
1139
		dev_err(&hdev->pdev->dev,
1140
			"Set promisc mode fail, status is %d.\n", ret);
1141

1142
	return ret;
1143 1144
}

1145 1146
static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
				    bool en_mc_pmc)
1147
{
1148 1149 1150 1151 1152 1153 1154 1155
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct pci_dev *pdev = hdev->pdev;
	bool en_bc_pmc;

	en_bc_pmc = pdev->revision != 0x20;

	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
					    en_bc_pmc);
1156 1157
}

1158
static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
			      int stream_id, bool enable)
{
	struct hclgevf_cfg_com_tqp_queue_cmd *req;
	struct hclgevf_desc desc;
	int status;

	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
				     false);
	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
	req->stream_id = cpu_to_le16(stream_id);
1171 1172
	if (enable)
		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"TQP enable fail, status =%d.\n", status);

	return status;
}

static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
{
1184
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1185 1186 1187
	struct hclgevf_tqp *tqp;
	int i;

1188 1189
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1190 1191 1192 1193
		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
	}
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
{
	u8 host_mac[ETH_ALEN];
	int status;

	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MAC_ADDR, 0, NULL, 0,
				      true, host_mac, ETH_ALEN);
	if (status) {
		dev_err(&hdev->pdev->dev,
			"fail to get VF MAC from host %d", status);
		return status;
	}

	ether_addr_copy(p, host_mac);

	return 0;
}

1212 1213 1214
static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1215
	u8 host_mac_addr[ETH_ALEN];
1216

1217 1218 1219 1220 1221 1222 1223 1224
	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
		return;

	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
	if (hdev->has_pf_mac)
		ether_addr_copy(p, host_mac_addr);
	else
		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1225 1226
}

1227 1228
static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
				bool is_first)
1229 1230 1231 1232 1233
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
	u8 *new_mac_addr = (u8 *)p;
	u8 msg_data[ETH_ALEN * 2];
1234
	u16 subcode;
1235 1236 1237 1238 1239
	int status;

	ether_addr_copy(msg_data, new_mac_addr);
	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);

1240 1241 1242
	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
			HCLGE_MBX_MAC_VLAN_UC_MODIFY;

1243
	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1244
				      subcode, msg_data, sizeof(msg_data),
1245
				      true, NULL, 0);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
	if (!status)
		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);

	return status;
}

static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
				    HCLGE_MBX_MAC_VLAN_UC_ADD,
				    addr, ETH_ALEN, false, NULL, 0);
}

static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
				    addr, ETH_ALEN, false, NULL, 0);
}

static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
				    HCLGE_MBX_MAC_VLAN_MC_ADD,
				    addr, ETH_ALEN, false, NULL, 0);
}

static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
				    addr, ETH_ALEN, false, NULL, 0);
}

static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
				   __be16 proto, u16 vlan_id,
				   bool is_kill)
{
#define HCLGEVF_VLAN_MBX_MSG_LEN 5
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1299
	int ret;
1300

1301
	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1302 1303 1304 1305 1306
		return -EINVAL;

	if (proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

1307 1308 1309 1310 1311 1312 1313 1314 1315
	/* When device is resetting, firmware is unable to handle
	 * mailbox. Just record the vlan id, and remove it after
	 * reset finished.
	 */
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
		return -EBUSY;
	}

1316 1317 1318
	msg_data[0] = is_kill;
	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
	memcpy(&msg_data[3], &proto, sizeof(proto));
G
Guojia Liao 已提交
1319
	/* when remove hw vlan filter failed, record the vlan id,
1320 1321 1322
	 * and try to remove it from hw later, to be consistence
	 * with stack.
	 */
1323 1324 1325
	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
				   HCLGE_MBX_VLAN_FILTER, msg_data,
				   HCLGEVF_VLAN_MBX_MSG_LEN, true, NULL, 0);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	if (is_kill && ret)
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);

	return ret;
}

static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_SYNC_COUNT	60
	struct hnae3_handle *handle = &hdev->nic;
	int ret, sync_cnt = 0;
	u16 vlan_id;

	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	while (vlan_id != VLAN_N_VID) {
		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
					      vlan_id, true);
		if (ret)
			return;

		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
		sync_cnt++;
		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
			return;

		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	}
1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data;

	msg_data = enable ? 1 : 0;
	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
				    1, false, NULL, 0);
}

1366
static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1367 1368 1369
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data[2];
1370
	int ret;
1371

1372
	memcpy(msg_data, &queue_id, sizeof(queue_id));
1373

1374 1375 1376
	/* disable vf queue before send queue reset msg to PF */
	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
	if (ret)
1377
		return ret;
1378

1379
	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1380
				    sizeof(msg_data), true, NULL, 0);
1381 1382
}

1383 1384 1385 1386 1387 1388 1389 1390
static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
				    sizeof(new_mtu), true, NULL, 0);
}

1391 1392 1393 1394 1395
static int hclgevf_notify_client(struct hclgevf_dev *hdev,
				 enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->nic_client;
	struct hnae3_handle *handle = &hdev->nic;
1396
	int ret;
1397

1398 1399 1400 1401
	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
	    !client)
		return 0;

1402 1403 1404
	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

1405 1406 1407 1408 1409 1410
	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
			type, ret);

	return ret;
1411 1412 1413 1414
}

static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
{
1415 1416 1417 1418 1419 1420 1421
#define HCLGEVF_RESET_WAIT_US	20000
#define HCLGEVF_RESET_WAIT_CNT	2000
#define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)

	u32 val;
	int ret;
1422

1423
	if (hdev->reset_type == HNAE3_VF_RESET)
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_VF_RST_ING, val,
					 !(val & HCLGEVF_VF_RST_ING_BIT),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
	else
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_RST_ING, val,
					 !(val & HCLGEVF_RST_ING_BITS),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1435 1436

	/* hardware completion status should be available by this time */
1437 1438 1439 1440
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"could'nt get reset done status from h/w, timeout!\n");
		return ret;
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
	}

