hclgevf_main.c 100.9 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.

#include <linux/etherdevice.h>
5
#include <linux/iopoll.h>
6
#include <net/rtnetlink.h>
7 8 9 10 11 12 13
#include "hclgevf_cmd.h"
#include "hclgevf_main.h"
#include "hclge_mbx.h"
#include "hnae3.h"

#define HCLGEVF_NAME	"hclgevf"

14 15
#define HCLGEVF_RESET_MAX_FAIL_CNT	5

16
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 18 19
static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
				  unsigned long delay);

20 21
static struct hnae3_ae_algo ae_algovf;

22 23
static struct workqueue_struct *hclgevf_wq;

24
static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 26 27
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 29 30 31
	/* required last entry */
	{0, }
};

32 33 34 35 36 37 38 39
static const u8 hclgevf_hash_key[] = {
	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
};

40 41
MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);

42 43 44 45 46 47 48 49 50 51 52
static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
					 HCLGEVF_CMDQ_TX_DEPTH_REG,
					 HCLGEVF_CMDQ_TX_TAIL_REG,
					 HCLGEVF_CMDQ_TX_HEAD_REG,
					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
					 HCLGEVF_CMDQ_RX_DEPTH_REG,
					 HCLGEVF_CMDQ_RX_TAIL_REG,
					 HCLGEVF_CMDQ_RX_HEAD_REG,
					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
					 HCLGEVF_CMDQ_INTR_EN_REG,
					 HCLGEVF_CMDQ_INTR_GEN_REG};

static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
					   HCLGEVF_RST_ING,
					   HCLGEVF_GRO_EN_REG};

static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
					 HCLGEVF_RING_RX_ADDR_H_REG,
					 HCLGEVF_RING_RX_BD_NUM_REG,
					 HCLGEVF_RING_RX_BD_LENGTH_REG,
					 HCLGEVF_RING_RX_MERGE_EN_REG,
					 HCLGEVF_RING_RX_TAIL_REG,
					 HCLGEVF_RING_RX_HEAD_REG,
					 HCLGEVF_RING_RX_FBD_NUM_REG,
					 HCLGEVF_RING_RX_OFFSET_REG,
					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
					 HCLGEVF_RING_RX_STASH_REG,
					 HCLGEVF_RING_RX_BD_ERR_REG,
					 HCLGEVF_RING_TX_ADDR_L_REG,
					 HCLGEVF_RING_TX_ADDR_H_REG,
					 HCLGEVF_RING_TX_BD_NUM_REG,
					 HCLGEVF_RING_TX_PRIORITY_REG,
					 HCLGEVF_RING_TX_TC_REG,
					 HCLGEVF_RING_TX_MERGE_EN_REG,
					 HCLGEVF_RING_TX_TAIL_REG,
					 HCLGEVF_RING_TX_HEAD_REG,
					 HCLGEVF_RING_TX_FBD_NUM_REG,
					 HCLGEVF_RING_TX_OFFSET_REG,
					 HCLGEVF_RING_TX_EBD_NUM_REG,
					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
					 HCLGEVF_RING_TX_BD_ERR_REG,
					 HCLGEVF_RING_EN_REG};

static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
					     HCLGEVF_TQP_INTR_GL0_REG,
					     HCLGEVF_TQP_INTR_GL1_REG,
					     HCLGEVF_TQP_INTR_GL2_REG,
					     HCLGEVF_TQP_INTR_RL_REG};

94
static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95
{
96 97 98 99 100 101
	if (!handle->client)
		return container_of(handle, struct hclgevf_dev, nic);
	else if (handle->client->type == HNAE3_CLIENT_ROCE)
		return container_of(handle, struct hclgevf_dev, roce);
	else
		return container_of(handle, struct hclgevf_dev, nic);
102 103 104 105
}

static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
{
106
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 108 109 110 111 112
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_desc desc;
	struct hclgevf_tqp *tqp;
	int status;
	int i;

113 114
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 116 117 118 119 120 121 122 123 124 125 126 127
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_QUERY_RX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status,	i);
			return status;
		}
		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128
			le32_to_cpu(desc.data[1]);
129 130 131 132 133 134 135 136 137 138 139 140 141

		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
					     true);

		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"Query tqp stat fail, status = %d,queue = %d\n",
				status, i);
			return status;
		}
		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142
			le32_to_cpu(desc.data[1]);
143 144 145 146 147 148 149 150 151 152 153 154
	}

	return 0;
}

static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_tqp *tqp;
	u64 *buff = data;
	int i;

155 156
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 158 159
		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
	}
	for (i = 0; i < kinfo->num_tqps; i++) {
160
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 162 163 164 165 166 167 168
		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
	}

	return buff;
}

static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
{
169
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170

171
	return kinfo->num_tqps * 2;
172 173 174 175
}

static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
{
176
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177
	u8 *buff = data;
178
	int i;
179

180 181 182
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
183
		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 185 186 187
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

188 189 190
	for (i = 0; i < kinfo->num_tqps; i++) {
		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
						       struct hclgevf_tqp, q);
191
		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
			 tqp->index);
		buff += ETH_GSTRING_LEN;
	}

	return buff;
}

static void hclgevf_update_stats(struct hnae3_handle *handle,
				 struct net_device_stats *net_stats)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int status;

	status = hclgevf_tqps_update_stats(handle);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF update of TQPS stats fail, status = %d.\n",
			status);
}

static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
{
	if (strset == ETH_SS_TEST)
		return -EOPNOTSUPP;
	else if (strset == ETH_SS_STATS)
		return hclgevf_tqps_get_sset_count(handle, strset);

	return 0;
}

static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
				u8 *data)
{
	u8 *p = (char *)data;

	if (strset == ETH_SS_STATS)
		p = hclgevf_tqps_get_strings(handle, p);
}

static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
{
	hclgevf_tqps_get_stats(handle, data);
}

236 237 238 239 240 241 242 243 244 245
static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
				   u8 subcode)
{
	if (msg) {
		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
		msg->code = code;
		msg->subcode = subcode;
	}
}

246 247
static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
{
248
	struct hclge_vf_to_pf_msg send_msg;
249 250 251
	u8 resp_msg;
	int status;

252 253 254
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
				      sizeof(resp_msg));
255 256 257 258 259 260 261 262 263 264 265 266
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get TC info from PF failed %d",
			status);
		return status;
	}

	hdev->hw_tc_map = resp_msg;

	return 0;
}

267 268 269
static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
270
	struct hclge_vf_to_pf_msg send_msg;
271 272 273
	u8 resp_msg;
	int ret;

274 275 276 277
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
				   sizeof(u8));
278 279 280 281 282 283 284 285 286 287 288 289
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get port based vlan state failed %d",
			ret);
		return ret;
	}

	nic->port_base_vlan_state = resp_msg;

	return 0;
}

290
static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291
{
292
#define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 294 295 296
#define HCLGEVF_TQPS_ALLOC_OFFSET	0
#define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
#define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4

297
	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298
	struct hclge_vf_to_pf_msg send_msg;
299 300
	int status;

301 302
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 304 305 306 307 308 309 310
				      HCLGEVF_TQPS_RSS_INFO_LEN);
	if (status) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp info from PF failed %d",
			status);
		return status;
	}

311 312 313 314 315 316
	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
	       sizeof(u16));
317 318 319 320 321 322 323

	return 0;
}

static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
{
#define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 325 326
#define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
#define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2

327
	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328
	struct hclge_vf_to_pf_msg send_msg;
329 330
	int ret;

331 332
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 334 335 336 337 338 339 340
				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get tqp depth info from PF failed %d",
			ret);
		return ret;
	}

341 342 343 344
	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
	       sizeof(u16));
	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
	       sizeof(u16));
345 346 347 348

	return 0;
}

349 350 351
static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352
	struct hclge_vf_to_pf_msg send_msg;
353
	u16 qid_in_pf = 0;
354
	u8 resp_data[2];
355 356
	int ret;

357 358 359
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360
				   sizeof(resp_data));
361 362 363 364 365 366
	if (!ret)
		qid_in_pf = *(u16 *)resp_data;

	return qid_in_pf;
}

367 368
static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
{
369
	struct hclge_vf_to_pf_msg send_msg;
370
	u8 resp_msg[2];
371 372
	int ret;

373 374 375
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
				   sizeof(resp_msg));
376 377 378 379 380 381 382
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"VF request to get the pf port media type failed %d",
			ret);
		return ret;
	}

383 384
	hdev->hw.mac.media_type = resp_msg[0];
	hdev->hw.mac.module_type = resp_msg[1];
385 386 387 388

	return 0;
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
{
	struct hclgevf_tqp *tqp;
	int i;

	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
	if (!hdev->htqp)
		return -ENOMEM;

	tqp = hdev->htqp;

	for (i = 0; i < hdev->num_tqps; i++) {
		tqp->dev = &hdev->pdev->dev;
		tqp->index = i;

		tqp->q.ae_algo = &ae_algovf;
		tqp->q.buf_size = hdev->rx_buf_len;
407 408
		tqp->q.tx_desc_num = hdev->num_tx_desc;
		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 410 411 412 413 414 415 416 417 418 419 420 421 422

		/* need an extended offset to configure queues >=
		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
		 */
		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
			tqp->q.io_base = hdev->hw.io_base +
					 HCLGEVF_TQP_REG_OFFSET +
					 i * HCLGEVF_TQP_REG_SIZE;
		else
			tqp->q.io_base = hdev->hw.io_base +
					 HCLGEVF_TQP_REG_OFFSET +
					 HCLGEVF_TQP_EXT_REG_OFFSET +
					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
					 HCLGEVF_TQP_REG_SIZE;
423 424 425 426 427 428 429 430 431 432 433 434

		tqp++;
	}

	return 0;
}

static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo;
	u16 new_tqps = hdev->num_tqps;
435
	unsigned int i;
436
	u8 num_tc = 0;
437 438

	kinfo = &nic->kinfo;
439 440
	kinfo->num_tx_desc = hdev->num_tx_desc;
	kinfo->num_rx_desc = hdev->num_rx_desc;
441 442 443
	kinfo->rx_buf_len = hdev->rx_buf_len;
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
		if (hdev->hw_tc_map & BIT(i))
444
			num_tc++;
445

446 447 448 449
	num_tc = num_tc ? num_tc : 1;
	kinfo->tc_info.num_tc = num_tc;
	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
	new_tqps = kinfo->rss_size * num_tc;
450 451 452 453 454 455 456 457 458 459 460 461 462
	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);

	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
				  sizeof(struct hnae3_queue *), GFP_KERNEL);
	if (!kinfo->tqp)
		return -ENOMEM;

	for (i = 0; i < kinfo->num_tqps; i++) {
		hdev->htqp[i].q.handle = &hdev->nic;
		hdev->htqp[i].q.tqp_index = i;
		kinfo->tqp[i] = &hdev->htqp[i].q;
	}

463 464 465 466
	/* after init the max rss_size and tqps, adjust the default tqp numbers
	 * and rss size with the actual vector numbers
	 */
	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467
	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 469
				kinfo->rss_size);

