entry_32.S 38.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2
/*
3
 *  Copyright (C) 1991,1992  Linus Torvalds
L
Linus Torvalds 已提交
4
 *
5
 * entry_32.S contains the system-call and low-level fault and trap handling routines.
L
Linus Torvalds 已提交
6
 *
7
 * Stack layout while running C code:
8 9 10
 *	ptrace needs to have all registers on the stack.
 *	If the order here is changed, it needs to be
 *	updated in fork.c:copy_process(), signal.c:do_signal(),
L
Linus Torvalds 已提交
11 12 13 14 15
 *	ptrace.c and ptrace.h
 *
 *	 0(%esp) - %ebx
 *	 4(%esp) - %ecx
 *	 8(%esp) - %edx
16
 *	 C(%esp) - %esi
L
Linus Torvalds 已提交
17 18 19 20 21
 *	10(%esp) - %edi
 *	14(%esp) - %ebp
 *	18(%esp) - %eax
 *	1C(%esp) - %ds
 *	20(%esp) - %es
22
 *	24(%esp) - %fs
23 24 25 26 27 28 29
 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
 *	2C(%esp) - orig_eax
 *	30(%esp) - %eip
 *	34(%esp) - %cs
 *	38(%esp) - %eflags
 *	3C(%esp) - %oldesp
 *	40(%esp) - %oldss
L
Linus Torvalds 已提交
30 31 32
 */

#include <linux/linkage.h>
33
#include <linux/err.h>
L
Linus Torvalds 已提交
34
#include <asm/thread_info.h>
35
#include <asm/irqflags.h>
L
Linus Torvalds 已提交
36 37 38
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
S
Stas Sergeev 已提交
39
#include <asm/percpu.h>
40
#include <asm/processor-flags.h>
41
#include <asm/irq_vectors.h>
42
#include <asm/cpufeatures.h>
43
#include <asm/alternative-asm.h>
44
#include <asm/asm.h>
45
#include <asm/smap.h>
46
#include <asm/frame.h>
47
#include <asm/trapnr.h>
48
#include <asm/nospec-branch.h>
L
Linus Torvalds 已提交
49

50 51
#include "calling.h"

J
Jiri Olsa 已提交
52 53
	.section .entry.text, "ax"

54 55 56 57 58
/*
 * We use macros for low-level operations which need to be overridden
 * for paravirtualization.  The following will never clobber any registers:
 *   INTERRUPT_RETURN (aka. "iret")
 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
59
 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
60 61 62 63 64 65 66
 *
 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
 * Allowing a register to be clobbered can shrink the paravirt replacement
 * enough to patch inline, increasing performance.
 */

T
Thomas Gleixner 已提交
67
#ifdef CONFIG_PREEMPTION
68
# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
L
Linus Torvalds 已提交
69
#else
70
# define preempt_stop(clobbers)
L
Linus Torvalds 已提交
71 72
#endif

73 74
.macro TRACE_IRQS_IRET
#ifdef CONFIG_TRACE_IRQFLAGS
75 76
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
	jz	1f
77 78 79 80 81
	TRACE_IRQS_ON
1:
#endif
.endm

82 83
#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)

84 85 86 87 88 89 90 91 92 93 94 95 96
/*
 * User gs save/restore
 *
 * %gs is used for userland TLS and kernel only uses it for stack
 * canary which is required to be at %gs:20 by gcc.  Read the comment
 * at the top of stackprotector.h for more info.
 *
 * Local labels 98 and 99 are used.
 */
#ifdef CONFIG_X86_32_LAZY_GS

 /* unfortunately push/pop can't be no-op */
.macro PUSH_GS
97
	pushl	$0
98 99
.endm
.macro POP_GS pop=0
100
	addl	$(4 + \pop), %esp
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
.endm
.macro POP_GS_EX
.endm

 /* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm

#else	/* CONFIG_X86_32_LAZY_GS */

.macro PUSH_GS
120
	pushl	%gs
121 122 123
.endm

.macro POP_GS pop=0
124
98:	popl	%gs
125
  .if \pop <> 0
126
	add	$\pop, %esp
127 128 129 130
  .endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
131 132
99:	movl	$0, (%esp)
	jmp	98b
133
.popsection
134
	_ASM_EXTABLE(98b, 99b)
135 136 137
.endm

.macro PTGS_TO_GS
138
98:	mov	PT_GS(%esp), %gs
139 140 141
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
142 143
99:	movl	$0, PT_GS(%esp)
	jmp	98b
144
.popsection
145
	_ASM_EXTABLE(98b, 99b)
146 147 148
.endm

.macro GS_TO_REG reg
149
	movl	%gs, \reg
150 151
.endm
.macro REG_TO_PTGS reg
152
	movl	\reg, PT_GS(%esp)
153 154
.endm
.macro SET_KERNEL_GS reg
155 156
	movl	$(__KERNEL_STACK_CANARY), \reg
	movl	\reg, %gs
157 158
.endm

159
#endif /* CONFIG_X86_32_LAZY_GS */
160

161 162 163 164 165 166 167 168 169 170
/* Unconditionally switch to user cr3 */
.macro SWITCH_TO_USER_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI

	movl	%cr3, \scratch_reg
	orl	$PTI_SWITCH_MASK, \scratch_reg
	movl	\scratch_reg, %cr3
.Lend_\@:
.endm

171 172 173 174 175
.macro BUG_IF_WRONG_CR3 no_user_check=0
#ifdef CONFIG_DEBUG_ENTRY
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	.if \no_user_check == 0
	/* coming from usermode? */
176
	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
177 178 179 180 181 182 183 184 185 186 187 188
	jz	.Lend_\@
	.endif
	/* On user-cr3? */
	movl	%cr3, %eax
	testl	$PTI_SWITCH_MASK, %eax
	jnz	.Lend_\@
	/* From userspace with kernel cr3 - BUG */
	ud2
.Lend_\@:
#endif
.endm

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Switch to kernel cr3 if not already loaded and return current cr3 in
 * \scratch_reg
 */
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	movl	%cr3, \scratch_reg
	/* Test if we are already on kernel CR3 */
	testl	$PTI_SWITCH_MASK, \scratch_reg
	jz	.Lend_\@
	andl	$(~PTI_SWITCH_MASK), \scratch_reg
	movl	\scratch_reg, %cr3
	/* Return original CR3 in \scratch_reg */
	orl	$PTI_SWITCH_MASK, \scratch_reg
.Lend_\@:
.endm