	/* we will wait a bit more to let reset of the stack to complete. This
	 * might happen in case reset assertion was made by PF. Yes, this also
	 * means we might end up waiting bit more even for VF reset.
	 */
	msleep(5000);

	return 0;
}

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
{
	u32 reg_val;

	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
	if (enable)
		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
	else
		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;

	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
			  reg_val);
}

1466 1467
static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
{
1468 1469
	int ret;

1470
	/* uninitialize the nic client */
1471 1472 1473
	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1474

1475
	/* re-initialize the hclge device */
1476
	ret = hclgevf_reset_hdev(hdev);
1477 1478 1479 1480 1481
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"hclge device re-init failed, VF is disabled!\n");
		return ret;
	}
1482 1483

	/* bring up the nic client again */
1484 1485 1486
	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;
1487

1488 1489 1490 1491 1492 1493 1494
	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
	if (ret)
		return ret;

	/* clear handshake status with IMP */
	hclgevf_reset_handshake(hdev, false);

1495 1496
	/* bring up the nic to enable TX/RX again */
	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1497 1498
}

1499 1500
static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
{
1501 1502
#define HCLGEVF_RESET_SYNC_TIME 100

1503 1504
	int ret = 0;

1505
	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1506 1507
		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
					   0, true, NULL, sizeof(u8));
1508
		hdev->rst_stats.vf_func_rst_cnt++;
1509 1510
	}

1511
	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1512 1513
	/* inform hardware that preparatory work is done */
	msleep(HCLGEVF_RESET_SYNC_TIME);
1514
	hclgevf_reset_handshake(hdev, true);
1515 1516 1517 1518 1519 1520
	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
		 hdev->reset_type, ret);

	return ret;
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
{
	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
		 hdev->rst_stats.vf_func_rst_cnt);
	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
		 hdev->rst_stats.flr_rst_cnt);
	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
		 hdev->rst_stats.vf_rst_cnt);
	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
		 hdev->rst_stats.rst_done_cnt);
	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
		 hdev->rst_stats.hw_rst_done_cnt);
	dev_info(&hdev->pdev->dev, "reset count: %u\n",
		 hdev->rst_stats.rst_cnt);
	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
		 hdev->rst_stats.rst_fail_cnt);
	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STAT_REG));
	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
}

1548 1549
static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
{
1550 1551
	/* recover handshake status with IMP when reset fail */
	hclgevf_reset_handshake(hdev, true);
1552
	hdev->rst_stats.rst_fail_cnt++;
1553
	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1554 1555 1556 1557 1558 1559 1560 1561
		hdev->rst_stats.rst_fail_cnt);

	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
		set_bit(hdev->reset_type, &hdev->reset_pending);

	if (hclgevf_is_reset_pending(hdev)) {
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		hclgevf_reset_task_schedule(hdev);
1562
	} else {
1563
		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1564
		hclgevf_dump_rst_info(hdev);
1565 1566 1567
	}
}

1568
static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1569
{
1570
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1571 1572
	int ret;

1573 1574 1575 1576
	/* Initialize ae_dev reset status as well, in case enet layer wants to
	 * know if device is undergoing reset
	 */
	ae_dev->reset_type = hdev->reset_type;
1577
	hdev->rst_stats.rst_cnt++;
1578

1579
	rtnl_lock();
1580
	/* bring down the nic to stop any ongoing TX/RX */
1581
	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1582
	rtnl_unlock();
1583
	if (ret)
1584
		return ret;
1585

1586 1587 1588 1589 1590 1591 1592
	return hclgevf_reset_prepare_wait(hdev);
}

static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	int ret;
1593

1594 1595
	hdev->rst_stats.hw_rst_done_cnt++;

1596
	rtnl_lock();
G
Guojia Liao 已提交
1597
	/* now, re-initialize the nic client and ae device */
1598
	ret = hclgevf_reset_stack(hdev);
1599
	rtnl_unlock();
1600
	if (ret) {
1601
		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1602
		return ret;
1603
	}
1604

1605 1606
	hdev->last_reset_time = jiffies;
	ae_dev->reset_type = HNAE3_NONE_RESET;
1607
	hdev->rst_stats.rst_done_cnt++;
1608
	hdev->rst_stats.rst_fail_cnt = 0;
1609
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1610

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	return 0;
}

static void hclgevf_reset(struct hclgevf_dev *hdev)
{
	if (hclgevf_reset_prepare(hdev))
		goto err_reset;

	/* check if VF could successfully fetch the hardware reset completion
	 * status from the hardware
	 */
	if (hclgevf_reset_wait(hdev)) {
		/* can't do much in this situation, will disable VF */
		dev_err(&hdev->pdev->dev,
			"failed to fetch H/W reset completion status\n");
		goto err_reset;
	}

	if (hclgevf_reset_rebuild(hdev))
		goto err_reset;

	return;

1634
err_reset:
1635
	hclgevf_reset_err_handle(hdev);
1636 1637
}

1638 1639 1640 1641 1642
static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
						     unsigned long *addr)
{
	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;

1643
	/* return the highest priority reset level amongst all */
1644 1645 1646 1647 1648 1649
	if (test_bit(HNAE3_VF_RESET, addr)) {
		rst_level = HNAE3_VF_RESET;
		clear_bit(HNAE3_VF_RESET, addr);
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1650 1651 1652
		rst_level = HNAE3_VF_FULL_RESET;
		clear_bit(HNAE3_VF_FULL_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1653 1654 1655 1656
	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_PF_FUNC_RESET;
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1657 1658 1659
	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_FUNC_RESET;
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1660 1661 1662
	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
		rst_level = HNAE3_FLR_RESET;
		clear_bit(HNAE3_FLR_RESET, addr);
1663 1664 1665 1666 1667
	}

	return rst_level;
}

1668 1669
static void hclgevf_reset_event(struct pci_dev *pdev,
				struct hnae3_handle *handle)
1670
{
1671 1672
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	struct hclgevf_dev *hdev = ae_dev->priv;
1673 1674 1675

	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");