470 471 472 473 474
	return 0;
}

static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
{
475
	struct hclge_vf_to_pf_msg send_msg;
476 477
	int status;

478 479
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 481 482 483 484 485 486
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed to fetch link status(%d) from PF", status);
}

void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
{
487
	struct hnae3_handle *rhandle = &hdev->roce;
488
	struct hnae3_handle *handle = &hdev->nic;
489
	struct hnae3_client *rclient;
490 491
	struct hnae3_client *client;

492 493 494
	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
		return;

495
	client = handle->client;
496
	rclient = hdev->roce_client;
497

498 499 500
	link_state =
		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;

501 502
	if (link_state != hdev->hw.mac.link) {
		client->ops->link_status_change(handle, !!link_state);
503 504
		if (rclient && rclient->ops->link_status_change)
			rclient->ops->link_status_change(rhandle, !!link_state);
505 506
		hdev->hw.mac.link = link_state;
	}
507 508

	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
509 510
}

511
static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
512
{
513 514 515 516
#define HCLGEVF_ADVERTISING	0
#define HCLGEVF_SUPPORTED	1

	struct hclge_vf_to_pf_msg send_msg;
517

518 519 520 521 522
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
	send_msg.data[0] = HCLGEVF_ADVERTISING;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	send_msg.data[0] = HCLGEVF_SUPPORTED;
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
523 524
}

525 526 527 528 529 530 531 532
static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	int ret;

	nic->ae_algo = &ae_algovf;
	nic->pdev = hdev->pdev;
	nic->numa_node_mask = hdev->numa_node_mask;
533
	nic->flags |= HNAE3_SUPPORT_VF;
534 535 536 537 538 539 540 541 542 543

	ret = hclgevf_knic_setup(hdev);
	if (ret)
		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
			ret);
	return ret;
}

static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
{
544 545 546 547 548 549
	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
		dev_warn(&hdev->pdev->dev,
			 "vector(vector_id %d) has been freed.\n", vector_id);
		return;
	}

550 551 552 553 554 555 556 557 558 559 560 561 562
	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
	hdev->num_msi_left += 1;
	hdev->num_msi_used -= 1;
}

static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
			      struct hnae3_vector_info *vector_info)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_vector_info *vector = vector_info;
	int alloc = 0;
	int i, j;

563
	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	vector_num = min(hdev->num_msi_left, vector_num);

	for (j = 0; j < vector_num; j++) {
		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
				vector->vector = pci_irq_vector(hdev->pdev, i);
				vector->io_addr = hdev->hw.io_base +
					HCLGEVF_VECTOR_REG_BASE +
					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
				hdev->vector_status[i] = 0;
				hdev->vector_irq[i] = vector->vector;

				vector++;
				alloc++;

				break;
			}
		}
	}
	hdev->num_msi_left -= alloc;
	hdev->num_msi_used += alloc;

	return alloc;
}

static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
{
	int i;

	for (i = 0; i < hdev->num_msi; i++)
		if (vector == hdev->vector_irq[i])
			return i;

	return -EINVAL;
}

600 601 602 603
static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
				    const u8 hfunc, const u8 *key)
{
	struct hclgevf_rss_config_cmd *req;
604
	unsigned int key_offset = 0;
605
	struct hclgevf_desc desc;
606
	int key_counts;
607 608 609
	int key_size;
	int ret;

610
	key_counts = HCLGEVF_RSS_KEY_SIZE;
611 612
	req = (struct hclgevf_rss_config_cmd *)desc.data;

613
	while (key_counts) {
614 615 616 617 618 619 620 621
		hclgevf_cmd_setup_basic_desc(&desc,
					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
					     false);

		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
		req->hash_config |=
			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);

622
		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
623 624 625
		memcpy(req->hash_key,
		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);

626 627
		key_counts -= key_size;
		key_offset++;
628 629 630 631 632 633 634 635 636 637 638 639
		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"Configure RSS config fail, status = %d\n",
				ret);
			return ret;
		}
	}

	return 0;
}

640 641 642 643 644 645 646 647 648 649
static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
{
	return HCLGEVF_RSS_KEY_SIZE;
}

static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
{
	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
	struct hclgevf_rss_indirection_table_cmd *req;
	struct hclgevf_desc desc;
650
	int rss_cfg_tbl_num;
651 652 653 654
	int status;
	int i, j;

	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
655 656
	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
			  HCLGEVF_RSS_CFG_TBL_SIZE;
657

658
	for (i = 0; i < rss_cfg_tbl_num; i++) {
659 660
		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
					     false);
661 662 663
		req->start_table_index =
			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
			req->rss_result[j] =
				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];

		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
		if (status) {
			dev_err(&hdev->pdev->dev,
				"VF failed(=%d) to set RSS indirection table\n",
				status);
			return status;
		}
	}

	return 0;
}

static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
{
	struct hclgevf_rss_tc_mode_cmd *req;
	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
	u16 tc_size[HCLGEVF_MAX_TC_NUM];
	struct hclgevf_desc desc;
	u16 roundup_size;
688
	unsigned int i;
689
	int status;
690 691 692 693 694 695 696 697 698 699 700 701 702 703

	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;

	roundup_size = roundup_pow_of_two(rss_size);
	roundup_size = ilog2(roundup_size);

	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
		tc_size[i] = roundup_size;
		tc_offset[i] = rss_size * i;
	}

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
704 705 706
		u16 mode = 0;

		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
P
Peng Li 已提交
707
			      (tc_valid[i] & 0x1));
708
		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
P
Peng Li 已提交
709
				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
710
		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
P
Peng Li 已提交
711
				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
712 713

		req->rss_tc_mode[i] = cpu_to_le16(mode);
714 715 716 717 718 719 720 721 722
	}
	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"VF failed(=%d) to set rss tc mode\n", status);

	return status;
}

J
Jian Shen 已提交
723 724 725 726 727 728
/* for revision 0x20, vf shared the same rss config with pf */
static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RSS_MBX_RESP_LEN	8
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
729
	struct hclge_vf_to_pf_msg send_msg;
J
Jian Shen 已提交
730 731 732 733
	u16 msg_num, hash_key_index;
	u8 index;
	int ret;

734
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
J
Jian Shen 已提交
735 736 737
	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
			HCLGEVF_RSS_MBX_RESP_LEN;
	for (index = 0; index < msg_num; index++) {
738 739
		send_msg.data[0] = index;
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
J
Jian Shen 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
					   HCLGEVF_RSS_MBX_RESP_LEN);
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"VF get rss hash key from PF failed, ret=%d",
				ret);
			return ret;
		}

		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
		if (index == msg_num - 1)
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0],
			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
		else
			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
	}

	return 0;
}

761 762
static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
			   u8 *hfunc)
763 764
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
765
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
J
Jian Shen 已提交
766
	int i, ret;
767

768
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
769 770 771 772 773 774 775 776 777 778 779 780 781
		/* Get hash algorithm */
		if (hfunc) {
			switch (rss_cfg->hash_algo) {
			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
				*hfunc = ETH_RSS_HASH_TOP;
				break;
			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
				*hfunc = ETH_RSS_HASH_XOR;
				break;
			default:
				*hfunc = ETH_RSS_HASH_UNKNOWN;
				break;
			}
782 783
		}

784
		/* Get the RSS Key required by the user */
785
		if (key)
786 787
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
J
Jian Shen 已提交
788 789 790 791 792 793 794 795 796 797
	} else {
		if (hfunc)
			*hfunc = ETH_RSS_HASH_TOP;
		if (key) {
			ret = hclgevf_get_rss_hash_key(hdev);
			if (ret)
				return ret;
			memcpy(key, rss_cfg->rss_hash_key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
798 799 800
	}

	if (indir)
801
		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
802 803
			indir[i] = rss_cfg->rss_indirection_tbl[i];

804
	return 0;
805 806 807
}

static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
808
			   const u8 *key, const u8 hfunc)
809 810 811
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
812 813
	int ret, i;

814
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
		/* Set the RSS Hash Key if specififed by the user */
		if (key) {
			switch (hfunc) {
			case ETH_RSS_HASH_TOP:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
				break;
			case ETH_RSS_HASH_XOR:
				rss_cfg->hash_algo =
					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
				break;
			case ETH_RSS_HASH_NO_CHANGE:
				break;
			default:
				return -EINVAL;
			}

			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
						       key);
			if (ret)
				return ret;

			/* Update the shadow RSS key with user specified qids */
			memcpy(rss_cfg->rss_hash_key, key,
			       HCLGEVF_RSS_KEY_SIZE);
		}
	}
842 843

	/* update the shadow RSS table with user specified qids */
844
	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
845 846 847 848 849 850
		rss_cfg->rss_indirection_tbl[i] = indir[i];

	/* update the hardware */
	return hclgevf_set_rss_indir_table(hdev);
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
{
	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;

	if (nfc->data & RXH_L4_B_2_3)
		hash_sets |= HCLGEVF_D_PORT_BIT;
	else
		hash_sets &= ~HCLGEVF_D_PORT_BIT;

	if (nfc->data & RXH_IP_SRC)
		hash_sets |= HCLGEVF_S_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_S_IP_BIT;

	if (nfc->data & RXH_IP_DST)
		hash_sets |= HCLGEVF_D_IP_BIT;
	else
		hash_sets &= ~HCLGEVF_D_IP_BIT;

	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
		hash_sets |= HCLGEVF_V_TAG_BIT;

	return hash_sets;
}

static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	u8 tuple_sets;
	int ret;

886
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
		return -EOPNOTSUPP;

	if (nfc->data &
	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
		return -EINVAL;

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
	switch (nfc->flow_type) {
	case TCP_V4_FLOW:
		req->ipv4_tcp_en = tuple_sets;
		break;
	case TCP_V6_FLOW:
		req->ipv6_tcp_en = tuple_sets;
		break;
	case UDP_V4_FLOW:
		req->ipv4_udp_en = tuple_sets;
		break;
	case UDP_V6_FLOW:
		req->ipv6_udp_en = tuple_sets;
		break;
	case SCTP_V4_FLOW:
		req->ipv4_sctp_en = tuple_sets;
		break;
	case SCTP_V6_FLOW:
923 924
		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
			return -EINVAL;

		req->ipv6_sctp_en = tuple_sets;
		break;
	case IPV4_FLOW:
		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	case IPV6_FLOW:
		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		break;
	default:
		return -EINVAL;
	}

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"Set rss tuple fail, status = %d\n", ret);
		return ret;
	}

	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
	return 0;
}

957 958
static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
					      int flow_type, u8 *tuple_sets)
959
{
960
	switch (flow_type) {
961
	case TCP_V4_FLOW:
962
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
963 964
		break;
	case UDP_V4_FLOW:
965
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
966 967
		break;
	case TCP_V6_FLOW:
968
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
969 970
		break;
	case UDP_V6_FLOW:
971
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
972 973
		break;
	case SCTP_V4_FLOW:
974
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
975 976
		break;
	case SCTP_V6_FLOW:
977
		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
978 979 980
		break;
	case IPV4_FLOW:
	case IPV6_FLOW:
981
		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
982 983 984 985 986
		break;
	default:
		return -EINVAL;
	}