206 207 208
#define CS_FROM_ENTRY_STACK	(1 << 31)
#define CS_FROM_USER_CR3	(1 << 30)
#define CS_FROM_KERNEL		(1 << 29)
P
Peter Zijlstra 已提交
209
#define CS_FROM_ESPFIX		(1 << 28)
210 211 212 213 214 215

.macro FIXUP_FRAME
	/*
	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
	 * Clear them in case hardware didn't do this for us.
	 */
216
	andl	$0x0000ffff, 4*4(%esp)
217 218

#ifdef CONFIG_VM86
219
	testl	$X86_EFLAGS_VM, 5*4(%esp)
220 221
	jnz	.Lfrom_usermode_no_fixup_\@
#endif
222
	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
223 224
	jnz	.Lfrom_usermode_no_fixup_\@

225
	orl	$CS_FROM_KERNEL, 4*4(%esp)
226 227 228 229

	/*
	 * When we're here from kernel mode; the (exception) stack looks like:
	 *
230 231 232 233 234 235 236
	 *  6*4(%esp) - <previous context>
	 *  5*4(%esp) - flags
	 *  4*4(%esp) - cs
	 *  3*4(%esp) - ip
	 *  2*4(%esp) - orig_eax
	 *  1*4(%esp) - gs / function
	 *  0*4(%esp) - fs
237 238 239
	 *
	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
	 * is complete and in particular regs->sp is correct. This gives us
240
	 * the original 6 enties as gap:
241
	 *
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	 * 14*4(%esp) - <previous context>
	 * 13*4(%esp) - gap / flags
	 * 12*4(%esp) - gap / cs
	 * 11*4(%esp) - gap / ip
	 * 10*4(%esp) - gap / orig_eax
	 *  9*4(%esp) - gap / gs / function
	 *  8*4(%esp) - gap / fs
	 *  7*4(%esp) - ss
	 *  6*4(%esp) - sp
	 *  5*4(%esp) - flags
	 *  4*4(%esp) - cs
	 *  3*4(%esp) - ip
	 *  2*4(%esp) - orig_eax
	 *  1*4(%esp) - gs / function
	 *  0*4(%esp) - fs
257 258 259 260
	 */

	pushl	%ss		# ss
	pushl	%esp		# sp (points at ss)
261 262 263 264 265 266 267
	addl	$7*4, (%esp)	# point sp back at the previous context
	pushl	7*4(%esp)	# flags
	pushl	7*4(%esp)	# cs
	pushl	7*4(%esp)	# ip
	pushl	7*4(%esp)	# orig_eax
	pushl	7*4(%esp)	# gs / function
	pushl	7*4(%esp)	# fs
268 269 270 271
.Lfrom_usermode_no_fixup_\@:
.endm

.macro IRET_FRAME
272 273 274 275 276 277 278
	/*
	 * We're called with %ds, %es, %fs, and %gs from the interrupted
	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
	 * mode and therefore have a nonzero SS base and an offset ESP,
	 * so any attempt to access the stack needs to use SS.  (except for
	 * accesses through %esp, which automatically use SS.)
	 */
279 280 281 282 283 284 285 286 287 288 289 290 291
	testl $CS_FROM_KERNEL, 1*4(%esp)
	jz .Lfinished_frame_\@

	/*
	 * Reconstruct the 3 entry IRET frame right after the (modified)
	 * regs->sp without lowering %esp in between, such that an NMI in the
	 * middle doesn't scribble our stack.
	 */
	pushl	%eax
	pushl	%ecx
	movl	5*4(%esp), %eax		# (modified) regs->sp

	movl	4*4(%esp), %ecx		# flags
292
	movl	%ecx, %ss:-1*4(%eax)
293 294 295

	movl	3*4(%esp), %ecx		# cs
	andl	$0x0000ffff, %ecx
296
	movl	%ecx, %ss:-2*4(%eax)
297 298

	movl	2*4(%esp), %ecx		# ip
299
	movl	%ecx, %ss:-3*4(%eax)
300 301

	movl	1*4(%esp), %ecx		# eax
302
	movl	%ecx, %ss:-4*4(%eax)
303 304

	popl	%ecx
305
	lea	-4*4(%eax), %esp
306 307 308 309
	popl	%eax
.Lfinished_frame_\@:
.endm

310
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
311
	cld
312
.if \skip_gs == 0
313
	PUSH_GS
314
.endif
315
	pushl	%fs
316 317 318 319 320 321 322 323 324

	pushl	%eax
	movl	$(__KERNEL_PERCPU), %eax
	movl	%eax, %fs
.if \unwind_espfix > 0
	UNWIND_ESPFIX_STACK
.endif
	popl	%eax

325
	FIXUP_FRAME
326 327
	pushl	%es
	pushl	%ds
328
	pushl	\pt_regs_ax
329 330 331 332 333 334 335 336 337
	pushl	%ebp
	pushl	%edi
	pushl	%esi
	pushl	%edx
	pushl	%ecx
	pushl	%ebx
	movl	$(__USER_DS), %edx
	movl	%edx, %ds
	movl	%edx, %es
338
.if \skip_gs == 0
339
	SET_KERNEL_GS %edx
340
.endif
341 342 343 344
	/* Switch to kernel stack if necessary */
.if \switch_stacks > 0
	SWITCH_TO_KERNEL_STACK
.endif
345
.endm
L
Linus Torvalds 已提交
346

P
Peter Zijlstra 已提交
347 348
.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
	SAVE_ALL unwind_espfix=\unwind_espfix
349

350 351
	BUG_IF_WRONG_CR3

352 353 354 355 356 357 358 359 360 361
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We can enter with either user or kernel cr3, the code will
	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
	 * if necessary.
	 */
	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg

.Lend_\@:
362
.endm
363

364
.macro RESTORE_INT_REGS
365 366 367 368 369 370 371
	popl	%ebx
	popl	%ecx
	popl	%edx
	popl	%esi
	popl	%edi
	popl	%ebp
	popl	%eax
372
.endm
L
Linus Torvalds 已提交
373