1676
	if (hdev->default_reset_request)
1677
		hdev->reset_level =
1678 1679 1680
			hclgevf_get_reset_level(hdev,
						&hdev->default_reset_request);
	else
1681
		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1682

1683 1684 1685
	/* reset of this VF requested */
	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
	hclgevf_reset_task_schedule(hdev);
1686

1687
	hdev->last_reset_time = jiffies;
1688 1689
}

1690 1691 1692 1693 1694 1695 1696 1697
static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
					  enum hnae3_reset_type rst_type)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	set_bit(rst_type, &hdev->default_reset_request);
}

1698 1699 1700 1701 1702
static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
{
	writel(en ? 1 : 0, vector->addr);
}

1703 1704
static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
{
1705 1706 1707
#define HCLGEVF_FLR_RETRY_WAIT_MS	500
#define HCLGEVF_FLR_RETRY_CNT		5

1708
	struct hclgevf_dev *hdev = ae_dev->priv;
1709 1710
	int retry_cnt = 0;
	int ret;
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
retry:
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	hdev->reset_type = HNAE3_FLR_RESET;
	ret = hclgevf_reset_prepare(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
			ret);
		if (hdev->reset_pending ||
		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
			dev_err(&hdev->pdev->dev,
				"reset_pending:0x%lx, retry_cnt:%d\n",
				hdev->reset_pending, retry_cnt);
			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
			up(&hdev->reset_sem);
			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
			goto retry;
		}
	}
1731

1732 1733 1734 1735
	/* disable misc vector before FLR done */
	hclgevf_enable_vector(&hdev->misc_vector, false);
	hdev->rst_stats.flr_rst_cnt++;
}
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	hclgevf_enable_vector(&hdev->misc_vector, true);

	ret = hclgevf_reset_rebuild(hdev);
	if (ret)
		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
			 ret);

	hdev->reset_type = HNAE3_NONE_RESET;
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	up(&hdev->reset_sem);
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->fw_version;
}

static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
{
	struct hclgevf_misc_vector *vector = &hdev->misc_vector;

	vector->vector_irq = pci_irq_vector(hdev->pdev,
					    HCLGEVF_MISC_VECTOR_NUM);
	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
	/* vector status always valid for Vector 0 */
	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;

	hdev->num_msi_left -= 1;
	hdev->num_msi_used += 1;
}

1776 1777
void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
{
1778 1779 1780
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
			      &hdev->state))
1781
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1782 1783
}

1784
void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1785
{
1786 1787 1788
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
			      &hdev->state))
1789
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1790 1791
}

1792 1793
static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
				  unsigned long delay)
1794
{
1795 1796
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1797
		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1798 1799
}

1800
static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1801
{
1802 1803
#define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3

1804
	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1805 1806
		return;

1807 1808
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1809

1810 1811 1812
	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
			       &hdev->reset_state)) {
		/* PF has initmated that it is about to reset the hardware.
1813 1814 1815
		 * We now have to poll & check if hardware has actually
		 * completed the reset sequence. On hardware reset completion,
		 * VF needs to reset the client and ae device.
1816 1817 1818
		 */
		hdev->reset_attempts = 0;

1819 1820 1821
		hdev->last_reset_time = jiffies;
		while ((hdev->reset_type =
			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1822 1823
		       != HNAE3_NONE_RESET)
			hclgevf_reset(hdev);
1824 1825 1826
	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
				      &hdev->reset_state)) {
		/* we could be here when either of below happens:
1827
		 * 1. reset was initiated due to watchdog timeout caused by
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
		 *    a. IMP was earlier reset and our TX got choked down and
		 *       which resulted in watchdog reacting and inducing VF
		 *       reset. This also means our cmdq would be unreliable.
		 *    b. problem in TX due to other lower layer(example link
		 *       layer not functioning properly etc.)
		 * 2. VF reset might have been initiated due to some config
		 *    change.
		 *
		 * NOTE: Theres no clear way to detect above cases than to react
		 * to the response of PF for this reset request. PF will ack the
		 * 1b and 2. cases but we will not get any intimation about 1a
		 * from PF as cmdq would be in unreliable state i.e. mailbox
		 * communication between PF and VF would be broken.
G
Guojia Liao 已提交
1841 1842
		 *
		 * if we are never geting into pending state it means either:
1843 1844 1845 1846 1847 1848
		 * 1. PF is not receiving our request which could be due to IMP
		 *    reset
		 * 2. PF is screwed
		 * We cannot do much for 2. but to check first we can try reset
		 * our PCIe + stack and see if it alleviates the problem.
		 */
1849
		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1850
			/* prepare for full reset of stack + pcie interface */
1851
			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1852 1853 1854 1855 1856 1857

			/* "defer" schedule the reset task again */
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		} else {
			hdev->reset_attempts++;

1858 1859
			set_bit(hdev->reset_level, &hdev->reset_pending);
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1860
		}
1861
		hclgevf_reset_task_schedule(hdev);
1862
	}
1863

1864
	hdev->reset_type = HNAE3_NONE_RESET;
1865
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1866
	up(&hdev->reset_sem);
1867 1868
}

1869
static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1870
{
1871 1872
	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
		return;
1873 1874 1875 1876

	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
		return;

1877
	hclgevf_mbx_async_handler(hdev);
1878 1879 1880 1881

	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
}

1882
static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1883 1884 1885 1886
{
	u8 respmsg;
	int ret;

1887
	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1888 1889
		return;

1890
	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1891
				   0, false, &respmsg, sizeof(respmsg));
1892 1893 1894 1895 1896
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF sends keep alive cmd failed(=%d)\n", ret);
}

1897
static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1898
{
1899 1900
	unsigned long delta = round_jiffies_relative(HZ);
	struct hnae3_handle *handle = &hdev->nic;
1901

1902 1903
	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
		delta = jiffies - hdev->last_serv_processed;
1904

1905 1906 1907 1908
		if (delta < round_jiffies_relative(HZ)) {
			delta = round_jiffies_relative(HZ) - delta;
			goto out;
		}
1909
	}
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	hdev->serv_processed_cnt++;
	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
		hclgevf_keep_alive(hdev);