987 988 989 990 991 992
	return 0;
}

static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
{
	u64 tuple_data = 0;
993 994

	if (tuple_sets & HCLGEVF_D_PORT_BIT)
995
		tuple_data |= RXH_L4_B_2_3;
996
	if (tuple_sets & HCLGEVF_S_PORT_BIT)
997
		tuple_data |= RXH_L4_B_0_1;
998
	if (tuple_sets & HCLGEVF_D_IP_BIT)
999
		tuple_data |= RXH_IP_DST;
1000
	if (tuple_sets & HCLGEVF_S_IP_BIT)
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		tuple_data |= RXH_IP_SRC;

	return tuple_data;
}

static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
				 struct ethtool_rxnfc *nfc)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 tuple_sets;
	int ret;

	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
		return -EOPNOTSUPP;

	nfc->data = 0;

	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
						 &tuple_sets);
	if (ret || !tuple_sets)
		return ret;

	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

	return 0;
}

static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
				       struct hclgevf_rss_cfg *rss_cfg)
{
	struct hclgevf_rss_input_tuple_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);

	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;

	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"Configure rss input fail, status = %d\n", ret);
	return ret;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063
static int hclgevf_get_tc_size(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;

	return rss_cfg->rss_size;
}

static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1064
				       int vector_id,
1065 1066 1067
				       struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1068
	struct hclge_vf_to_pf_msg send_msg;
1069 1070
	struct hnae3_ring_chain_node *node;
	int status;
1071
	int i = 0;
1072

1073 1074
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1075
		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1076
	send_msg.vector_id = vector_id;
1077 1078

	for (node = ring_chain; node; node = node->next) {
1079
		send_msg.param[i].ring_type =
P
Peng Li 已提交
1080
				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1081 1082 1083 1084 1085 1086

		send_msg.param[i].tqp_index = node->tqp_index;
		send_msg.param[i].int_gl_index =
					hnae3_get_field(node->int_gl_idx,
							HNAE3_RING_GL_IDX_M,
							HNAE3_RING_GL_IDX_S);
1087 1088

		i++;
1089 1090
		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
			send_msg.ring_num = i;
1091

1092 1093
			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
						      NULL, 0);
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
			if (status) {
				dev_err(&hdev->pdev->dev,
					"Map TQP fail, status is %d.\n",
					status);
				return status;
			}
			i = 0;
		}
	}

	return 0;
}

static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
				      struct hnae3_ring_chain_node *ring_chain)
{
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
}

static int hclgevf_unmap_ring_from_vector(
				struct hnae3_handle *handle,
				int vector,
				struct hnae3_ring_chain_node *ring_chain)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret, vector_id;

1131 1132 1133
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
		return 0;

1134 1135 1136 1137 1138 1139 1140
	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"Get vector index fail. ret =%d\n", vector_id);
		return vector_id;
	}

1141
	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1142
	if (ret)
1143 1144 1145 1146
		dev_err(&handle->pdev->dev,
			"Unmap ring from vector fail. vector=%d, ret =%d\n",
			vector_id,
			ret);
1147 1148 1149 1150 1151 1152 1153

	return ret;
}

static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1154 1155 1156 1157 1158 1159 1160 1161 1162
	int vector_id;

	vector_id = hclgevf_get_vector_index(hdev, vector);
	if (vector_id < 0) {
		dev_err(&handle->pdev->dev,
			"hclgevf_put_vector get vector index fail. ret =%d\n",
			vector_id);
		return vector_id;
	}
1163

1164
	hclgevf_free_vector(hdev, vector_id);
1165 1166 1167 1168

	return 0;
}

1169
static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1170
					bool en_uc_pmc, bool en_mc_pmc,
1171
					bool en_bc_pmc)
1172
{
1173
	struct hnae3_handle *handle = &hdev->nic;
1174
	struct hclge_vf_to_pf_msg send_msg;
1175
	int ret;
1176

1177 1178 1179 1180 1181
	memset(&send_msg, 0, sizeof(send_msg));
	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
	send_msg.en_bc = en_bc_pmc ? 1 : 0;
	send_msg.en_uc = en_uc_pmc ? 1 : 0;
	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1182 1183
	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
					     &handle->priv_flags) ? 1 : 0;
1184 1185

	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1186
	if (ret)
1187
		dev_err(&hdev->pdev->dev,
1188
			"Set promisc mode fail, status is %d.\n", ret);
1189

1190
	return ret;
1191 1192
}

1193 1194
static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
				    bool en_mc_pmc)
1195
{
1196 1197 1198
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	bool en_bc_pmc;

1199
	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1200 1201 1202

	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
					    en_bc_pmc);
1203 1204
}

1205 1206 1207 1208 1209
static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1210
	hclgevf_task_schedule(hdev, 0);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
}

static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *handle = &hdev->nic;
	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
	int ret;

	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
		if (!ret)
			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
	}
}

1227
static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
			      int stream_id, bool enable)
{
	struct hclgevf_cfg_com_tqp_queue_cmd *req;
	struct hclgevf_desc desc;
	int status;

	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
				     false);
	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
	req->stream_id = cpu_to_le16(stream_id);
1240 1241
	if (enable)
		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (status)
		dev_err(&hdev->pdev->dev,
			"TQP enable fail, status =%d.\n", status);

	return status;
}

static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
{
1253
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1254 1255 1256
	struct hclgevf_tqp *tqp;
	int i;

1257 1258
	for (i = 0; i < kinfo->num_tqps; i++) {
		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1259 1260 1261 1262
		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
	}
}

1263 1264
static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
{
1265
	struct hclge_vf_to_pf_msg send_msg;
1266 1267 1268
	u8 host_mac[ETH_ALEN];
	int status;

1269 1270 1271
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
				      ETH_ALEN);
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	if (status) {
		dev_err(&hdev->pdev->dev,
			"fail to get VF MAC from host %d", status);
		return status;
	}

	ether_addr_copy(p, host_mac);

	return 0;
}

1283 1284 1285
static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1286
	u8 host_mac_addr[ETH_ALEN];
1287

1288 1289 1290 1291 1292 1293 1294 1295
	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
		return;

	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
	if (hdev->has_pf_mac)
		ether_addr_copy(p, host_mac_addr);
	else
		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1296 1297
}

1298 1299
static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
				bool is_first)
1300 1301 1302
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1303
	struct hclge_vf_to_pf_msg send_msg;
1304 1305 1306
	u8 *new_mac_addr = (u8 *)p;
	int status;

1307
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1308
	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1309
	ether_addr_copy(send_msg.data, new_mac_addr);
1310 1311 1312 1313
	if (is_first && !hdev->has_pf_mac)
		eth_zero_addr(&send_msg.data[ETH_ALEN]);
	else
		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1314
	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1315 1316 1317 1318 1319 1320
	if (!status)
		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);

	return status;
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node)
		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
			return mac_node;

	return NULL;
}

static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_NODE_STATE state)
{
	switch (state) {
	/* from set_rx_mode or tmp_add_list */
	case HCLGEVF_MAC_TO_ADD:
		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	/* only from set_rx_mode */
	case HCLGEVF_MAC_TO_DEL:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
		}
		break;
	/* only from tmp_add_list, the mac_node->state won't be
	 * HCLGEVF_MAC_ACTIVE
	 */
	case HCLGEVF_MAC_ACTIVE:
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		break;
	}
}

static int hclgevf_update_mac_list(struct hnae3_handle *handle,
				   enum HCLGEVF_MAC_NODE_STATE state,
				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
				   const unsigned char *addr)
1365 1366
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1367 1368
	struct hclgevf_mac_addr_node *mac_node;
	struct list_head *list;
1369

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	/* if the mac addr is already in the mac list, no need to add a new
	 * one into it, just check the mac addr state, convert it to a new
	 * new state, or just remove it, or do nothing.
	 */
	mac_node = hclgevf_find_mac_node(list, addr);
	if (mac_node) {
		hclgevf_update_mac_node(mac_node, state);
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return 0;
	}
	/* if this address is never added, unnecessary to delete */
	if (state == HCLGEVF_MAC_TO_DEL) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOENT;
	}

	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
	if (!mac_node) {
		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
		return -ENOMEM;
	}

	mac_node->state = state;
	ether_addr_copy(mac_node->mac_addr, addr);
	list_add_tail(&mac_node->node, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
	return 0;
}

static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_UC, addr);
1410 1411 1412 1413 1414
}

static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1415 1416
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_UC, addr);
1417 1418 1419 1420 1421
}

static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
			       const unsigned char *addr)
{
1422 1423
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
				       HCLGEVF_MAC_ADDR_MC, addr);
1424 1425 1426 1427 1428
}

static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
			      const unsigned char *addr)
{
1429 1430 1431 1432 1433 1434 1435 1436
	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
				       HCLGEVF_MAC_ADDR_MC, addr);
}

static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
				    struct hclgevf_mac_addr_node *mac_node,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
1437
	struct hclge_vf_to_pf_msg send_msg;
1438
	u8 code, subcode;
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
		code = HCLGE_MBX_SET_UNICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
	} else {
		code = HCLGE_MBX_SET_MULTICAST;
		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
		else
			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
	}

	hclgevf_build_send_msg(&send_msg, code, subcode);
	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1456
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1457 1458
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
				    struct list_head *list,
				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;
	int ret;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
		if  (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to configure mac %pM, state = %d, ret = %d\n",
				mac_node->mac_addr, mac_node->state, ret);
			return;
		}
		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
			mac_node->state = HCLGEVF_MAC_ACTIVE;
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_add_list(struct list_head *add_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
		/* if the mac address from tmp_add_list is not in the
		 * uc/mc_mac_list, it means have received a TO_DEL request
		 * during the time window of sending mac config request to PF
		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
		 * then it will be removed at next time. If is TO_ADD, it means
		 * send TO_ADD request failed, so just remove the mac node.
		 */
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			hclgevf_update_mac_node(new_node, mac_node->state);
			list_del(&mac_node->node);
			kfree(mac_node);
		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
			mac_node->state = HCLGEVF_MAC_TO_DEL;
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, mac_list);
		} else {
			list_del(&mac_node->node);
			kfree(mac_node);
		}
	}
}

static void hclgevf_sync_from_del_list(struct list_head *del_list,
				       struct list_head *mac_list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;

	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
		if (new_node) {
			/* If the mac addr is exist in the mac list, it means
			 * received a new request TO_ADD during the time window
			 * of sending mac addr configurrequest to PF, so just
			 * change the mac state to ACTIVE.
			 */
			new_node->state = HCLGEVF_MAC_ACTIVE;
			list_del(&mac_node->node);
			kfree(mac_node);
		} else {
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, mac_list);
		}
	}
}

static void hclgevf_clear_list(struct list_head *list)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp;

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		list_del(&mac_node->node);
		kfree(mac_node);
	}
}

static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
{
	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
	struct list_head tmp_add_list, tmp_del_list;
	struct list_head *list;

	INIT_LIST_HEAD(&tmp_add_list);
	INIT_LIST_HEAD(&tmp_del_list);

	/* move the mac addr to the tmp_add_list and tmp_del_list, then
	 * we can add/delete these mac addr outside the spin lock
	 */
	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;