374
.macro RESTORE_REGS pop=0
375
	RESTORE_INT_REGS
376 377 378
1:	popl	%ds
2:	popl	%es
3:	popl	%fs
379
	POP_GS \pop
P
Peter Zijlstra 已提交
380
	IRET_FRAME
381
.pushsection .fixup, "ax"
382 383 384 385 386 387
4:	movl	$0, (%esp)
	jmp	1b
5:	movl	$0, (%esp)
	jmp	2b
6:	movl	$0, (%esp)
	jmp	3b
388
.popsection
389 390 391
	_ASM_EXTABLE(1b, 4b)
	_ASM_EXTABLE(2b, 5b)
	_ASM_EXTABLE(3b, 6b)
392
	POP_GS_EX
393
.endm
L
Linus Torvalds 已提交
394

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We enter with kernel cr3 and switch the cr3 to the value
	 * stored on \cr3_reg, which is either a user or a kernel cr3.
	 */
	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI

	testl	$PTI_SWITCH_MASK, \cr3_reg
	jz	.Lswitched_\@

	/* User cr3 in \cr3_reg - write it to hardware cr3 */
	movl	\cr3_reg, %cr3

.Lswitched_\@:

412 413
	BUG_IF_WRONG_CR3

414 415 416
	RESTORE_REGS pop=\pop
.endm

417 418
.macro CHECK_AND_APPLY_ESPFIX
#ifdef CONFIG_X86_ESPFIX32
419 420
#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX

	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
	/*
	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
	 * are returning to the kernel.
	 * See comments in process.c:copy_thread() for details.
	 */
	movb	PT_OLDSS(%esp), %ah
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
	jne	.Lend_\@	# returning to user-space with LDT SS

	/*
	 * Setup and switch to ESPFIX stack
	 *
	 * We're returning to userspace with a 16 bit stack. The CPU will not
	 * restore the high word of ESP for us on executing iret... This is an
	 * "official" bug of all the x86-compatible CPUs, which we can work
	 * around to make dosemu and wine happy. We do this by preloading the
	 * high word of ESP with the high word of the userspace ESP while
	 * compensating for the offset by changing to the ESPFIX segment with
	 * a base address that matches for the difference.
	 */
	mov	%esp, %edx			/* load kernel esp */
	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
	mov	%dx, %ax			/* eax: new kernel esp */
	sub	%eax, %edx			/* offset (low word is 0) */
	shr	$16, %edx
	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
	pushl	$__ESPFIX_SS
	pushl	%eax				/* new kernel esp */
	/*
	 * Disable interrupts, but do not irqtrace this section: we
	 * will soon execute iret and the tracer was already set to
	 * the irqstate after the IRET:
	 */
	DISABLE_INTERRUPTS(CLBR_ANY)
	lss	(%esp), %esp			/* switch to espfix segment */
.Lend_\@:
#endif /* CONFIG_X86_ESPFIX32 */
.endm
466 467 468 469 470 471 472 473 474 475 476

/*
 * Called with pt_regs fully populated and kernel segments loaded,
 * so we can access PER_CPU and use the integer registers.
 *
 * We need to be very careful here with the %esp switch, because an NMI
 * can happen everywhere. If the NMI handler finds itself on the
 * entry-stack, it will overwrite the task-stack and everything we
 * copied there. So allocate the stack-frame on the task-stack and
 * switch to it before we do any copying.
 */
477

478 479 480 481
.macro SWITCH_TO_KERNEL_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

482 483
	BUG_IF_WRONG_CR3

484 485 486 487 488 489 490
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax

	/*
	 * %eax now contains the entry cr3 and we carry it forward in
	 * that register for the time this macro runs
	 */

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	/* Are we on the entry stack? Bail out if not! */
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
	jae	.Lend_\@

	/* Load stack pointer into %esi and %edi */
	movl	%esp, %esi
	movl	%esi, %edi

	/* Move %edi to the top of the entry stack */
	andl	$(MASK_entry_stack), %edi
	addl	$(SIZEOF_entry_stack), %edi

	/* Load top of task-stack into %edi */
	movl	TSS_entry2task_stack(%edi), %edi

509
	/* Special case - entry from kernel mode via entry stack */
510 511 512 513 514 515 516 517 518 519
#ifdef CONFIG_VM86
	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
	movb	PT_CS(%esp), %cl
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
#else
	movl	PT_CS(%esp), %ecx
	andl	$SEGMENT_RPL_MASK, %ecx
#endif
	cmpl	$USER_RPL, %ecx
	jb	.Lentry_from_kernel_\@
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534
	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
	jz	.Lcopy_pt_regs_\@

	/*
	 * Stack-frame contains 4 additional segment registers when
	 * coming from VM86 mode
	 */
	addl	$(4 * 4), %ecx

#endif
535
.Lcopy_pt_regs_\@:
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

	/* Allocate frame on task-stack */
	subl	%ecx, %edi

	/* Switch to task-stack */
	movl	%edi, %esp

	/*
	 * We are now on the task-stack and can safely copy over the
	 * stack-frame
	 */
	shrl	$2, %ecx
	cld
	rep movsl

551 552 553 554 555 556 557 558 559 560 561
	jmp .Lend_\@

.Lentry_from_kernel_\@:

	/*
	 * This handles the case when we enter the kernel from
	 * kernel-mode and %esp points to the entry-stack. When this
	 * happens we need to switch to the task-stack to run C code,
	 * but switch back to the entry-stack again when we approach
	 * iret and return to the interrupted code-path. This usually
	 * happens when we hit an exception while restoring user-space
562 563
	 * segment registers on the way back to user-space or when the
	 * sysenter handler runs with eflags.tf set.
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	 *
	 * When we switch to the task-stack here, we can't trust the
	 * contents of the entry-stack anymore, as the exception handler
	 * might be scheduled out or moved to another CPU. Therefore we
	 * copy the complete entry-stack to the task-stack and set a
	 * marker in the iret-frame (bit 31 of the CS dword) to detect
	 * what we've done on the iret path.
	 *
	 * On the iret path we copy everything back and switch to the
	 * entry-stack, so that the interrupted kernel code-path
	 * continues on the same stack it was interrupted with.
	 *
	 * Be aware that an NMI can happen anytime in this code.
	 *
	 * %esi: Entry-Stack pointer (same as %esp)
	 * %edi: Top of the task stack
580
	 * %eax: CR3 on kernel entry
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	 */