	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
		hdev->last_serv_processed = jiffies;
		goto out;
	}

	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
		hclgevf_tqps_update_stats(handle);

1923 1924 1925 1926 1927
	/* request the link status from the PF. PF would be able to tell VF
	 * about such updates in future so we might remove this later
	 */
	hclgevf_request_link_info(hdev);

1928 1929
	hclgevf_update_link_mode(hdev);

1930 1931
	hclgevf_sync_vlan_filter(hdev);

1932
	hdev->last_serv_processed = jiffies;
1933

1934 1935 1936 1937 1938 1939 1940 1941
out:
	hclgevf_task_schedule(hdev, delta);
}

static void hclgevf_service_task(struct work_struct *work)
{
	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
						service_task.work);
1942

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
	hclgevf_periodic_service_task(hdev);

	/* Handle reset and mbx again in case periodical task delays the
	 * handling by calling hclgevf_task_schedule() in
	 * hclgevf_periodic_service_task()
	 */
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
1953 1954 1955 1956 1957 1958 1959
}

static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
{
	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
}

1960 1961
static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
						      u32 *clearval)
1962
{
1963
	u32 val, cmdq_stat_reg, rst_ing_reg;
1964 1965

	/* fetch the events from their corresponding regs */
1966 1967
	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
1968

1969
	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1970 1971 1972 1973 1974
		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
		dev_info(&hdev->pdev->dev,
			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1975
		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1976
		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1977
		hdev->rst_stats.vf_rst_cnt++;
1978 1979 1980 1981 1982 1983
		/* set up VF hardware reset status, its PF will clear
		 * this status when PF has initialized done.
		 */
		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
				  val | HCLGEVF_VF_RST_ING_BIT);
1984 1985 1986
		return HCLGEVF_VECTOR0_EVENT_RST;
	}

1987
	/* check for vector0 mailbox(=CMDQ RX) event source */
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
		/* for revision 0x21, clearing interrupt is writing bit 0
		 * to the clear register, writing bit 1 means to keep the
		 * old value.
		 * for revision 0x20, the clear register is a read & write
		 * register, so we should just write 0 to the bit we are
		 * handling, and keep other bits as cmdq_stat_reg.
		 */
		if (hdev->pdev->revision >= 0x21)
			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
		else
			*clearval = cmdq_stat_reg &
				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);

2002
		return HCLGEVF_VECTOR0_EVENT_MBX;
2003 2004 2005 2006
	}

	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");

2007
	return HCLGEVF_VECTOR0_EVENT_OTHER;
2008 2009 2010 2011
}

static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
{
2012
	enum hclgevf_evt_cause event_cause;
2013 2014 2015 2016
	struct hclgevf_dev *hdev = data;
	u32 clearval;

	hclgevf_enable_vector(&hdev->misc_vector, false);
2017
	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2018

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	switch (event_cause) {
	case HCLGEVF_VECTOR0_EVENT_RST:
		hclgevf_reset_task_schedule(hdev);
		break;
	case HCLGEVF_VECTOR0_EVENT_MBX:
		hclgevf_mbx_handler(hdev);
		break;
	default:
		break;
	}
2029

2030 2031 2032 2033
	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
		hclgevf_clear_event_cause(hdev, clearval);
		hclgevf_enable_vector(&hdev->misc_vector, true);
	}
2034 2035 2036 2037 2038 2039 2040 2041

	return IRQ_HANDLED;
}

static int hclgevf_configure(struct hclgevf_dev *hdev)
{
	int ret;

2042 2043 2044 2045 2046
	/* get current port based vlan state from PF */
	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
	if (ret)
		return ret;

2047
	/* get queue configuration from PF */
2048
	ret = hclgevf_get_queue_info(hdev);
2049 2050
	if (ret)
		return ret;
2051 2052 2053 2054 2055 2056

	/* get queue depth info from PF */
	ret = hclgevf_get_queue_depth(hdev);
	if (ret)
		return ret;

2057 2058 2059 2060
	ret = hclgevf_get_pf_media_type(hdev);
	if (ret)
		return ret;

2061 2062 2063 2064
	/* get tc configuration from PF */
	return hclgevf_get_tc_info(hdev);
}

2065 2066 2067
static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
2068
	struct hclgevf_dev *hdev;
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
	if (!hdev)
		return -ENOMEM;

	hdev->pdev = pdev;
	hdev->ae_dev = ae_dev;
	ae_dev->priv = hdev;

	return 0;
}

2081 2082 2083 2084 2085
static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *roce = &hdev->roce;
	struct hnae3_handle *nic = &hdev->nic;

2086
	roce->rinfo.num_vectors = hdev->num_roce_msix;
2087 2088 2089 2090 2091

	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
	    hdev->num_msi_left == 0)
		return -EINVAL;

2092
	roce->rinfo.base_vector = hdev->roce_base_vector;
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

	roce->rinfo.netdev = nic->kinfo.netdev;
	roce->rinfo.roce_io_base = hdev->hw.io_base;

	roce->pdev = nic->pdev;
	roce->ae_algo = nic->ae_algo;
	roce->numa_node_mask = nic->numa_node_mask;

	return 0;
}

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
{
	struct hclgevf_cfg_gro_status_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	if (!hnae3_dev_gro_supported(hdev))
		return 0;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
				     false);
	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;

	req->gro_en = cpu_to_le16(en ? 1 : 0);

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF GRO hardware config cmd failed, ret = %d.\n", ret);

	return ret;
}

2127 2128 2129
static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
{
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2130 2131
	int ret;
	u32 i;
2132

2133
	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2134

2135
	if (hdev->pdev->revision >= 0x21) {
2136 2137 2138
		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
		       HCLGEVF_RSS_KEY_SIZE);
2139 2140 2141 2142 2143

		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
					       rss_cfg->rss_hash_key);
		if (ret)
			return ret;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv4_udp_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv6_udp_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
					HCLGEVF_RSS_INPUT_TUPLE_OTHER;

		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
		if (ret)
			return ret;
2165 2166
	}