	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	list_for_each_entry_safe(mac_node, tmp, list, node) {
		switch (mac_node->state) {
		case HCLGEVF_MAC_TO_DEL:
			list_del(&mac_node->node);
			list_add_tail(&mac_node->node, &tmp_del_list);
			break;
		case HCLGEVF_MAC_TO_ADD:
			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
			if (!new_node)
				goto stop_traverse;

			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
			new_node->state = mac_node->state;
			list_add_tail(&new_node->node, &tmp_add_list);
			break;
		default:
			break;
		}
	}

stop_traverse:
	spin_unlock_bh(&hdev->mac_table.mac_list_lock);

	/* delete first, in order to get max mac table space for adding */
	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);

	/* if some mac addresses were added/deleted fail, move back to the
	 * mac_list, and retry at next time.
	 */
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_sync_from_del_list(&tmp_del_list, list);
	hclgevf_sync_from_add_list(&tmp_add_list, list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
{
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
}

static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
{
	spin_lock_bh(&hdev->mac_table.mac_list_lock);

	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);

	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
}

1617 1618 1619 1620
static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
				   __be16 proto, u16 vlan_id,
				   bool is_kill)
{
1621 1622 1623 1624
#define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
#define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
#define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3

1625
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1626
	struct hclge_vf_to_pf_msg send_msg;
1627
	int ret;
1628

1629
	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1630 1631 1632 1633 1634
		return -EINVAL;

	if (proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

1635 1636
	/* When device is resetting or reset failed, firmware is unable to
	 * handle mailbox. Just record the vlan id, and remove it after
1637 1638
	 * reset finished.
	 */
1639 1640
	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1641 1642 1643 1644
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
		return -EBUSY;
	}

1645 1646 1647 1648 1649 1650 1651
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_FILTER);
	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
	       sizeof(vlan_id));
	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
	       sizeof(proto));
G
Guojia Liao 已提交
1652
	/* when remove hw vlan filter failed, record the vlan id,
1653 1654 1655
	 * and try to remove it from hw later, to be consistence
	 * with stack.
	 */
1656
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	if (is_kill && ret)
		set_bit(vlan_id, hdev->vlan_del_fail_bmap);

	return ret;
}

static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_SYNC_COUNT	60
	struct hnae3_handle *handle = &hdev->nic;
	int ret, sync_cnt = 0;
	u16 vlan_id;

	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	while (vlan_id != VLAN_N_VID) {
		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
					      vlan_id, true);
		if (ret)
			return;

		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
		sync_cnt++;
		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
			return;

		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
	}
1684 1685
}

1686 1687 1688
static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1689
	struct hclge_vf_to_pf_msg send_msg;
1690

1691 1692 1693 1694
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_VLAN_RX_OFF_CFG);
	send_msg.data[0] = enable ? 1 : 0;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1695 1696
}

1697
static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1698 1699
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1700
	struct hclge_vf_to_pf_msg send_msg;
1701
	int ret;
1702

1703 1704 1705
	/* disable vf queue before send queue reset msg to PF */
	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
	if (ret)
1706
		return ret;
1707

1708 1709 1710
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1711 1712
}

1713 1714 1715
static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1716
	struct hclge_vf_to_pf_msg send_msg;
1717

1718 1719 1720
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1721 1722
}

1723 1724 1725 1726 1727
static int hclgevf_notify_client(struct hclgevf_dev *hdev,
				 enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->nic_client;
	struct hnae3_handle *handle = &hdev->nic;
1728
	int ret;
1729

1730 1731 1732 1733
	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
	    !client)
		return 0;

1734 1735 1736
	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

1737 1738 1739 1740 1741 1742
	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
			type, ret);

	return ret;
1743 1744
}

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
				      enum hnae3_reset_notify_type type)
{
	struct hnae3_client *client = hdev->roce_client;
	struct hnae3_handle *handle = &hdev->roce;
	int ret;

	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
		return 0;

	if (!client->ops->reset_notify)
		return -EOPNOTSUPP;

	ret = client->ops->reset_notify(handle, type);
	if (ret)
		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
			type, ret);
	return ret;
}

1765 1766
static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
{
1767 1768 1769 1770 1771 1772 1773
#define HCLGEVF_RESET_WAIT_US	20000
#define HCLGEVF_RESET_WAIT_CNT	2000
#define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)

	u32 val;
	int ret;
1774

1775
	if (hdev->reset_type == HNAE3_VF_RESET)
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_VF_RST_ING, val,
					 !(val & HCLGEVF_VF_RST_ING_BIT),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
	else
		ret = readl_poll_timeout(hdev->hw.io_base +
					 HCLGEVF_RST_ING, val,
					 !(val & HCLGEVF_RST_ING_BITS),
					 HCLGEVF_RESET_WAIT_US,
					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1787 1788

	/* hardware completion status should be available by this time */
1789 1790
	if (ret) {
		dev_err(&hdev->pdev->dev,
1791
			"couldn't get reset done status from h/w, timeout!\n");
1792
		return ret;
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	}

	/* we will wait a bit more to let reset of the stack to complete. This
	 * might happen in case reset assertion was made by PF. Yes, this also
	 * means we might end up waiting bit more even for VF reset.
	 */
	msleep(5000);

	return 0;
}

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
{
	u32 reg_val;

	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
	if (enable)
		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
	else
		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;

	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
			  reg_val);
}

1818 1819
static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
{
1820 1821
	int ret;

1822
	/* uninitialize the nic client */
1823 1824 1825
	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1826

1827
	/* re-initialize the hclge device */
1828
	ret = hclgevf_reset_hdev(hdev);
1829 1830 1831 1832 1833
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"hclge device re-init failed, VF is disabled!\n");
		return ret;
	}
1834 1835

	/* bring up the nic client again */
1836 1837 1838
	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
	if (ret)
		return ret;
1839

1840 1841 1842
	/* clear handshake status with IMP */
	hclgevf_reset_handshake(hdev, false);

1843 1844
	/* bring up the nic to enable TX/RX again */
	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1845 1846
}

1847 1848
static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
{
1849 1850
#define HCLGEVF_RESET_SYNC_TIME 100

1851
	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1852 1853 1854
		struct hclge_vf_to_pf_msg send_msg;
		int ret;

1855 1856
		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1857 1858 1859 1860 1861
		if (ret) {
			dev_err(&hdev->pdev->dev,
				"failed to assert VF reset, ret = %d\n", ret);
			return ret;
		}
1862
		hdev->rst_stats.vf_func_rst_cnt++;
1863 1864
	}

1865
	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1866 1867
	/* inform hardware that preparatory work is done */
	msleep(HCLGEVF_RESET_SYNC_TIME);
1868
	hclgevf_reset_handshake(hdev, true);
1869 1870
	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
		 hdev->reset_type);
1871

1872
	return 0;
1873 1874
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
{
	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
		 hdev->rst_stats.vf_func_rst_cnt);
	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
		 hdev->rst_stats.flr_rst_cnt);
	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
		 hdev->rst_stats.vf_rst_cnt);
	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
		 hdev->rst_stats.rst_done_cnt);
	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
		 hdev->rst_stats.hw_rst_done_cnt);
	dev_info(&hdev->pdev->dev, "reset count: %u\n",
		 hdev->rst_stats.rst_cnt);
	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
		 hdev->rst_stats.rst_fail_cnt);
	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1894
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1895 1896 1897 1898 1899 1900 1901
	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
}

1902 1903
static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
{
1904 1905
	/* recover handshake status with IMP when reset fail */
	hclgevf_reset_handshake(hdev, true);
1906
	hdev->rst_stats.rst_fail_cnt++;
1907
	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1908 1909 1910 1911 1912 1913 1914 1915
		hdev->rst_stats.rst_fail_cnt);

	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
		set_bit(hdev->reset_type, &hdev->reset_pending);

	if (hclgevf_is_reset_pending(hdev)) {
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		hclgevf_reset_task_schedule(hdev);
1916
	} else {
1917
		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1918
		hclgevf_dump_rst_info(hdev);
1919 1920 1921
	}
}

1922
static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1923 1924 1925
{
	int ret;

1926
	hdev->rst_stats.rst_cnt++;
1927

1928 1929 1930 1931 1932
	/* perform reset of the stack & ae device for a client */
	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret)
		return ret;

1933
	rtnl_lock();
1934
	/* bring down the nic to stop any ongoing TX/RX */
1935
	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1936
	rtnl_unlock();
1937
	if (ret)
1938
		return ret;
1939

1940 1941 1942 1943 1944 1945
	return hclgevf_reset_prepare_wait(hdev);
}

static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
{
	int ret;
1946

1947
	hdev->rst_stats.hw_rst_done_cnt++;
1948 1949 1950
	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
	if (ret)
		return ret;
1951

1952
	rtnl_lock();
G
Guojia Liao 已提交
1953
	/* now, re-initialize the nic client and ae device */
1954
	ret = hclgevf_reset_stack(hdev);
1955
	rtnl_unlock();
1956
	if (ret) {
1957
		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1958
		return ret;
1959
	}
1960

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
	 * times
	 */
	if (ret &&
	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
		return ret;

	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
	if (ret)
		return ret;

1973
	hdev->last_reset_time = jiffies;
1974
	hdev->rst_stats.rst_done_cnt++;
1975
	hdev->rst_stats.rst_fail_cnt = 0;
1976
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1977

1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
	return 0;
}

static void hclgevf_reset(struct hclgevf_dev *hdev)
{
	if (hclgevf_reset_prepare(hdev))
		goto err_reset;

	/* check if VF could successfully fetch the hardware reset completion
	 * status from the hardware
	 */
	if (hclgevf_reset_wait(hdev)) {
		/* can't do much in this situation, will disable VF */
		dev_err(&hdev->pdev->dev,
			"failed to fetch H/W reset completion status\n");
		goto err_reset;
	}

	if (hclgevf_reset_rebuild(hdev))
		goto err_reset;

	return;

2001
err_reset:
2002
	hclgevf_reset_err_handle(hdev);
2003 2004
}

2005 2006 2007 2008 2009
static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
						     unsigned long *addr)
{
	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;

2010
	/* return the highest priority reset level amongst all */
2011 2012 2013 2014 2015 2016
	if (test_bit(HNAE3_VF_RESET, addr)) {
		rst_level = HNAE3_VF_RESET;
		clear_bit(HNAE3_VF_RESET, addr);
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2017 2018 2019
		rst_level = HNAE3_VF_FULL_RESET;
		clear_bit(HNAE3_VF_FULL_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2020 2021 2022 2023
	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_PF_FUNC_RESET;
		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2024 2025 2026
	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
		rst_level = HNAE3_VF_FUNC_RESET;
		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2027 2028 2029
	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
		rst_level = HNAE3_FLR_RESET;
		clear_bit(HNAE3_FLR_RESET, addr);
2030 2031 2032 2033 2034
	}

	return rst_level;
}

2035 2036
static void hclgevf_reset_event(struct pci_dev *pdev,
				struct hnae3_handle *handle)
2037
{
2038 2039
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
	struct hclgevf_dev *hdev = ae_dev->priv;
2040 2041 2042