	/* Calculate number of bytes on the entry stack in %ecx */
	movl	%esi, %ecx

	/* %ecx to the top of entry-stack */
	andl	$(MASK_entry_stack), %ecx
	addl	$(SIZEOF_entry_stack), %ecx

	/* Number of bytes on the entry stack to %ecx */
	sub	%esi, %ecx

	/* Mark stackframe as coming from entry stack */
	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)

596 597 598 599 600 601 602 603
	/*
	 * Test the cr3 used to enter the kernel and add a marker
	 * so that we can switch back to it before iret.
	 */
	testl	$PTI_SWITCH_MASK, %eax
	jz	.Lcopy_pt_regs_\@
	orl	$CS_FROM_USER_CR3, PT_CS(%esp)

604 605 606 607 608 609 610
	/*
	 * %esi and %edi are unchanged, %ecx contains the number of
	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
	 * the stack-frame on task-stack and copy everything over
	 */
	jmp .Lcopy_pt_regs_\@

611 612 613
.Lend_\@:
.endm

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Switch back from the kernel stack to the entry stack.
 *
 * The %esp register must point to pt_regs on the task stack. It will
 * first calculate the size of the stack-frame to copy, depending on
 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 * to copy the contents of the stack over to the entry stack.
 *
 * We must be very careful here, as we can't trust the contents of the
 * task-stack once we switched to the entry-stack. When an NMI happens
 * while on the entry-stack, the NMI handler will switch back to the top
 * of the task stack, overwriting our stack-frame we are about to copy.
 * Therefore we switch the stack only after everything is copied over.
 */
.macro SWITCH_TO_ENTRY_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
	jz	.Lcopy_pt_regs_\@

	/* Additional 4 registers to copy when returning to VM86 mode */
	addl    $(4 * 4), %ecx

.Lcopy_pt_regs_\@:
#endif

	/* Initialize source and destination for movsl */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
	subl	%ecx, %edi
	movl	%esp, %esi

	/* Save future stack pointer in %ebx */
	movl	%edi, %ebx

	/* Copy over the stack-frame */
	shrl	$2, %ecx
	cld
	rep movsl

	/*
	 * Switch to entry-stack - needs to happen after everything is
	 * copied because the NMI handler will overwrite the task-stack
	 * when on entry-stack
	 */
	movl	%ebx, %esp

.Lend_\@:
.endm

668 669
/*
 * This macro handles the case when we return to kernel-mode on the iret
670
 * path and have to switch back to the entry stack and/or user-cr3
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
 *
 * See the comments below the .Lentry_from_kernel_\@ label in the
 * SWITCH_TO_KERNEL_STACK macro for more details.
 */
.macro PARANOID_EXIT_TO_KERNEL_MODE

	/*
	 * Test if we entered the kernel with the entry-stack. Most
	 * likely we did not, because this code only runs on the
	 * return-to-kernel path.
	 */
	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
	jz	.Lend_\@

	/* Unlikely slow-path */

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)

	/* Copy the remaining task-stack contents to entry-stack */
	movl	%esp, %esi
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi

	/* Bytes on the task-stack to ecx */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
	subl	%esi, %ecx

	/* Allocate stack-frame on entry-stack */
	subl	%ecx, %edi

	/*
	 * Save future stack-pointer, we must not switch until the
	 * copy is done, otherwise the NMI handler could destroy the
	 * contents of the task-stack we are about to copy.
	 */
	movl	%edi, %ebx

	/* Do the copy */
	shrl	$2, %ecx
	cld
	rep movsl

	/* Safe to switch to entry-stack now */
	movl	%ebx, %esp

716 717 718 719 720 721 722 723 724 725 726 727
	/*
	 * We came from entry-stack and need to check if we also need to
	 * switch back to user cr3.
	 */
	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
	jz	.Lend_\@

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)

	SWITCH_TO_USER_CR3 scratch_reg=%eax

728 729
.Lend_\@:
.endm
730 731 732 733 734 735 736 737

/**
 * idtentry - Macro to generate entry stubs for simple IDT entries
 * @vector:		Vector number
 * @asmsym:		ASM symbol for the entry point
 * @cfunc:		C function to be called
 * @has_error_code:	Hardware pushed error code on stack
 */
738
.macro idtentry vector asmsym cfunc has_error_code:req
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
SYM_CODE_START(\asmsym)
	ASM_CLAC
	cld

	.if \has_error_code == 0
		pushl	$0		/* Clear the error code */
	.endif

	/* Push the C-function address into the GS slot */
	pushl	$\cfunc
	/* Invoke the common exception entry */
	jmp	handle_exception
SYM_CODE_END(\asmsym)
.endm

754 755 756 757 758 759 760 761 762 763 764 765 766 767
.macro idtentry_irq vector cfunc
	.p2align CONFIG_X86_L1_CACHE_SHIFT
SYM_CODE_START_LOCAL(asm_\cfunc)
	ASM_CLAC
	SAVE_ALL switch_stacks=1
	ENCODE_FRAME_POINTER
	movl	%esp, %eax
	movl	PT_ORIG_EAX(%esp), %edx		/* get the vector from stack */
	movl	$-1, PT_ORIG_EAX(%esp)		/* no syscall to restart */
	call	\cfunc
	jmp	handle_exception_return
SYM_CODE_END(asm_\cfunc)
.endm

768 769 770 771
.macro idtentry_sysvec vector cfunc
	idtentry \vector asm_\cfunc \cfunc has_error_code=0
.endm

772 773 774 775 776 777
/*
 * Include the defines which emit the idt entries which are shared
 * shared between 32 and 64 bit.
 */
#include <asm/idtentry.h>