2167
	/* Initialize RSS indirect table */
2168
	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2169
		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2170 2171 2172 2173 2174

	ret = hclgevf_set_rss_indir_table(hdev);
	if (ret)
		return ret;

2175
	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2176 2177 2178 2179 2180 2181 2182 2183
}

static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
{
	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
				       false);
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
{
#define HCLGEVF_FLUSH_LINK_TIMEOUT	100000

	unsigned long last = hdev->serv_processed_cnt;
	int i = 0;

	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
	       last == hdev->serv_processed_cnt)
		usleep_range(1, 1);
}

2197 2198 2199 2200 2201
static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (enable) {
2202
		hclgevf_task_schedule(hdev, 0);
2203
	} else {
2204
		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2205 2206 2207 2208

		/* flush memory to make sure DOWN is seen by service task */
		smp_mb__before_atomic();
		hclgevf_flush_link_update(hdev);
2209 2210 2211
	}
}

2212 2213 2214 2215 2216 2217 2218 2219
static int hclgevf_ae_start(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	hclgevf_reset_tqp_stats(handle);

	hclgevf_request_link_info(hdev);

2220 2221
	hclgevf_update_link_mode(hdev);

2222 2223 2224 2225 2226 2227 2228 2229
	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);

	return 0;
}

static void hclgevf_ae_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2230
	int i;
2231

2232 2233
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);

2234 2235 2236 2237
	if (hdev->reset_type != HNAE3_VF_RESET)
		for (i = 0; i < handle->kinfo.num_tqps; i++)
			if (hclgevf_reset_tqp(handle, i))
				break;
2238

2239
	hclgevf_reset_tqp_stats(handle);
2240
	hclgevf_update_link_status(hdev, 0);
2241 2242
}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 msg_data;

	msg_data = alive ? 1 : 0;
	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
				    0, &msg_data, 1, false, NULL, 0);
}

static int hclgevf_client_start(struct hnae3_handle *handle)
{
2255 2256 2257 2258 2259
	int ret;

	ret = hclgevf_set_alive(handle, true);
	if (ret)
		return ret;
2260

2261
	return 0;
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
}

static void hclgevf_client_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;

	ret = hclgevf_set_alive(handle, false);
	if (ret)
		dev_warn(&hdev->pdev->dev,
			 "%s failed %d\n", __func__, ret);
}

2275 2276 2277 2278
static void hclgevf_state_init(struct hclgevf_dev *hdev)
{
	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2279
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2280

2281
	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2282

2283
	mutex_init(&hdev->mbx_resp.mbx_mutex);
2284
	sema_init(&hdev->reset_sem, 1);
2285 2286 2287 2288 2289 2290 2291 2292

	/* bring the device down */
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
}

static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
{
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2293
	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2294

2295 2296
	if (hdev->service_task.work.func)
		cancel_delayed_work_sync(&hdev->service_task);
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
}

static int hclgevf_init_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int vectors;
	int i;

2307
	if (hnae3_dev_roce_supported(hdev))
2308 2309 2310 2311 2312
		vectors = pci_alloc_irq_vectors(pdev,
						hdev->roce_base_msix_offset + 1,
						hdev->num_msi,
						PCI_IRQ_MSIX);
	else
2313 2314
		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
						hdev->num_msi,
2315
						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2316 2317 2318 2319 2320 2321 2322 2323 2324

	if (vectors < 0) {
		dev_err(&pdev->dev,
			"failed(%d) to allocate MSI/MSI-X vectors\n",
			vectors);
		return vectors;
	}
	if (vectors < hdev->num_msi)
		dev_warn(&hdev->pdev->dev,
2325
			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2326 2327 2328 2329
			 hdev->num_msi, vectors);

	hdev->num_msi = vectors;
	hdev->num_msi_left = vectors;
2330

2331
	hdev->base_msi_vector = pdev->irq;
2332
	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
					   sizeof(u16), GFP_KERNEL);
	if (!hdev->vector_status) {
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	for (i = 0; i < hdev->num_msi; i++)
		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;

	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
					sizeof(int), GFP_KERNEL);
	if (!hdev->vector_irq) {
2347
		devm_kfree(&pdev->dev, hdev->vector_status);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	return 0;
}

static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

2359 2360
	devm_kfree(&pdev->dev, hdev->vector_status);
	devm_kfree(&pdev->dev, hdev->vector_irq);
2361 2362 2363 2364 2365
	pci_free_irq_vectors(pdev);
}

static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
{
2366
	int ret;
2367 2368 2369

	hclgevf_get_misc_vector(hdev);

2370 2371
	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
		 HCLGEVF_NAME, pci_name(hdev->pdev));
2372
	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2373
			  0, hdev->misc_vector.name, hdev);
2374 2375 2376 2377 2378 2379
	if (ret) {
		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
			hdev->misc_vector.vector_irq);
		return ret;
	}

2380 2381
	hclgevf_clear_event_cause(hdev, 0);

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	/* enable misc. vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, true);

	return ret;
}

static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
{
	/* disable misc vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, false);
2392
	synchronize_irq(hdev->misc_vector.vector_irq);
2393 2394 2395 2396
	free_irq(hdev->misc_vector.vector_irq, hdev);
	hclgevf_free_vector(hdev, 0);
}

2397 2398 2399 2400 2401 2402
static void hclgevf_info_show(struct hclgevf_dev *hdev)
{
	struct device *dev = &hdev->pdev->dev;

	dev_info(dev, "VF info begin:\n");

2403 2404 2405 2406 2407 2408
	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
	dev_info(dev, "PF media type of this VF: %u\n",
2409 2410 2411 2412 2413
		 hdev->hw.mac.media_type);

	dev_info(dev, "VF info end.\n");
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
					    struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	ret = client->ops->init_instance(&hdev->nic);
	if (ret)
		return ret;