	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");

2043
	if (hdev->default_reset_request)
2044
		hdev->reset_level =
2045 2046 2047
			hclgevf_get_reset_level(hdev,
						&hdev->default_reset_request);
	else
2048
		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2049

2050 2051 2052
	/* reset of this VF requested */
	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
	hclgevf_reset_task_schedule(hdev);
2053

2054
	hdev->last_reset_time = jiffies;
2055 2056
}

2057 2058 2059 2060 2061 2062 2063 2064
static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
					  enum hnae3_reset_type rst_type)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	set_bit(rst_type, &hdev->default_reset_request);
}

2065 2066 2067 2068 2069
static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
{
	writel(en ? 1 : 0, vector->addr);
}

2070 2071
static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
{
2072 2073 2074
#define HCLGEVF_FLR_RETRY_WAIT_MS	500
#define HCLGEVF_FLR_RETRY_CNT		5

2075
	struct hclgevf_dev *hdev = ae_dev->priv;
2076 2077
	int retry_cnt = 0;
	int ret;
2078

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
retry:
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	hdev->reset_type = HNAE3_FLR_RESET;
	ret = hclgevf_reset_prepare(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
			ret);
		if (hdev->reset_pending ||
		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
			dev_err(&hdev->pdev->dev,
				"reset_pending:0x%lx, retry_cnt:%d\n",
				hdev->reset_pending, retry_cnt);
			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
			up(&hdev->reset_sem);
			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
			goto retry;
		}
	}
2098

2099 2100 2101 2102
	/* disable misc vector before FLR done */
	hclgevf_enable_vector(&hdev->misc_vector, false);
	hdev->rst_stats.flr_rst_cnt++;
}
2103

2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	hclgevf_enable_vector(&hdev->misc_vector, true);

	ret = hclgevf_reset_rebuild(hdev);
	if (ret)
		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
			 ret);

	hdev->reset_type = HNAE3_NONE_RESET;
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
	up(&hdev->reset_sem);
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->fw_version;
}

static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
{
	struct hclgevf_misc_vector *vector = &hdev->misc_vector;

	vector->vector_irq = pci_irq_vector(hdev->pdev,
					    HCLGEVF_MISC_VECTOR_NUM);
	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
	/* vector status always valid for Vector 0 */
	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;

	hdev->num_msi_left -= 1;
	hdev->num_msi_used += 1;
}

2143 2144
void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
{
2145 2146 2147
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
			      &hdev->state))
2148
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2149 2150
}

2151
void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2152
{
2153 2154 2155
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
			      &hdev->state))
2156
		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2157 2158
}

2159 2160
static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
				  unsigned long delay)
2161
{
2162 2163
	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2164
		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2165 2166
}

2167
static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2168
{
2169 2170
#define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3

2171
	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2172 2173
		return;

2174 2175
	down(&hdev->reset_sem);
	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2176

2177 2178 2179
	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
			       &hdev->reset_state)) {
		/* PF has initmated that it is about to reset the hardware.
2180 2181 2182
		 * We now have to poll & check if hardware has actually
		 * completed the reset sequence. On hardware reset completion,
		 * VF needs to reset the client and ae device.
2183 2184 2185
		 */
		hdev->reset_attempts = 0;

2186 2187 2188
		hdev->last_reset_time = jiffies;
		while ((hdev->reset_type =
			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2189 2190
		       != HNAE3_NONE_RESET)
			hclgevf_reset(hdev);
2191 2192 2193
	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
				      &hdev->reset_state)) {
		/* we could be here when either of below happens:
2194
		 * 1. reset was initiated due to watchdog timeout caused by
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
		 *    a. IMP was earlier reset and our TX got choked down and
		 *       which resulted in watchdog reacting and inducing VF
		 *       reset. This also means our cmdq would be unreliable.
		 *    b. problem in TX due to other lower layer(example link
		 *       layer not functioning properly etc.)
		 * 2. VF reset might have been initiated due to some config
		 *    change.
		 *
		 * NOTE: Theres no clear way to detect above cases than to react
		 * to the response of PF for this reset request. PF will ack the
		 * 1b and 2. cases but we will not get any intimation about 1a
		 * from PF as cmdq would be in unreliable state i.e. mailbox
		 * communication between PF and VF would be broken.
G
Guojia Liao 已提交
2208 2209
		 *
		 * if we are never geting into pending state it means either:
2210 2211 2212 2213 2214 2215
		 * 1. PF is not receiving our request which could be due to IMP
		 *    reset
		 * 2. PF is screwed
		 * We cannot do much for 2. but to check first we can try reset
		 * our PCIe + stack and see if it alleviates the problem.
		 */
2216
		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2217
			/* prepare for full reset of stack + pcie interface */
2218
			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2219 2220 2221 2222 2223 2224

			/* "defer" schedule the reset task again */
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
		} else {
			hdev->reset_attempts++;

2225 2226
			set_bit(hdev->reset_level, &hdev->reset_pending);
			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2227
		}
2228
		hclgevf_reset_task_schedule(hdev);
2229
	}
2230

2231
	hdev->reset_type = HNAE3_NONE_RESET;
2232
	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2233
	up(&hdev->reset_sem);
2234 2235
}

2236
static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2237
{
2238 2239
	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
		return;
2240 2241 2242 2243

	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
		return;

2244
	hclgevf_mbx_async_handler(hdev);
2245 2246 2247 2248

	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
}

2249
static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2250
{
2251
	struct hclge_vf_to_pf_msg send_msg;
2252 2253
	int ret;

2254
	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2255 2256
		return;

2257 2258
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2259 2260 2261 2262 2263
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF sends keep alive cmd failed(=%d)\n", ret);
}

2264
static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2265
{
2266 2267
	unsigned long delta = round_jiffies_relative(HZ);
	struct hnae3_handle *handle = &hdev->nic;
2268

2269 2270 2271
	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
		return;

2272 2273
	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
		delta = jiffies - hdev->last_serv_processed;
2274

2275 2276 2277 2278
		if (delta < round_jiffies_relative(HZ)) {
			delta = round_jiffies_relative(HZ) - delta;
			goto out;
		}
2279
	}
2280

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
	hdev->serv_processed_cnt++;
	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
		hclgevf_keep_alive(hdev);

	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
		hdev->last_serv_processed = jiffies;
		goto out;
	}

	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
		hclgevf_tqps_update_stats(handle);

2293 2294 2295 2296 2297
	/* request the link status from the PF. PF would be able to tell VF
	 * about such updates in future so we might remove this later
	 */
	hclgevf_request_link_info(hdev);

2298 2299
	hclgevf_update_link_mode(hdev);

2300 2301
	hclgevf_sync_vlan_filter(hdev);

2302 2303
	hclgevf_sync_mac_table(hdev);

2304 2305
	hclgevf_sync_promisc_mode(hdev);

2306
	hdev->last_serv_processed = jiffies;
2307

2308 2309 2310 2311 2312 2313 2314 2315
out:
	hclgevf_task_schedule(hdev, delta);
}

static void hclgevf_service_task(struct work_struct *work)
{
	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
						service_task.work);
2316

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
	hclgevf_periodic_service_task(hdev);

	/* Handle reset and mbx again in case periodical task delays the
	 * handling by calling hclgevf_task_schedule() in
	 * hclgevf_periodic_service_task()
	 */
	hclgevf_reset_service_task(hdev);
	hclgevf_mailbox_service_task(hdev);
2327 2328 2329 2330 2331 2332 2333
}

static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
{
	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
}

2334 2335
static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
						      u32 *clearval)
2336
{
2337
	u32 val, cmdq_stat_reg, rst_ing_reg;
2338 2339

	/* fetch the events from their corresponding regs */
2340
	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2341
					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2342

2343
	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2344 2345 2346 2347 2348
		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
		dev_info(&hdev->pdev->dev,
			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2349
		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2350
		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2351
		hdev->rst_stats.vf_rst_cnt++;
2352 2353 2354 2355 2356 2357
		/* set up VF hardware reset status, its PF will clear
		 * this status when PF has initialized done.
		 */
		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
				  val | HCLGEVF_VF_RST_ING_BIT);
2358 2359 2360
		return HCLGEVF_VECTOR0_EVENT_RST;
	}

2361
	/* check for vector0 mailbox(=CMDQ RX) event source */
2362 2363 2364 2365 2366 2367 2368 2369
	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
		/* for revision 0x21, clearing interrupt is writing bit 0
		 * to the clear register, writing bit 1 means to keep the
		 * old value.
		 * for revision 0x20, the clear register is a read & write
		 * register, so we should just write 0 to the bit we are
		 * handling, and keep other bits as cmdq_stat_reg.
		 */
2370
		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2371 2372 2373 2374 2375
			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
		else
			*clearval = cmdq_stat_reg &
				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);

2376
		return HCLGEVF_VECTOR0_EVENT_MBX;
2377 2378
	}

2379 2380 2381 2382
	/* print other vector0 event source */
	dev_info(&hdev->pdev->dev,
		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
		 cmdq_stat_reg);
2383

2384
	return HCLGEVF_VECTOR0_EVENT_OTHER;
2385 2386 2387 2388
}

static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
{
2389
	enum hclgevf_evt_cause event_cause;
2390 2391 2392 2393
	struct hclgevf_dev *hdev = data;
	u32 clearval;

	hclgevf_enable_vector(&hdev->misc_vector, false);
2394
	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2395

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	switch (event_cause) {
	case HCLGEVF_VECTOR0_EVENT_RST:
		hclgevf_reset_task_schedule(hdev);
		break;
	case HCLGEVF_VECTOR0_EVENT_MBX:
		hclgevf_mbx_handler(hdev);
		break;
	default:
		break;
	}
2406

2407 2408 2409 2410
	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
		hclgevf_clear_event_cause(hdev, clearval);
		hclgevf_enable_vector(&hdev->misc_vector, true);
	}
2411 2412 2413 2414 2415 2416 2417 2418

	return IRQ_HANDLED;
}

static int hclgevf_configure(struct hclgevf_dev *hdev)
{
	int ret;

2419 2420 2421 2422 2423
	/* get current port based vlan state from PF */
	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
	if (ret)
		return ret;

2424
	/* get queue configuration from PF */
2425
	ret = hclgevf_get_queue_info(hdev);
2426 2427
	if (ret)
		return ret;
2428 2429 2430 2431 2432 2433

	/* get queue depth info from PF */
	ret = hclgevf_get_queue_depth(hdev);
	if (ret)
		return ret;

2434 2435 2436 2437
	ret = hclgevf_get_pf_media_type(hdev);
	if (ret)
		return ret;

2438 2439 2440 2441
	/* get tc configuration from PF */
	return hclgevf_get_tc_info(hdev);
}

2442 2443 2444
static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
2445
	struct hclgevf_dev *hdev;
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
	if (!hdev)
		return -ENOMEM;

	hdev->pdev = pdev;
	hdev->ae_dev = ae_dev;
	ae_dev->priv = hdev;

	return 0;
}

2458 2459 2460 2461 2462
static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *roce = &hdev->roce;
	struct hnae3_handle *nic = &hdev->nic;