778 779 780 781
/*
 * %eax: prev task
 * %edx: next task
 */
782
.pushsection .text, "ax"
783
SYM_CODE_START(__switch_to_asm)
784 785 786 787 788 789 790 791
	/*
	 * Save callee-saved registers
	 * This must match the order in struct inactive_task_frame
	 */
	pushl	%ebp
	pushl	%ebx
	pushl	%edi
	pushl	%esi
792 793 794 795 796
	/*
	 * Flags are saved to prevent AC leakage. This could go
	 * away if objtool would have 32bit support to verify
	 * the STAC/CLAC correctness.
	 */
797
	pushfl
798 799 800 801 802

	/* switch stack */
	movl	%esp, TASK_threadsp(%eax)
	movl	TASK_threadsp(%edx), %esp

803
#ifdef CONFIG_STACKPROTECTOR
804 805 806 807
	movl	TASK_stack_canary(%edx), %ebx
	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif

808 809 810 811 812 813 814 815
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
816
	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
817 818
#endif

819
	/* Restore flags or the incoming task to restore AC state. */
820
	popfl
821
	/* restore callee-saved registers */
822 823 824 825 826 827
	popl	%esi
	popl	%edi
	popl	%ebx
	popl	%ebp

	jmp	__switch_to
828
SYM_CODE_END(__switch_to_asm)
829
.popsection
830

831 832 833 834 835 836 837
/*
 * The unwinder expects the last frame on the stack to always be at the same
 * offset from the end of the page, which allows it to validate the stack.
 * Calling schedule_tail() directly would break that convention because its an
 * asmlinkage function so its argument has to be pushed on the stack.  This
 * wrapper creates a proper "end of stack" frame header before the call.
 */
838
.pushsection .text, "ax"
839
SYM_FUNC_START(schedule_tail_wrapper)
840 841 842 843 844 845 846 847
	FRAME_BEGIN

	pushl	%eax
	call	schedule_tail
	popl	%eax

	FRAME_END
	ret
848
SYM_FUNC_END(schedule_tail_wrapper)
849 850
.popsection

851 852 853 854
/*
 * A newly forked process directly context switches into this address.
 *
 * eax: prev task we switched from
855 856
 * ebx: kernel thread func (NULL for user thread)
 * edi: kernel thread arg
857
 */
858
.pushsection .text, "ax"
859
SYM_CODE_START(ret_from_fork)
860
	call	schedule_tail_wrapper
861

862 863 864 865
	testl	%ebx, %ebx
	jnz	1f		/* kernel threads are uncommon */

2:
866
	/* When we fork, we trace the syscall return in the child, too. */
867
	movl    %esp, %eax
868
	call    syscall_return_slowpath
869
	jmp     .Lsyscall_32_done
870

871 872
	/* kernel thread */
1:	movl	%edi, %eax
873
	CALL_NOSPEC ebx
874
	/*
875 876 877
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
878
	 */
879 880
	movl	$0, PT_EAX(%esp)
	jmp	2b
881
SYM_CODE_END(ret_from_fork)
882
.popsection
883

L
Linus Torvalds 已提交
884 885 886 887 888 889 890 891
/*
 * Return to user mode is not as complex as all this looks,
 * but we want the default path for a system call return to
 * go as quickly as possible which is why some of this is
 * less clear than it otherwise should be.
 */

	# userspace resumption stub bypassing syscall exit tracing
892
SYM_CODE_START_LOCAL(ret_from_exception)
893
	preempt_stop(CLBR_ANY)
L
Linus Torvalds 已提交
894
ret_from_intr:
895
#ifdef CONFIG_VM86
896 897 898
	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
899 900
#else
	/*
901
	 * We can be coming here from child spawned by kernel_thread().
902
	 */
903 904
	movl	PT_CS(%esp), %eax
	andl	$SEGMENT_RPL_MASK, %eax
905
#endif
906
	cmpl	$USER_RPL, %eax
907
	jb	restore_all_kernel		# not returning to v8086 or userspace
908

909
	DISABLE_INTERRUPTS(CLBR_ANY)
910
	TRACE_IRQS_OFF
911 912
	movl	%esp, %eax
	call	prepare_exit_to_usermode
913
	jmp	restore_all_switch_stack
914
SYM_CODE_END(ret_from_exception)
L
Linus Torvalds 已提交
915

916
SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
917 918 919 920 921 922 923 924 925
/*
 * All code from here through __end_SYSENTER_singlestep_region is subject
 * to being single-stepped if a user program sets TF and executes SYSENTER.
 * There is absolutely nothing that we can do to prevent this from happening
 * (thanks Intel!).  To keep our handling of this situation as simple as
 * possible, we handle TF just like AC and NT, except that our #DB handler
 * will ignore all of the single-step traps generated in this range.
 */

926
#ifdef CONFIG_XEN_PV
927 928 929 930
/*
 * Xen doesn't set %esp to be precisely what the normal SYSENTER
 * entry point expects, so fix it up before using the normal path.
 */
931
SYM_CODE_START(xen_sysenter_target)
932
	addl	$5*4, %esp			/* remove xen-provided frame */
933
	jmp	.Lsysenter_past_esp
934
SYM_CODE_END(xen_sysenter_target)
935 936
#endif

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
/*
 * 32-bit SYSENTER entry.
 *
 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 * if X86_FEATURE_SEP is available.  This is the preferred system call
 * entry on 32-bit systems.
 *
 * The SYSENTER instruction, in principle, should *only* occur in the
 * vDSO.  In practice, a small number of Android devices were shipped
 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 * never happened in any of Google's Bionic versions -- it only happened
 * in a narrow range of Intel-provided versions.
 *
 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 * SYSENTER does not save anything on the stack,
 * and does not save old EIP (!!!), ESP, or EFLAGS.
 *
 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 * user and/or vm86 state), we explicitly disable the SYSENTER
 * instruction in vm86 mode by reprogramming the MSRs.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  user stack
 * 0(%ebp) arg6
 */
969
SYM_FUNC_START(entry_SYSENTER_32)
970 971 972 973 974 975 976
	/*
	 * On entry-stack with all userspace-regs live - save and
	 * restore eflags and %eax to use it as scratch-reg for the cr3
	 * switch.
	 */
	pushfl
	pushl	%eax
977
	BUG_IF_WRONG_CR3 no_user_check=1
978 979 980 981 982
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
	popl	%eax
	popfl

	/* Stack empty again, switch to task stack */
983
	movl	TSS_entry2task_stack(%esp), %esp
984