	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
	hnae3_set_client_init_flag(client, ae_dev, 1);

	if (netif_msg_drv(&hdev->nic))
		hclgevf_info_show(hdev);

	return 0;
}

static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
					     struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
	    !hdev->nic_client)
		return 0;

	ret = hclgevf_init_roce_base_info(hdev);
	if (ret)
		return ret;

	ret = client->ops->init_instance(&hdev->roce);
	if (ret)
		return ret;

	hnae3_set_client_init_flag(client, ae_dev, 1);

	return 0;
}

2456 2457
static int hclgevf_init_client_instance(struct hnae3_client *client,
					struct hnae3_ae_dev *ae_dev)
2458
{
2459
	struct hclgevf_dev *hdev = ae_dev->priv;
2460 2461 2462 2463 2464 2465 2466
	int ret;

	switch (client->type) {
	case HNAE3_CLIENT_KNIC:
		hdev->nic_client = client;
		hdev->nic.client = client;

2467
		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2468
		if (ret)
2469
			goto clear_nic;
2470

2471 2472 2473 2474
		ret = hclgevf_init_roce_client_instance(ae_dev,
							hdev->roce_client);
		if (ret)
			goto clear_roce;
2475

2476 2477
		break;
	case HNAE3_CLIENT_ROCE:
2478 2479 2480 2481
		if (hnae3_dev_roce_supported(hdev)) {
			hdev->roce_client = client;
			hdev->roce.client = client;
		}
2482

2483 2484 2485
		ret = hclgevf_init_roce_client_instance(ae_dev, client);
		if (ret)
			goto clear_roce;
2486

2487 2488 2489
		break;
	default:
		return -EINVAL;
2490 2491 2492
	}

	return 0;
2493 2494 2495 2496 2497 2498 2499 2500 2501

clear_nic:
	hdev->nic_client = NULL;
	hdev->nic.client = NULL;
	return ret;
clear_roce:
	hdev->roce_client = NULL;
	hdev->roce.client = NULL;
	return ret;
2502 2503
}

2504 2505
static void hclgevf_uninit_client_instance(struct hnae3_client *client,
					   struct hnae3_ae_dev *ae_dev)
2506
{
2507 2508
	struct hclgevf_dev *hdev = ae_dev->priv;

2509
	/* un-init roce, if it exists */
2510
	if (hdev->roce_client) {
2511
		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2512 2513 2514
		hdev->roce_client = NULL;
		hdev->roce.client = NULL;
	}
2515 2516

	/* un-init nic/unic, if this was not called by roce client */
2517 2518
	if (client->ops->uninit_instance && hdev->nic_client &&
	    client->type != HNAE3_CLIENT_ROCE) {
2519 2520
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

2521
		client->ops->uninit_instance(&hdev->nic, 0);
2522 2523 2524
		hdev->nic_client = NULL;
		hdev->nic.client = NULL;
	}
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
}

static int hclgevf_pci_init(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw;
	int ret;

	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable PCI device\n");
2536
		return ret;
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	}

	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (ret) {
		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
		goto err_disable_device;
	}

	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
	if (ret) {
		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
		goto err_disable_device;
	}

	pci_set_master(pdev);
	hw = &hdev->hw;
	hw->hdev = hdev;
P
Peng Li 已提交
2554
	hw->io_base = pci_iomap(pdev, 2, 0);
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	if (!hw->io_base) {
		dev_err(&pdev->dev, "can't map configuration register space\n");
		ret = -ENOMEM;
		goto err_clr_master;
	}

	return 0;

err_clr_master:
	pci_clear_master(pdev);
	pci_release_regions(pdev);
err_disable_device:
	pci_disable_device(pdev);
2568

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	return ret;
}

static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

	pci_iounmap(pdev, hdev->hw.io_base);
	pci_clear_master(pdev);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
{
	struct hclgevf_query_res_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"query vf resource failed, ret = %d.\n", ret);
		return ret;
	}

	req = (struct hclgevf_query_res_cmd *)desc.data;

2598
	if (hnae3_dev_roce_supported(hdev)) {
2599
		hdev->roce_base_msix_offset =
2600
		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2601 2602 2603
				HCLGEVF_MSIX_OFT_ROCEE_M,
				HCLGEVF_MSIX_OFT_ROCEE_S);
		hdev->num_roce_msix =
2604
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2605 2606
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);

2607 2608 2609
		/* nic's msix numbers is always equals to the roce's. */
		hdev->num_nic_msix = hdev->num_roce_msix;

2610 2611 2612 2613 2614 2615 2616
		/* VF should have NIC vectors and Roce vectors, NIC vectors
		 * are queued before Roce vectors. The offset is fixed to 64.
		 */
		hdev->num_msi = hdev->num_roce_msix +
				hdev->roce_base_msix_offset;
	} else {
		hdev->num_msi =
2617
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2618
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2619 2620 2621 2622 2623 2624 2625 2626 2627

		hdev->num_nic_msix = hdev->num_msi;
	}

	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
		dev_err(&hdev->pdev->dev,
			"Just %u msi resources, not enough for vf(min:2).\n",
			hdev->num_nic_msix);
		return -EINVAL;
2628 2629 2630 2631 2632
	}

	return 0;
}

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret = 0;

	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		pci_set_master(pdev);
		ret = hclgevf_init_msi(hdev);
		if (ret) {
			dev_err(&pdev->dev,
				"failed(%d) to init MSI/MSI-X\n", ret);
			return ret;
		}

		ret = hclgevf_misc_irq_init(hdev);
		if (ret) {
			hclgevf_uninit_msi(hdev);
			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
				ret);
			return ret;
		}

		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	return ret;
}

2668
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2669
{
2670
	struct pci_dev *pdev = hdev->pdev;
2671 2672
	int ret;

2673 2674 2675 2676 2677 2678
	ret = hclgevf_pci_reset(hdev);
	if (ret) {
		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
		return ret;
	}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	ret = hclgevf_cmd_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "cmd failed %d\n", ret);
		return ret;
	}

	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		return ret;
	}

2692 2693 2694 2695
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		return ret;

2696 2697 2698 2699 2700
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		return ret;
2701
	}
2702

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	dev_info(&hdev->pdev->dev, "Reset done\n");

	return 0;
}

static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret;