2463
	roce->rinfo.num_vectors = hdev->num_roce_msix;
2464 2465 2466 2467 2468

	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
	    hdev->num_msi_left == 0)
		return -EINVAL;

2469
	roce->rinfo.base_vector = hdev->roce_base_vector;
2470 2471 2472

	roce->rinfo.netdev = nic->kinfo.netdev;
	roce->rinfo.roce_io_base = hdev->hw.io_base;
2473
	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2474 2475 2476 2477 2478 2479 2480 2481

	roce->pdev = nic->pdev;
	roce->ae_algo = nic->ae_algo;
	roce->numa_node_mask = nic->numa_node_mask;

	return 0;
}

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
{
	struct hclgevf_cfg_gro_status_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	if (!hnae3_dev_gro_supported(hdev))
		return 0;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
				     false);
	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;

2495
	req->gro_en = en ? 1 : 0;
2496 2497 2498 2499 2500 2501 2502 2503 2504

	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret)
		dev_err(&hdev->pdev->dev,
			"VF GRO hardware config cmd failed, ret = %d.\n", ret);

	return ret;
}

2505
static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2506
{
2507
	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2508
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2509
	struct hclgevf_rss_tuple_cfg *tuple_sets;
2510
	u32 i;
2511

2512
	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2513
	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2514
	tuple_sets = &rss_cfg->rss_tuple_sets;
2515
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2516 2517
		u8 *rss_ind_tbl;

2518
		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2519 2520 2521 2522 2523 2524 2525

		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
					   sizeof(*rss_ind_tbl), GFP_KERNEL);
		if (!rss_ind_tbl)
			return -ENOMEM;

		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2526 2527
		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
		       HCLGEVF_RSS_KEY_SIZE);
2528

2529 2530 2531 2532 2533 2534
		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2535 2536 2537 2538
		tuple_sets->ipv6_sctp_en =
			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2539 2540 2541 2542
		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
	}

	/* Initialize RSS indirect table */
2543
	for (i = 0; i < rss_ind_tbl_size; i++)
2544
		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2545 2546

	return 0;
2547 2548 2549 2550 2551 2552 2553
}

static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
{
	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
	int ret;

2554
	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2555 2556 2557 2558
		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
					       rss_cfg->rss_hash_key);
		if (ret)
			return ret;
2559 2560 2561 2562

		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
		if (ret)
			return ret;
2563 2564
	}

2565 2566 2567 2568
	ret = hclgevf_set_rss_indir_table(hdev);
	if (ret)
		return ret;

2569
	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2570 2571 2572 2573 2574 2575 2576 2577
}

static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
{
	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
				       false);
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
{
#define HCLGEVF_FLUSH_LINK_TIMEOUT	100000

	unsigned long last = hdev->serv_processed_cnt;
	int i = 0;

	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
	       last == hdev->serv_processed_cnt)
		usleep_range(1, 1);
}

2591 2592 2593 2594 2595
static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (enable) {
2596
		hclgevf_task_schedule(hdev, 0);
2597
	} else {
2598
		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2599 2600 2601 2602

		/* flush memory to make sure DOWN is seen by service task */
		smp_mb__before_atomic();
		hclgevf_flush_link_update(hdev);
2603 2604 2605
	}
}

2606 2607 2608 2609
static int hclgevf_ae_start(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

2610 2611
	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);

2612 2613 2614 2615
	hclgevf_reset_tqp_stats(handle);

	hclgevf_request_link_info(hdev);

2616 2617
	hclgevf_update_link_mode(hdev);

2618 2619 2620 2621 2622 2623
	return 0;
}

static void hclgevf_ae_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2624
	int i;
2625

2626 2627
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);

2628 2629 2630 2631
	if (hdev->reset_type != HNAE3_VF_RESET)
		for (i = 0; i < handle->kinfo.num_tqps; i++)
			if (hclgevf_reset_tqp(handle, i))
				break;
2632

2633
	hclgevf_reset_tqp_stats(handle);
2634
	hclgevf_update_link_status(hdev, 0);
2635 2636
}

2637 2638
static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
{
2639 2640 2641
#define HCLGEVF_STATE_ALIVE	1
#define HCLGEVF_STATE_NOT_ALIVE	0

2642
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2643
	struct hclge_vf_to_pf_msg send_msg;
2644

2645 2646 2647 2648
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
				HCLGEVF_STATE_NOT_ALIVE;
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2649 2650 2651 2652
}

static int hclgevf_client_start(struct hnae3_handle *handle)
{
2653
	return hclgevf_set_alive(handle, true);
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
}

static void hclgevf_client_stop(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int ret;

	ret = hclgevf_set_alive(handle, false);
	if (ret)
		dev_warn(&hdev->pdev->dev,
			 "%s failed %d\n", __func__, ret);
}

2667 2668 2669 2670
static void hclgevf_state_init(struct hclgevf_dev *hdev)
{
	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2671
	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2672

2673
	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2674

2675
	mutex_init(&hdev->mbx_resp.mbx_mutex);
2676
	sema_init(&hdev->reset_sem, 1);
2677

2678 2679 2680 2681
	spin_lock_init(&hdev->mac_table.mac_list_lock);
	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);

2682 2683 2684 2685 2686 2687 2688
	/* bring the device down */
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
}

static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
{
	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2689
	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2690

2691 2692
	if (hdev->service_task.work.func)
		cancel_delayed_work_sync(&hdev->service_task);
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
}

static int hclgevf_init_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int vectors;
	int i;

2703
	if (hnae3_dev_roce_supported(hdev))
2704 2705 2706 2707 2708
		vectors = pci_alloc_irq_vectors(pdev,
						hdev->roce_base_msix_offset + 1,
						hdev->num_msi,
						PCI_IRQ_MSIX);
	else
2709 2710
		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
						hdev->num_msi,
2711
						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2712 2713 2714 2715 2716 2717 2718 2719 2720

	if (vectors < 0) {
		dev_err(&pdev->dev,
			"failed(%d) to allocate MSI/MSI-X vectors\n",
			vectors);
		return vectors;
	}
	if (vectors < hdev->num_msi)
		dev_warn(&hdev->pdev->dev,
2721
			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2722 2723 2724 2725
			 hdev->num_msi, vectors);

	hdev->num_msi = vectors;
	hdev->num_msi_left = vectors;
2726

2727
	hdev->base_msi_vector = pdev->irq;
2728
	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742

	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
					   sizeof(u16), GFP_KERNEL);
	if (!hdev->vector_status) {
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	for (i = 0; i < hdev->num_msi; i++)
		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;

	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
					sizeof(int), GFP_KERNEL);
	if (!hdev->vector_irq) {
2743
		devm_kfree(&pdev->dev, hdev->vector_status);
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
		pci_free_irq_vectors(pdev);
		return -ENOMEM;
	}

	return 0;
}

static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

2755 2756
	devm_kfree(&pdev->dev, hdev->vector_status);
	devm_kfree(&pdev->dev, hdev->vector_irq);
2757 2758 2759 2760 2761
	pci_free_irq_vectors(pdev);
}

static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
{
2762
	int ret;
2763 2764 2765

	hclgevf_get_misc_vector(hdev);

2766 2767
	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
		 HCLGEVF_NAME, pci_name(hdev->pdev));
2768
	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2769
			  0, hdev->misc_vector.name, hdev);
2770 2771 2772 2773 2774 2775
	if (ret) {
		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
			hdev->misc_vector.vector_irq);
		return ret;
	}

2776 2777
	hclgevf_clear_event_cause(hdev, 0);

2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
	/* enable misc. vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, true);

	return ret;
}

static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
{
	/* disable misc vector(vector 0) */
	hclgevf_enable_vector(&hdev->misc_vector, false);
2788
	synchronize_irq(hdev->misc_vector.vector_irq);
2789 2790 2791 2792
	free_irq(hdev->misc_vector.vector_irq, hdev);
	hclgevf_free_vector(hdev, 0);
}

2793 2794 2795 2796 2797 2798
static void hclgevf_info_show(struct hclgevf_dev *hdev)
{
	struct device *dev = &hdev->pdev->dev;

	dev_info(dev, "VF info begin:\n");

2799 2800 2801 2802 2803 2804
	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
	dev_info(dev, "PF media type of this VF: %u\n",
2805 2806 2807 2808 2809
		 hdev->hw.mac.media_type);

	dev_info(dev, "VF info end.\n");
}

2810 2811 2812 2813
static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
					    struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
2814
	int rst_cnt = hdev->rst_stats.rst_cnt;
2815 2816 2817 2818 2819 2820 2821
	int ret;

	ret = client->ops->init_instance(&hdev->nic);
	if (ret)
		return ret;

	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2822 2823 2824 2825 2826 2827 2828 2829
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    rst_cnt != hdev->rst_stats.rst_cnt) {
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

		client->ops->uninit_instance(&hdev->nic, 0);
		return -EBUSY;
	}

2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
	hnae3_set_client_init_flag(client, ae_dev, 1);

	if (netif_msg_drv(&hdev->nic))
		hclgevf_info_show(hdev);

	return 0;
}

static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
					     struct hnae3_client *client)
{
	struct hclgevf_dev *hdev = ae_dev->priv;
	int ret;

	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
	    !hdev->nic_client)
		return 0;

	ret = hclgevf_init_roce_base_info(hdev);
	if (ret)
		return ret;

	ret = client->ops->init_instance(&hdev->roce);
	if (ret)
		return ret;

2856
	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2857 2858 2859 2860 2861
	hnae3_set_client_init_flag(client, ae_dev, 1);

	return 0;
}

2862 2863
static int hclgevf_init_client_instance(struct hnae3_client *client,
					struct hnae3_ae_dev *ae_dev)
2864
{
2865
	struct hclgevf_dev *hdev = ae_dev->priv;
2866 2867 2868 2869 2870 2871 2872
	int ret;

	switch (client->type) {
	case HNAE3_CLIENT_KNIC:
		hdev->nic_client = client;
		hdev->nic.client = client;

2873
		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2874
		if (ret)
2875
			goto clear_nic;
2876

2877 2878 2879 2880
		ret = hclgevf_init_roce_client_instance(ae_dev,
							hdev->roce_client);
		if (ret)
			goto clear_roce;
2881

2882 2883
		break;
	case HNAE3_CLIENT_ROCE:
2884 2885 2886 2887
		if (hnae3_dev_roce_supported(hdev)) {
			hdev->roce_client = client;
			hdev->roce.client = client;
		}
2888

2889 2890 2891
		ret = hclgevf_init_roce_client_instance(ae_dev, client);
		if (ret)
			goto clear_roce;
2892

2893 2894 2895
		break;
	default:
		return -EINVAL;
2896 2897 2898
	}

	return 0;
2899 2900 2901 2902 2903 2904 2905 2906 2907

clear_nic:
	hdev->nic_client = NULL;
	hdev->nic.client = NULL;
	return ret;
clear_roce:
	hdev->roce_client = NULL;
	hdev->roce.client = NULL;
	return ret;
2908 2909
}