985
.Lsysenter_past_esp:
986
	pushl	$__USER_DS		/* pt_regs->ss */
987
	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
988 989 990 991 992
	pushfl				/* pt_regs->flags (except IF = 0) */
	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
	pushl	$__USER_CS		/* pt_regs->cs */
	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
	pushl	%eax			/* pt_regs->orig_ax */
993
	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
994

995
	/*
996 997
	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
	 * and TF ourselves.  To save a few cycles, we can check whether
998 999 1000 1001
	 * either was set instead of doing an unconditional popfq.
	 * This needs to happen before enabling interrupts so that
	 * we don't get preempted with NT set.
	 *
1002 1003 1004 1005 1006 1007
	 * If TF is set, we will single-step all the way to here -- do_debug
	 * will ignore all the traps.  (Yes, this is slow, but so is
	 * single-stepping in general.  This allows us to avoid having
	 * a more complicated code to handle the case where a user program
	 * forces us to single-step through the SYSENTER entry code.)
	 *
1008 1009 1010 1011 1012 1013
	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
	 * out-of-line as an optimization: NT is unlikely to be set in the
	 * majority of the cases and instead of polluting the I$ unnecessarily,
	 * we're keeping that code behind a branch which will predict as
	 * not-taken and therefore its instructions won't be fetched.
	 */
1014
	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
1015 1016 1017
	jnz	.Lsysenter_fix_flags
.Lsysenter_flags_fixed:

1018 1019
	movl	%esp, %eax
	call	do_fast_syscall_32
1020 1021 1022
	/* XEN PV guests always use IRET path */
	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
1023

1024 1025
	STACKLEAK_ERASE

1026
	/* Opportunistic SYSEXIT */
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

	/*
	 * Setup entry stack - we keep the pointer in %eax and do the
	 * switch after almost all user-state is restored.
	 */

	/* Load entry stack pointer and allocate frame for eflags/eax */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
	subl	$(2*4), %eax

	/* Copy eflags and eax to entry stack */
	movl	PT_EFLAGS(%esp), %edi
	movl	PT_EAX(%esp), %esi
	movl	%edi, (%eax)
	movl	%esi, 4(%eax)

	/* Restore user registers and segments */
1044 1045
	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
1046 1047
1:	mov	PT_FS(%esp), %fs
	PTGS_TO_GS
1048

1049 1050 1051 1052 1053
	popl	%ebx			/* pt_regs->bx */
	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
	popl	%esi			/* pt_regs->si */
	popl	%edi			/* pt_regs->di */
	popl	%ebp			/* pt_regs->bp */
1054 1055 1056

	/* Switch to entry stack */
	movl	%eax, %esp
1057

1058 1059 1060
	/* Now ready to switch the cr3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1061 1062 1063 1064 1065
	/*
	 * Restore all flags except IF. (We restore IF separately because
	 * STI gives a one-instruction window in which we won't be interrupted,
	 * whereas POPF does not.)
	 */
1066
	btrl	$X86_EFLAGS_IF_BIT, (%esp)
1067
	BUG_IF_WRONG_CR3 no_user_check=1
1068
	popfl
1069
	popl	%eax
1070

1071 1072 1073 1074
	/*
	 * Return back to the vDSO, which will pop ecx and edx.
	 * Don't bother with DS and ES (they already contain __USER_DS).
	 */
1075 1076
	sti
	sysexit
R
Roland McGrath 已提交
1077

1078 1079 1080
.pushsection .fixup, "ax"
2:	movl	$0, PT_FS(%esp)
	jmp	1b
1081
.popsection
1082
	_ASM_EXTABLE(1b, 2b)
1083
	PTGS_TO_GS_EX
1084 1085 1086 1087 1088

.Lsysenter_fix_flags:
	pushl	$X86_EFLAGS_FIXED
	popfl
	jmp	.Lsysenter_flags_fixed
1089
SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
1090
SYM_FUNC_END(entry_SYSENTER_32)
L
Linus Torvalds 已提交
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/*
 * 32-bit legacy system call entry.
 *
 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 * instruction.  INT $0x80 lands here.
 *
 * This entry point can be used by any 32-bit perform system calls.
 * Instances of INT $0x80 can be found inline in various programs and
 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 * fallback for hardware that doesn't support a faster entry method.
 * Restarted 32-bit system calls also fall back to INT $0x80
 * regardless of what instruction was originally used to do the system
 * call.  (64-bit programs can use INT $0x80 as well, but they can
 * only run on 64-bit kernels and therefore land in
 * entry_INT80_compat.)
 *
 * This is considered a slow path.  It is not used by most libc
 * implementations on modern hardware except during process startup.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  arg6
 */
1120
SYM_FUNC_START(entry_INT80_32)
1121
	ASM_CLAC
1122
	pushl	%eax			/* pt_regs->orig_ax */
1123 1124

	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
1125 1126

	movl	%esp, %eax
1127
	call	do_int80_syscall_32
1128
.Lsyscall_32_done:
1129 1130
	STACKLEAK_ERASE

1131
restore_all_switch_stack:
1132
	SWITCH_TO_ENTRY_STACK
1133
	CHECK_AND_APPLY_ESPFIX
1134

1135 1136 1137
	/* Switch back to user CR3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1138 1139
	BUG_IF_WRONG_CR3

1140 1141
	/* Restore user state */
	RESTORE_REGS pop=4			# skip orig_eax/error_code
1142
.Lirq_return:
1143 1144 1145 1146 1147
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler and when returning from
	 * scheduler to user-space.
	 */
I
Ingo Molnar 已提交
1148
	INTERRUPT_RETURN
1149

1150
restore_all_kernel:
T
Thomas Gleixner 已提交
1151
#ifdef CONFIG_PREEMPTION
1152 1153 1154 1155 1156 1157 1158 1159
	DISABLE_INTERRUPTS(CLBR_ANY)
	cmpl	$0, PER_CPU_VAR(__preempt_count)
	jnz	.Lno_preempt
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
	jz	.Lno_preempt
	call	preempt_schedule_irq
.Lno_preempt:
#endif
1160
	TRACE_IRQS_IRET
1161
	PARANOID_EXIT_TO_KERNEL_MODE
1162
	BUG_IF_WRONG_CR3
1163 1164 1165
	RESTORE_REGS 4
	jmp	.Lirq_return