2713
	ret = hclgevf_pci_init(hdev);
2714
	if (ret)
2715 2716
		return ret;

2717
	ret = hclgevf_cmd_queue_init(hdev);
2718
	if (ret)
2719 2720
		goto err_cmd_queue_init;

2721 2722 2723 2724 2725 2726
	ret = hclgevf_cmd_init(hdev);
	if (ret)
		goto err_cmd_init;

	/* Get vf resource */
	ret = hclgevf_query_vf_resource(hdev);
2727
	if (ret)
2728
		goto err_cmd_init;
2729

2730 2731 2732
	ret = hclgevf_init_msi(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2733
		goto err_cmd_init;
2734 2735 2736
	}

	hclgevf_state_init(hdev);
2737
	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2738
	hdev->reset_type = HNAE3_NONE_RESET;
2739 2740

	ret = hclgevf_misc_irq_init(hdev);
2741
	if (ret)
2742 2743
		goto err_misc_irq_init;

2744 2745
	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	ret = hclgevf_configure(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
		goto err_config;
	}

	ret = hclgevf_alloc_tqps(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
		goto err_config;
	}

	ret = hclgevf_set_handle_info(hdev);
2759
	if (ret)
2760 2761
		goto err_config;

2762 2763 2764 2765
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		goto err_config;

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
	/* Initialize RSS for this VF */
	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		goto err_config;
	}

	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		goto err_config;
	}

2781
	hdev->last_reset_time = jiffies;
2782 2783
	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
		 HCLGEVF_DRIVER_NAME);
2784

2785 2786
	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));

2787 2788 2789 2790 2791 2792 2793
	return 0;

err_config:
	hclgevf_misc_irq_uninit(hdev);
err_misc_irq_init:
	hclgevf_state_uninit(hdev);
	hclgevf_uninit_msi(hdev);
2794
err_cmd_init:
2795 2796
	hclgevf_cmd_uninit(hdev);
err_cmd_queue_init:
2797
	hclgevf_pci_uninit(hdev);
2798
	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2799 2800 2801
	return ret;
}

2802
static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2803 2804
{
	hclgevf_state_uninit(hdev);
2805 2806 2807 2808 2809 2810

	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
	}

2811
	hclgevf_pci_uninit(hdev);
2812
	hclgevf_cmd_uninit(hdev);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
}

static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
	int ret;

	ret = hclgevf_alloc_hdev(ae_dev);
	if (ret) {
		dev_err(&pdev->dev, "hclge device allocation failed\n");
		return ret;
	}

	ret = hclgevf_init_hdev(ae_dev->priv);
2827
	if (ret) {
2828
		dev_err(&pdev->dev, "hclge device initialization failed\n");
2829 2830
		return ret;
	}
2831

2832
	return 0;
2833 2834 2835 2836 2837 2838 2839
}

static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	hclgevf_uninit_hdev(hdev);
2840 2841 2842
	ae_dev->priv = NULL;
}

2843 2844 2845 2846 2847
static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo = &nic->kinfo;

2848 2849
	return min_t(u32, hdev->rss_size_max,
		     hdev->num_tqps / kinfo->num_tc);
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
}

/**
 * hclgevf_get_channels - Get the current channels enabled and max supported.
 * @handle: hardware information for network interface
 * @ch: ethtool channels structure
 *
 * We don't support separate tx and rx queues as channels. The other count
 * represents how many queues are being used for control. max_combined counts
 * how many queue pairs we can support. They may not be mapped 1 to 1 with
 * q_vectors since we support a lot more queue pairs than q_vectors.
 **/
static void hclgevf_get_channels(struct hnae3_handle *handle,
				 struct ethtool_channels *ch)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	ch->max_combined = hclgevf_get_max_channels(hdev);
	ch->other_count = 0;
	ch->max_other = 0;
2870
	ch->combined_count = handle->kinfo.rss_size;
2871 2872
}

2873
static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2874
					  u16 *alloc_tqps, u16 *max_rss_size)
2875 2876 2877
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

2878
	*alloc_tqps = hdev->num_tqps;
2879 2880 2881
	*max_rss_size = hdev->rss_size_max;
}

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
static void hclgevf_update_rss_size(struct hnae3_handle *handle,
				    u32 new_tqps_num)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u16 max_rss_size;

	kinfo->req_rss_size = new_tqps_num;

	max_rss_size = min_t(u16, hdev->rss_size_max,
			     hdev->num_tqps / kinfo->num_tc);

	/* Use the user's configuration when it is not larger than
	 * max_rss_size, otherwise, use the maximum specification value.
	 */
	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
	    kinfo->req_rss_size <= max_rss_size)
		kinfo->rss_size = kinfo->req_rss_size;
	else if (kinfo->rss_size > max_rss_size ||
		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
		kinfo->rss_size = max_rss_size;

	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
}

static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
				bool rxfh_configured)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	u16 cur_rss_size = kinfo->rss_size;
	u16 cur_tqps = kinfo->num_tqps;
	u32 *rss_indir;
	unsigned int i;
	int ret;

	hclgevf_update_rss_size(handle, new_tqps_num);

	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
	if (ret)
		return ret;

	/* RSS indirection table has been configuared by user */
	if (rxfh_configured)
		goto out;

	/* Reinitializes the rss indirect table according to the new RSS size */
	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
	if (!rss_indir)
		return -ENOMEM;

	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
		rss_indir[i] = i % kinfo->rss_size;

	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
	if (ret)
		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
			ret);

	kfree(rss_indir);

out:
	if (!ret)
		dev_info(&hdev->pdev->dev,
			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
			 cur_rss_size, kinfo->rss_size,
			 cur_tqps, kinfo->rss_size * kinfo->num_tc);

	return ret;
}

2953 2954 2955 2956 2957 2958 2959
static int hclgevf_get_status(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->hw.mac.link;
}

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
					    u8 *auto_neg, u32 *speed,
					    u8 *duplex)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (speed)
		*speed = hdev->hw.mac.speed;
	if (duplex)
		*duplex = hdev->hw.mac.duplex;
	if (auto_neg)
		*auto_neg = AUTONEG_DISABLE;
}

void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
				 u8 duplex)
{
	hdev->hw.mac.speed = speed;
	hdev->hw.mac.duplex = duplex;
}