2910 2911
static void hclgevf_uninit_client_instance(struct hnae3_client *client,
					   struct hnae3_ae_dev *ae_dev)
2912
{
2913 2914
	struct hclgevf_dev *hdev = ae_dev->priv;

2915
	/* un-init roce, if it exists */
2916
	if (hdev->roce_client) {
2917
		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2918
		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2919 2920 2921
		hdev->roce_client = NULL;
		hdev->roce.client = NULL;
	}
2922 2923

	/* un-init nic/unic, if this was not called by roce client */
2924 2925
	if (client->ops->uninit_instance && hdev->nic_client &&
	    client->type != HNAE3_CLIENT_ROCE) {
2926 2927
		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);

2928
		client->ops->uninit_instance(&hdev->nic, 0);
2929 2930 2931
		hdev->nic_client = NULL;
		hdev->nic.client = NULL;
	}
2932 2933
}

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MEM_BAR		4

	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw = &hdev->hw;

	/* for device does not have device memory, return directly */
	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
		return 0;

	hw->mem_base = devm_ioremap_wc(&pdev->dev,
				       pci_resource_start(pdev,
							  HCLGEVF_MEM_BAR),
				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
	if (!hw->mem_base) {
2950
		dev_err(&pdev->dev, "failed to map device memory\n");
2951 2952 2953 2954 2955 2956
		return -EFAULT;
	}

	return 0;
}

2957 2958 2959 2960 2961 2962 2963 2964 2965
static int hclgevf_pci_init(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	struct hclgevf_hw *hw;
	int ret;

	ret = pci_enable_device(pdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable PCI device\n");
2966
		return ret;
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	}

	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (ret) {
		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
		goto err_disable_device;
	}

	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
	if (ret) {
		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
		goto err_disable_device;
	}

	pci_set_master(pdev);
	hw = &hdev->hw;
	hw->hdev = hdev;
P
Peng Li 已提交
2984
	hw->io_base = pci_iomap(pdev, 2, 0);
2985 2986 2987 2988 2989 2990
	if (!hw->io_base) {
		dev_err(&pdev->dev, "can't map configuration register space\n");
		ret = -ENOMEM;
		goto err_clr_master;
	}

2991 2992 2993 2994
	ret = hclgevf_dev_mem_map(hdev);
	if (ret)
		goto err_unmap_io_base;

2995 2996
	return 0;

2997 2998
err_unmap_io_base:
	pci_iounmap(pdev, hdev->hw.io_base);
2999 3000 3001 3002 3003
err_clr_master:
	pci_clear_master(pdev);
	pci_release_regions(pdev);
err_disable_device:
	pci_disable_device(pdev);
3004

3005 3006 3007 3008 3009 3010 3011
	return ret;
}

static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;

3012 3013 3014
	if (hdev->hw.mem_base)
		devm_iounmap(&pdev->dev, hdev->hw.mem_base);

3015 3016 3017 3018 3019 3020
	pci_iounmap(pdev, hdev->hw.io_base);
	pci_clear_master(pdev);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
{
	struct hclgevf_query_res_cmd *req;
	struct hclgevf_desc desc;
	int ret;

	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"query vf resource failed, ret = %d.\n", ret);
		return ret;
	}

	req = (struct hclgevf_query_res_cmd *)desc.data;

3037
	if (hnae3_dev_roce_supported(hdev)) {
3038
		hdev->roce_base_msix_offset =
3039
		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3040 3041 3042
				HCLGEVF_MSIX_OFT_ROCEE_M,
				HCLGEVF_MSIX_OFT_ROCEE_S);
		hdev->num_roce_msix =
3043
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3044 3045
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);

3046 3047 3048
		/* nic's msix numbers is always equals to the roce's. */
		hdev->num_nic_msix = hdev->num_roce_msix;

3049 3050 3051 3052 3053 3054 3055
		/* VF should have NIC vectors and Roce vectors, NIC vectors
		 * are queued before Roce vectors. The offset is fixed to 64.
		 */
		hdev->num_msi = hdev->num_roce_msix +
				hdev->roce_base_msix_offset;
	} else {
		hdev->num_msi =
3056
		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3057
				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3058 3059 3060 3061 3062 3063 3064 3065 3066

		hdev->num_nic_msix = hdev->num_msi;
	}

	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
		dev_err(&hdev->pdev->dev,
			"Just %u msi resources, not enough for vf(min:2).\n",
			hdev->num_nic_msix);
		return -EINVAL;
3067 3068 3069 3070 3071
	}

	return 0;
}

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
{
#define HCLGEVF_MAX_NON_TSO_BD_NUM			8U

	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);

	ae_dev->dev_specs.max_non_tso_bd_num =
					HCLGEVF_MAX_NON_TSO_BD_NUM;
	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3082
	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3083
	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3084 3085 3086 3087 3088 3089 3090
}

static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
				    struct hclgevf_desc *desc)
{
	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
	struct hclgevf_dev_specs_0_cmd *req0;
3091
	struct hclgevf_dev_specs_1_cmd *req1;
3092 3093

	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3094
	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3095 3096 3097 3098

	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
	ae_dev->dev_specs.rss_ind_tbl_size =
					le16_to_cpu(req0->rss_ind_tbl_size);
3099
	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3100
	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3101
	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3102
	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3103 3104
}

3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
{
	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;

	if (!dev_specs->max_non_tso_bd_num)
		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
	if (!dev_specs->rss_ind_tbl_size)
		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
	if (!dev_specs->rss_key_size)
		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3115 3116
	if (!dev_specs->max_int_gl)
		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3117 3118
	if (!dev_specs->max_frm_size)
		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3119 3120
}

3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
{
	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
	int ret;
	int i;

	/* set default specifications as devices lower than version V3 do not
	 * support querying specifications from firmware.
	 */
	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
		hclgevf_set_default_dev_specs(hdev);
		return 0;
	}

	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
		hclgevf_cmd_setup_basic_desc(&desc[i],
					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
	}
	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
				     true);

	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
	if (ret)
		return ret;

	hclgevf_parse_dev_specs(hdev, desc);
3148
	hclgevf_check_dev_specs(hdev);
3149 3150 3151 3152

	return 0;
}

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret = 0;

	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		pci_set_master(pdev);
		ret = hclgevf_init_msi(hdev);
		if (ret) {
			dev_err(&pdev->dev,
				"failed(%d) to init MSI/MSI-X\n", ret);
			return ret;
		}

		ret = hclgevf_misc_irq_init(hdev);
		if (ret) {
			hclgevf_uninit_msi(hdev);
			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
				ret);
			return ret;
		}

		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
	}

	return ret;
}

3188 3189 3190 3191 3192 3193 3194 3195 3196
static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
{
	struct hclge_vf_to_pf_msg send_msg;

	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
			       HCLGE_MBX_VPORT_LIST_CLEAR);
	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
}

3197
static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3198
{
3199
	struct pci_dev *pdev = hdev->pdev;
3200 3201
	int ret;

3202 3203 3204 3205 3206 3207
	ret = hclgevf_pci_reset(hdev);
	if (ret) {
		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
		return ret;
	}

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
	ret = hclgevf_cmd_init(hdev);
	if (ret) {
		dev_err(&pdev->dev, "cmd failed %d\n", ret);
		return ret;
	}

	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		return ret;
	}

3221 3222 3223 3224
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		return ret;

3225 3226 3227 3228 3229
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		return ret;
3230
	}
3231

3232 3233
	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	dev_info(&hdev->pdev->dev, "Reset done\n");

	return 0;
}

static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
{
	struct pci_dev *pdev = hdev->pdev;
	int ret;

3244
	ret = hclgevf_pci_init(hdev);
3245
	if (ret)
3246 3247
		return ret;

3248
	ret = hclgevf_cmd_queue_init(hdev);
3249
	if (ret)
3250 3251
		goto err_cmd_queue_init;

3252 3253 3254 3255 3256 3257
	ret = hclgevf_cmd_init(hdev);
	if (ret)
		goto err_cmd_init;

	/* Get vf resource */
	ret = hclgevf_query_vf_resource(hdev);
3258
	if (ret)
3259
		goto err_cmd_init;
3260

3261 3262 3263 3264 3265 3266 3267
	ret = hclgevf_query_dev_specs(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to query dev specifications, ret = %d\n", ret);
		goto err_cmd_init;
	}

3268 3269 3270
	ret = hclgevf_init_msi(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3271
		goto err_cmd_init;
3272 3273 3274
	}

	hclgevf_state_init(hdev);
3275
	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3276
	hdev->reset_type = HNAE3_NONE_RESET;
3277 3278

	ret = hclgevf_misc_irq_init(hdev);
3279
	if (ret)
3280 3281
		goto err_misc_irq_init;

3282 3283
	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	ret = hclgevf_configure(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
		goto err_config;
	}

	ret = hclgevf_alloc_tqps(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
		goto err_config;
	}

	ret = hclgevf_set_handle_info(hdev);
3297
	if (ret)
3298 3299
		goto err_config;

3300 3301 3302 3303
	ret = hclgevf_config_gro(hdev, true);
	if (ret)
		goto err_config;

3304
	/* Initialize RSS for this VF */
3305 3306 3307 3308 3309 3310
	ret = hclgevf_rss_init_cfg(hdev);
	if (ret) {
		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
		goto err_config;
	}

3311 3312 3313 3314 3315 3316 3317
	ret = hclgevf_rss_init_hw(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize RSS\n", ret);
		goto err_config;
	}

3318 3319 3320 3321 3322 3323 3324 3325 3326
	/* ensure vf tbl list as empty before init*/
	ret = hclgevf_clear_vport_list(hdev);
	if (ret) {
		dev_err(&pdev->dev,
			"failed to clear tbl list configuration, ret = %d.\n",
			ret);
		goto err_config;
	}

3327 3328 3329 3330 3331 3332 3333
	ret = hclgevf_init_vlan_config(hdev);
	if (ret) {
		dev_err(&hdev->pdev->dev,
			"failed(%d) to initialize VLAN config\n", ret);
		goto err_config;
	}

3334
	hdev->last_reset_time = jiffies;
3335 3336
	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
		 HCLGEVF_DRIVER_NAME);
3337

3338 3339
	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));

3340 3341 3342 3343 3344 3345 3346
	return 0;

err_config:
	hclgevf_misc_irq_uninit(hdev);
err_misc_irq_init:
	hclgevf_state_uninit(hdev);
	hclgevf_uninit_msi(hdev);
3347
err_cmd_init:
3348 3349
	hclgevf_cmd_uninit(hdev);
err_cmd_queue_init:
3350
	hclgevf_pci_uninit(hdev);
3351
	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3352 3353 3354
	return ret;
}

3355
static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3356
{
3357 3358
	struct hclge_vf_to_pf_msg send_msg;

3359
	hclgevf_state_uninit(hdev);
3360

3361 3362
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3363

3364 3365 3366 3367 3368
	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
		hclgevf_misc_irq_uninit(hdev);
		hclgevf_uninit_msi(hdev);
	}