1166
.section .fixup, "ax"
1167
SYM_CODE_START(asm_iret_error)
1168
	pushl	$0				# no error code
1169
	pushl	$iret_error
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * The stack-frame here is the one that iret faulted on, so its a
	 * return-to-user frame. We are on kernel-cr3 because we come here from
	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
	 * as the checker expects it.
	 */
	pushl	%eax
	SWITCH_TO_USER_CR3 scratch_reg=%eax
	popl	%eax
#endif

1183 1184
	jmp	handle_exception
SYM_CODE_END(asm_iret_error)
L
Linus Torvalds 已提交
1185
.previous
1186
	_ASM_EXTABLE(.Lirq_return, asm_iret_error)
1187
SYM_FUNC_END(entry_INT80_32)
L
Linus Torvalds 已提交
1188

1189
.macro FIXUP_ESPFIX_STACK
1190 1191 1192 1193 1194 1195
/*
 * Switch back for ESPFIX stack to the normal zerobased stack
 *
 * We can't call C functions using the ESPFIX stack. This code reads
 * the high word of the segment base from the GDT and swiches to the
 * normal stack and adjusts ESP with the matching offset.
1196 1197 1198 1199
 *
 * We might be on user CR3 here, so percpu data is not mapped and we can't
 * access the GDT through the percpu segment.  Instead, use SGDT to find
 * the cpu_entry_area alias of the GDT.
1200
 */
1201
#ifdef CONFIG_X86_ESPFIX32
1202
	/* fixup the stack */
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	pushl	%ecx
	subl	$2*4, %esp
	sgdt	(%esp)
	movl	2(%esp), %ecx				/* GDT address */
	/*
	 * Careful: ECX is a linear pointer, so we need to force base
	 * zero.  %cs is the only known-linear segment we have right now.
	 */
	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1213
	shl	$16, %eax
1214 1215
	addl	$2*4, %esp
	popl	%ecx
1216 1217 1218 1219
	addl	%esp, %eax			/* the adjusted stack pointer */
	pushl	$__KERNEL_DS
	pushl	%eax
	lss	(%esp), %esp			/* switch to the normal stack segment */
1220
#endif
1221
.endm
1222

1223
.macro UNWIND_ESPFIX_STACK
1224
	/* It's safe to clobber %eax, all other regs need to be preserved */
1225
#ifdef CONFIG_X86_ESPFIX32
1226
	movl	%ss, %eax
1227
	/* see if on espfix stack */
1228
	cmpw	$__ESPFIX_SS, %ax
1229
	jne	.Lno_fixup_\@
1230 1231
	/* switch to normal stack */
	FIXUP_ESPFIX_STACK
1232
.Lno_fixup_\@:
1233
#endif
1234
.endm
L
Linus Torvalds 已提交
1235

1236
#ifdef CONFIG_PARAVIRT
1237
SYM_CODE_START(native_iret)
I
Ingo Molnar 已提交
1238
	iret
1239
	_ASM_EXTABLE(native_iret, asm_iret_error)
1240
SYM_CODE_END(native_iret)
1241
#endif
L
Linus Torvalds 已提交
1242

1243
#ifdef CONFIG_XEN_PV
1244 1245 1246 1247 1248 1249 1250
/*
 * See comment in entry_64.S for further explanation
 *
 * Note: This is not an actual IDT entry point. It's a XEN specific entry
 * point and therefore named to match the 64-bit trampoline counterpart.
 */
SYM_FUNC_START(xen_asm_exc_xen_hypervisor_callback)
1251 1252 1253 1254 1255 1256 1257
	/*
	 * Check to see if we got the event in the critical
	 * region in xen_iret_direct, after we've reenabled
	 * events and checked for pending events.  This simulates
	 * iret instruction's behaviour where it delivers a
	 * pending interrupt when enabling interrupts:
	 */
1258
	cmpl	$xen_iret_start_crit, (%esp)
1259
	jb	1f
1260
	cmpl	$xen_iret_end_crit, (%esp)
1261
	jae	1f
1262 1263 1264 1265 1266
	call	xen_iret_crit_fixup
1:
	pushl	$-1				/* orig_ax = -1 => not a system call */
	SAVE_ALL
	ENCODE_FRAME_POINTER
1267

1268
	mov	%esp, %eax
1269 1270 1271
	call	xen_pv_evtchn_do_upcall
	jmp	handle_exception_return
SYM_FUNC_END(xen_asm_exc_xen_hypervisor_callback)
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we fix up by reattempting the load, and zeroing the segment
 * register if the load fails.
 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by maintaining a status value in EAX.
 */
1285
SYM_FUNC_START(xen_failsafe_callback)
1286 1287 1288 1289 1290 1291
	pushl	%eax
	movl	$1, %eax
1:	mov	4(%esp), %ds
2:	mov	8(%esp), %es
3:	mov	12(%esp), %fs
4:	mov	16(%esp), %gs
1292 1293
	/* EAX == 0 => Category 1 (Bad segment)
	   EAX != 0 => Category 2 (Bad IRET) */
1294 1295 1296 1297
	testl	%eax, %eax
	popl	%eax
	lea	16(%esp), %esp
	jz	5f
1298
	jmp	asm_iret_error
1299
5:	pushl	$-1				/* orig_ax = -1 => not a system call */
1300
	SAVE_ALL
1301
	ENCODE_FRAME_POINTER
1302
	jmp	handle_exception_return
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316

.section .fixup, "ax"
6:	xorl	%eax, %eax
	movl	%eax, 4(%esp)
	jmp	1b
7:	xorl	%eax, %eax
	movl	%eax, 8(%esp)
	jmp	2b
8:	xorl	%eax, %eax
	movl	%eax, 12(%esp)
	jmp	3b
9:	xorl	%eax, %eax
	movl	%eax, 16(%esp)
	jmp	4b
1317
.previous
1318 1319 1320 1321
	_ASM_EXTABLE(1b, 6b)
	_ASM_EXTABLE(2b, 7b)
	_ASM_EXTABLE(3b, 8b)
	_ASM_EXTABLE(4b, 9b)
1322
SYM_FUNC_END(xen_failsafe_callback)
1323
#endif /* CONFIG_XEN_PV */
1324