2981
static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2982 2983 2984 2985 2986 2987
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_config_gro(hdev, enable);
}

2988 2989
static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
				   u8 *module_type)
2990 2991
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2992

2993 2994
	if (media_type)
		*media_type = hdev->hw.mac.media_type;
2995 2996 2997

	if (module_type)
		*module_type = hdev->hw.mac.module_type;
2998 2999
}

3000 3001 3002 3003
static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3004
	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
}

static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
}

static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3018
	return hdev->rst_stats.hw_rst_done_cnt;
3019 3020
}

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
static void hclgevf_get_link_mode(struct hnae3_handle *handle,
				  unsigned long *supported,
				  unsigned long *advertising)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	*supported = hdev->hw.mac.supported;
	*advertising = hdev->hw.mac.advertising;
}

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
#define MAX_SEPARATE_NUM	4
#define SEPARATOR_VALUE		0xFFFFFFFF
#define REG_NUM_PER_LINE	4
#define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))

static int hclgevf_get_regs_len(struct hnae3_handle *handle)
{
	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;

	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
}

static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
			     void *data)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int i, j, reg_um, separator_num;
	u32 *reg = data;

	*version = hdev->fw_version;

	/* fetching per-VF registers values from VF PCIe register space */
	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_tqps; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  ring_reg_addr_list[i] +
						  0x200 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}

	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_msi_used - 1; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  tqp_intr_reg_addr_list[i] +
						  4 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
					u8 *port_base_vlan_info, u8 data_size)
{
	struct hnae3_handle *nic = &hdev->nic;

	rtnl_lock();
	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
	rtnl_unlock();

	/* send msg to PF and wait update port based vlan info */
	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
			     port_base_vlan_info, data_size,
			     false, NULL, 0);

	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
	else
		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;

	rtnl_lock();
	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
	rtnl_unlock();
}

3122 3123 3124
static const struct hnae3_ae_ops hclgevf_ops = {
	.init_ae_dev = hclgevf_init_ae_dev,
	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3125 3126
	.flr_prepare = hclgevf_flr_prepare,
	.flr_done = hclgevf_flr_done,
3127 3128
	.init_client_instance = hclgevf_init_client_instance,
	.uninit_client_instance = hclgevf_uninit_client_instance,
3129 3130
	.start = hclgevf_ae_start,
	.stop = hclgevf_ae_stop,
3131 3132
	.client_start = hclgevf_client_start,
	.client_stop = hclgevf_client_stop,
3133 3134 3135
	.map_ring_to_vector = hclgevf_map_ring_to_vector,
	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
	.get_vector = hclgevf_get_vector,
3136
	.put_vector = hclgevf_put_vector,
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	.reset_queue = hclgevf_reset_tqp,
	.get_mac_addr = hclgevf_get_mac_addr,
	.set_mac_addr = hclgevf_set_mac_addr,
	.add_uc_addr = hclgevf_add_uc_addr,
	.rm_uc_addr = hclgevf_rm_uc_addr,
	.add_mc_addr = hclgevf_add_mc_addr,
	.rm_mc_addr = hclgevf_rm_mc_addr,
	.get_stats = hclgevf_get_stats,
	.update_stats = hclgevf_update_stats,
	.get_strings = hclgevf_get_strings,
	.get_sset_count = hclgevf_get_sset_count,
	.get_rss_key_size = hclgevf_get_rss_key_size,
	.get_rss_indir_size = hclgevf_get_rss_indir_size,
	.get_rss = hclgevf_get_rss,
	.set_rss = hclgevf_set_rss,
3152 3153
	.get_rss_tuple = hclgevf_get_rss_tuple,
	.set_rss_tuple = hclgevf_set_rss_tuple,
3154 3155 3156
	.get_tc_size = hclgevf_get_tc_size,
	.get_fw_version = hclgevf_get_fw_version,
	.set_vlan_filter = hclgevf_set_vlan_filter,
3157
	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3158
	.reset_event = hclgevf_reset_event,
3159
	.set_default_reset_request = hclgevf_set_def_reset_request,
3160
	.set_channels = hclgevf_set_channels,
3161
	.get_channels = hclgevf_get_channels,
3162
	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3163 3164
	.get_regs_len = hclgevf_get_regs_len,
	.get_regs = hclgevf_get_regs,
3165
	.get_status = hclgevf_get_status,
3166
	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3167
	.get_media_type = hclgevf_get_media_type,
3168 3169 3170
	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
	.ae_dev_resetting = hclgevf_ae_dev_resetting,
	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3171
	.set_gro_en = hclgevf_gro_en,
3172
	.set_mtu = hclgevf_set_mtu,
3173
	.get_global_queue_id = hclgevf_get_qid_global,
3174
	.set_timer_task = hclgevf_set_timer_task,
3175
	.get_link_mode = hclgevf_get_link_mode,
3176
	.set_promisc_mode = hclgevf_set_promisc_mode,
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
};

static struct hnae3_ae_algo ae_algovf = {
	.ops = &hclgevf_ops,
	.pdev_id_table = ae_algovf_pci_tbl,
};

static int hclgevf_init(void)
{
	pr_info("%s is initializing\n", HCLGEVF_NAME);

3188 3189 3190 3191 3192 3193
	hclgevf_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, HCLGEVF_NAME);
	if (!hclgevf_wq) {
		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
		return -ENOMEM;
	}

3194 3195 3196
	hnae3_register_ae_algo(&ae_algovf);

	return 0;
3197 3198 3199 3200 3201
}

static void hclgevf_exit(void)
{
	hnae3_unregister_ae_algo(&ae_algovf);
3202
	destroy_workqueue(hclgevf_wq);
3203 3204 3205 3206 3207 3208 3209 3210
}
module_init(hclgevf_init);
module_exit(hclgevf_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGEVF Driver");
MODULE_VERSION(HCLGEVF_MOD_VERSION);