3369
	hclgevf_cmd_uninit(hdev);
3370
	hclgevf_pci_uninit(hdev);
3371
	hclgevf_uninit_mac_list(hdev);
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
}

static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct pci_dev *pdev = ae_dev->pdev;
	int ret;

	ret = hclgevf_alloc_hdev(ae_dev);
	if (ret) {
		dev_err(&pdev->dev, "hclge device allocation failed\n");
		return ret;
	}

	ret = hclgevf_init_hdev(ae_dev->priv);
3386
	if (ret) {
3387
		dev_err(&pdev->dev, "hclge device initialization failed\n");
3388 3389
		return ret;
	}
3390

3391
	return 0;
3392 3393 3394 3395 3396 3397 3398
}

static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
	struct hclgevf_dev *hdev = ae_dev->priv;

	hclgevf_uninit_hdev(hdev);
3399 3400 3401
	ae_dev->priv = NULL;
}

3402 3403 3404 3405 3406
static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
{
	struct hnae3_handle *nic = &hdev->nic;
	struct hnae3_knic_private_info *kinfo = &nic->kinfo;

3407
	return min_t(u32, hdev->rss_size_max,
3408
		     hdev->num_tqps / kinfo->tc_info.num_tc);
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
}

/**
 * hclgevf_get_channels - Get the current channels enabled and max supported.
 * @handle: hardware information for network interface
 * @ch: ethtool channels structure
 *
 * We don't support separate tx and rx queues as channels. The other count
 * represents how many queues are being used for control. max_combined counts
 * how many queue pairs we can support. They may not be mapped 1 to 1 with
 * q_vectors since we support a lot more queue pairs than q_vectors.
 **/
static void hclgevf_get_channels(struct hnae3_handle *handle,
				 struct ethtool_channels *ch)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	ch->max_combined = hclgevf_get_max_channels(hdev);
	ch->other_count = 0;
	ch->max_other = 0;
3429
	ch->combined_count = handle->kinfo.rss_size;
3430 3431
}

3432
static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3433
					  u16 *alloc_tqps, u16 *max_rss_size)
3434 3435 3436
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3437
	*alloc_tqps = hdev->num_tqps;
3438 3439 3440
	*max_rss_size = hdev->rss_size_max;
}

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
static void hclgevf_update_rss_size(struct hnae3_handle *handle,
				    u32 new_tqps_num)
{
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	u16 max_rss_size;

	kinfo->req_rss_size = new_tqps_num;

	max_rss_size = min_t(u16, hdev->rss_size_max,
3451
			     hdev->num_tqps / kinfo->tc_info.num_tc);
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462

	/* Use the user's configuration when it is not larger than
	 * max_rss_size, otherwise, use the maximum specification value.
	 */
	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
	    kinfo->req_rss_size <= max_rss_size)
		kinfo->rss_size = kinfo->req_rss_size;
	else if (kinfo->rss_size > max_rss_size ||
		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
		kinfo->rss_size = max_rss_size;

3463
	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
}

static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
				bool rxfh_configured)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
	u16 cur_rss_size = kinfo->rss_size;
	u16 cur_tqps = kinfo->num_tqps;
	u32 *rss_indir;
	unsigned int i;
	int ret;

	hclgevf_update_rss_size(handle, new_tqps_num);

	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
	if (ret)
		return ret;

	/* RSS indirection table has been configuared by user */
	if (rxfh_configured)
		goto out;

	/* Reinitializes the rss indirect table according to the new RSS size */
3488 3489
	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
			    sizeof(u32), GFP_KERNEL);
3490 3491 3492
	if (!rss_indir)
		return -ENOMEM;

3493
	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3494 3495
		rss_indir[i] = i % kinfo->rss_size;

3496 3497
	hdev->rss_cfg.rss_size = kinfo->rss_size;

3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
	if (ret)
		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
			ret);

	kfree(rss_indir);

out:
	if (!ret)
		dev_info(&hdev->pdev->dev,
			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
			 cur_rss_size, kinfo->rss_size,
3510
			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3511 3512 3513 3514

	return ret;
}

3515 3516 3517 3518 3519 3520 3521
static int hclgevf_get_status(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hdev->hw.mac.link;
}

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
					    u8 *auto_neg, u32 *speed,
					    u8 *duplex)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	if (speed)
		*speed = hdev->hw.mac.speed;
	if (duplex)
		*duplex = hdev->hw.mac.duplex;
	if (auto_neg)
		*auto_neg = AUTONEG_DISABLE;
}

void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
				 u8 duplex)
{
	hdev->hw.mac.speed = speed;
	hdev->hw.mac.duplex = duplex;
}

3543
static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3544 3545 3546 3547 3548 3549
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return hclgevf_config_gro(hdev, enable);
}

3550 3551
static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
				   u8 *module_type)
3552 3553
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3554

3555 3556
	if (media_type)
		*media_type = hdev->hw.mac.media_type;
3557 3558 3559

	if (module_type)
		*module_type = hdev->hw.mac.module_type;
3560 3561
}

3562 3563 3564 3565
static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3566
	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3567 3568
}

3569 3570 3571 3572 3573 3574 3575
static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
}

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
}

static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

3587
	return hdev->rst_stats.hw_rst_done_cnt;
3588 3589
}

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
static void hclgevf_get_link_mode(struct hnae3_handle *handle,
				  unsigned long *supported,
				  unsigned long *advertising)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	*supported = hdev->hw.mac.supported;
	*advertising = hdev->hw.mac.advertising;
}

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
#define MAX_SEPARATE_NUM	4
#define SEPARATOR_VALUE		0xFFFFFFFF
#define REG_NUM_PER_LINE	4
#define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))

static int hclgevf_get_regs_len(struct hnae3_handle *handle)
{
	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);

	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;

	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
}

static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
			     void *data)
{
	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
	int i, j, reg_um, separator_num;
	u32 *reg = data;

	*version = hdev->fw_version;

	/* fetching per-VF registers values from VF PCIe register space */
	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (i = 0; i < reg_um; i++)
		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
	for (i = 0; i < separator_num; i++)
		*reg++ = SEPARATOR_VALUE;

	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_tqps; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  ring_reg_addr_list[i] +
						  0x200 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}

	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
	for (j = 0; j < hdev->num_msi_used - 1; j++) {
		for (i = 0; i < reg_um; i++)
			*reg++ = hclgevf_read_dev(&hdev->hw,
						  tqp_intr_reg_addr_list[i] +
						  4 * j);
		for (i = 0; i < separator_num; i++)
			*reg++ = SEPARATOR_VALUE;
	}
}

3666 3667 3668 3669
void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
					u8 *port_base_vlan_info, u8 data_size)
{
	struct hnae3_handle *nic = &hdev->nic;
3670
	struct hclge_vf_to_pf_msg send_msg;
3671
	int ret;
3672 3673

	rtnl_lock();
3674

3675 3676
	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		dev_warn(&hdev->pdev->dev,
			 "is resetting when updating port based vlan info\n");
		rtnl_unlock();
		return;
	}

	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
	if (ret) {
		rtnl_unlock();
		return;
	}
3688 3689

	/* send msg to PF and wait update port based vlan info */
3690 3691 3692
	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
	memcpy(send_msg.data, port_base_vlan_info, data_size);
3693 3694 3695 3696 3697 3698 3699
	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
	if (!ret) {
		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
			nic->port_base_vlan_state = state;
		else
			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
	}
3700 3701 3702 3703 3704

	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
	rtnl_unlock();
}

3705 3706 3707
static const struct hnae3_ae_ops hclgevf_ops = {
	.init_ae_dev = hclgevf_init_ae_dev,
	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3708 3709
	.flr_prepare = hclgevf_flr_prepare,
	.flr_done = hclgevf_flr_done,
3710 3711
	.init_client_instance = hclgevf_init_client_instance,
	.uninit_client_instance = hclgevf_uninit_client_instance,
3712 3713
	.start = hclgevf_ae_start,
	.stop = hclgevf_ae_stop,
3714 3715
	.client_start = hclgevf_client_start,
	.client_stop = hclgevf_client_stop,
3716 3717 3718
	.map_ring_to_vector = hclgevf_map_ring_to_vector,
	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
	.get_vector = hclgevf_get_vector,
3719
	.put_vector = hclgevf_put_vector,
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
	.reset_queue = hclgevf_reset_tqp,
	.get_mac_addr = hclgevf_get_mac_addr,
	.set_mac_addr = hclgevf_set_mac_addr,
	.add_uc_addr = hclgevf_add_uc_addr,
	.rm_uc_addr = hclgevf_rm_uc_addr,
	.add_mc_addr = hclgevf_add_mc_addr,
	.rm_mc_addr = hclgevf_rm_mc_addr,
	.get_stats = hclgevf_get_stats,
	.update_stats = hclgevf_update_stats,
	.get_strings = hclgevf_get_strings,
	.get_sset_count = hclgevf_get_sset_count,
	.get_rss_key_size = hclgevf_get_rss_key_size,
	.get_rss = hclgevf_get_rss,
	.set_rss = hclgevf_set_rss,
3734 3735
	.get_rss_tuple = hclgevf_get_rss_tuple,
	.set_rss_tuple = hclgevf_set_rss_tuple,
3736 3737 3738
	.get_tc_size = hclgevf_get_tc_size,
	.get_fw_version = hclgevf_get_fw_version,
	.set_vlan_filter = hclgevf_set_vlan_filter,
3739
	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3740
	.reset_event = hclgevf_reset_event,
3741
	.set_default_reset_request = hclgevf_set_def_reset_request,
3742
	.set_channels = hclgevf_set_channels,
3743
	.get_channels = hclgevf_get_channels,
3744
	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3745 3746
	.get_regs_len = hclgevf_get_regs_len,
	.get_regs = hclgevf_get_regs,
3747
	.get_status = hclgevf_get_status,
3748
	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3749
	.get_media_type = hclgevf_get_media_type,
3750 3751 3752
	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
	.ae_dev_resetting = hclgevf_ae_dev_resetting,
	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3753
	.set_gro_en = hclgevf_gro_en,
3754
	.set_mtu = hclgevf_set_mtu,
3755
	.get_global_queue_id = hclgevf_get_qid_global,
3756
	.set_timer_task = hclgevf_set_timer_task,
3757
	.get_link_mode = hclgevf_get_link_mode,
3758
	.set_promisc_mode = hclgevf_set_promisc_mode,
3759
	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3760
	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
};

static struct hnae3_ae_algo ae_algovf = {
	.ops = &hclgevf_ops,
	.pdev_id_table = ae_algovf_pci_tbl,
};

static int hclgevf_init(void)
{
	pr_info("%s is initializing\n", HCLGEVF_NAME);

3772
	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3773 3774 3775 3776 3777
	if (!hclgevf_wq) {
		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
		return -ENOMEM;
	}

3778 3779 3780
	hnae3_register_ae_algo(&ae_algovf);

	return 0;
3781 3782 3783 3784 3785
}

static void hclgevf_exit(void)
{
	hnae3_unregister_ae_algo(&ae_algovf);
3786
	destroy_workqueue(hclgevf_wq);
3787 3788 3789 3790 3791 3792 3793 3794
}
module_init(hclgevf_init);
module_exit(hclgevf_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGEVF Driver");
MODULE_VERSION(HCLGEVF_MOD_VERSION);