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
	/* the function address is in %gs's slot on the stack */
	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
	ENCODE_FRAME_POINTER

	/* fixup %gs */
	GS_TO_REG %ecx
	movl	PT_GS(%esp), %edi		# get the function address
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

	movl	%esp, %eax			# pt_regs pointer
	CALL_NOSPEC edi

1343
handle_exception_return:
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
#ifdef CONFIG_VM86
	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
#else
	/*
	 * We can be coming here from child spawned by kernel_thread().
	 */
	movl	PT_CS(%esp), %eax
	andl	$SEGMENT_RPL_MASK, %eax
#endif
	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
	jnb	ret_to_user

	PARANOID_EXIT_TO_KERNEL_MODE
	BUG_IF_WRONG_CR3
	RESTORE_REGS 4
	jmp	.Lirq_return

ret_to_user:
	movl	%esp, %eax
	jmp	restore_all_switch_stack
SYM_CODE_END(handle_exception)

1368
SYM_CODE_START(asm_exc_double_fault)
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
1:
	/*
	 * This is a task gate handler, not an interrupt gate handler.
	 * The error code is on the stack, but the stack is otherwise
	 * empty.  Interrupts are off.  Our state is sane with the following
	 * exceptions:
	 *
	 *  - CR0.TS is set.  "TS" literally means "task switched".
	 *  - EFLAGS.NT is set because we're a "nested task".
	 *  - The doublefault TSS has back_link set and has been marked busy.
	 *  - TR points to the doublefault TSS and the normal TSS is busy.
	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
	 *    would make it very awkward to return back to the context we came
	 *    from.
	 *
	 * The rest of EFLAGS is sanitized for us, so we don't need to
	 * worry about AC or DF.
	 *
	 * Don't even bother popping the error code.  It's always zero,
	 * and ignoring it makes us a bit more robust against buggy
	 * hypervisor task gate implementations.
	 *
	 * We will manually undo the task switch instead of doing a
	 * task-switching IRET.
	 */

	clts				/* clear CR0.TS */
	pushl	$X86_EFLAGS_FIXED
	popfl				/* clear EFLAGS.NT */

	call	doublefault_shim

	/* We don't support returning, so we have no IRET here. */
1:
	hlt
	jmp 1b
1406
SYM_CODE_END(asm_exc_double_fault)
1407

1408
/*
1409 1410 1411 1412 1413
 * NMI is doubly nasty.  It can happen on the first instruction of
 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
 * switched stacks.  We handle both conditions by simply checking whether we
 * interrupted kernel code running on the SYSENTER stack.
1414
 */
1415
SYM_CODE_START(asm_exc_nmi)
1416
	ASM_CLAC
1417

1418
#ifdef CONFIG_X86_ESPFIX32
P
Peter Zijlstra 已提交
1419 1420 1421 1422
	/*
	 * ESPFIX_SS is only ever set on the return to user path
	 * after we've switched to the entry stack.
	 */
1423 1424 1425 1426
	pushl	%eax
	movl	%ss, %eax
	cmpw	$__ESPFIX_SS, %ax
	popl	%eax
1427
	je	.Lnmi_espfix_stack
1428
#endif
1429 1430

	pushl	%eax				# pt_regs->orig_ax
1431
	SAVE_ALL_NMI cr3_reg=%edi
1432
	ENCODE_FRAME_POINTER
1433 1434
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
1435 1436

	/* Are we currently on the SYSENTER stack? */
1437
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1438 1439 1440
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
1441 1442 1443
	jb	.Lnmi_from_sysenter_stack

	/* Not on SYSENTER stack. */
1444
	call	exc_nmi
1445
	jmp	.Lnmi_return
1446

1447 1448 1449 1450 1451
.Lnmi_from_sysenter_stack:
	/*
	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
	 * is using the thread stack right now, so it's safe for us to use it.
	 */
1452
	movl	%esp, %ebx
1453
	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
1454
	call	exc_nmi
1455
	movl	%ebx, %esp
1456 1457

.Lnmi_return:
P
Peter Zijlstra 已提交
1458 1459 1460 1461 1462
#ifdef CONFIG_X86_ESPFIX32
	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
	jnz	.Lnmi_from_espfix
#endif

1463
	CHECK_AND_APPLY_ESPFIX
1464
	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1465
	jmp	.Lirq_return
1466

1467
#ifdef CONFIG_X86_ESPFIX32
1468
.Lnmi_espfix_stack:
1469
	/*
P
Peter Zijlstra 已提交
1470
	 * Create the pointer to LSS back
1471
	 */
1472 1473 1474
	pushl	%ss
	pushl	%esp
	addl	$4, (%esp)
P
Peter Zijlstra 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483

	/* Copy the (short) IRET frame */
	pushl	4*4(%esp)	# flags
	pushl	4*4(%esp)	# cs
	pushl	4*4(%esp)	# ip

	pushl	%eax		# orig_ax

	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1484
	ENCODE_FRAME_POINTER
P
Peter Zijlstra 已提交
1485 1486 1487 1488

	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)

1489
	xorl	%edx, %edx			# zero error code
P
Peter Zijlstra 已提交
1490 1491 1492 1493
	movl	%esp, %eax			# pt_regs pointer
	jmp	.Lnmi_from_sysenter_stack

.Lnmi_from_espfix:
1494
	RESTORE_ALL_NMI cr3_reg=%edi
P
Peter Zijlstra 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	/*
	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
	 * fix up the gap and long frame:
	 *
	 *  3 - original frame	(exception)
	 *  2 - ESPFIX block	(above)
	 *  6 - gap		(FIXUP_FRAME)
	 *  5 - long frame	(FIXUP_FRAME)
	 *  1 - orig_ax
	 */
	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1506
	jmp	.Lirq_return
1507
#endif
1508
SYM_CODE_END(asm_exc_nmi)
1509

1510
.pushsection .text, "ax"
1511
SYM_CODE_START(rewind_stack_do_exit)
1512 1513 1514 1515 1516 1517 1518 1519
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp

	call	do_exit
1:	jmp 1b
1520
SYM_CODE_END(rewind_stack_do_exit)
1521
.popsection