entry_32.S 38.9 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2
/*
3
 *  Copyright (C) 1991,1992  Linus Torvalds
L
Linus Torvalds 已提交
4
 *
5
 * entry_32.S contains the system-call and low-level fault and trap handling routines.
L
Linus Torvalds 已提交
6
 *
7
 * Stack layout while running C code:
8 9 10
 *	ptrace needs to have all registers on the stack.
 *	If the order here is changed, it needs to be
 *	updated in fork.c:copy_process(), signal.c:do_signal(),
L
Linus Torvalds 已提交
11 12 13 14 15
 *	ptrace.c and ptrace.h
 *
 *	 0(%esp) - %ebx
 *	 4(%esp) - %ecx
 *	 8(%esp) - %edx
16
 *	 C(%esp) - %esi
L
Linus Torvalds 已提交
17 18 19 20 21
 *	10(%esp) - %edi
 *	14(%esp) - %ebp
 *	18(%esp) - %eax
 *	1C(%esp) - %ds
 *	20(%esp) - %es
22
 *	24(%esp) - %fs
23 24 25 26 27 28 29
 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
 *	2C(%esp) - orig_eax
 *	30(%esp) - %eip
 *	34(%esp) - %cs
 *	38(%esp) - %eflags
 *	3C(%esp) - %oldesp
 *	40(%esp) - %oldss
L
Linus Torvalds 已提交
30 31 32
 */

#include <linux/linkage.h>
33
#include <linux/err.h>
L
Linus Torvalds 已提交
34
#include <asm/thread_info.h>
35
#include <asm/irqflags.h>
L
Linus Torvalds 已提交
36 37 38
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
S
Stas Sergeev 已提交
39
#include <asm/percpu.h>
40
#include <asm/processor-flags.h>
41
#include <asm/irq_vectors.h>
42
#include <asm/cpufeatures.h>
43
#include <asm/alternative-asm.h>
44
#include <asm/asm.h>
45
#include <asm/smap.h>
46
#include <asm/frame.h>
47
#include <asm/nospec-branch.h>
L
Linus Torvalds 已提交
48

49 50
#include "calling.h"

J
Jiri Olsa 已提交
51 52
	.section .entry.text, "ax"

53 54 55 56 57
/*
 * We use macros for low-level operations which need to be overridden
 * for paravirtualization.  The following will never clobber any registers:
 *   INTERRUPT_RETURN (aka. "iret")
 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
58
 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
59 60 61 62 63 64 65
 *
 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
 * Allowing a register to be clobbered can shrink the paravirt replacement
 * enough to patch inline, increasing performance.
 */

T
Thomas Gleixner 已提交
66
#ifdef CONFIG_PREEMPTION
67
# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
L
Linus Torvalds 已提交
68
#else
69
# define preempt_stop(clobbers)
L
Linus Torvalds 已提交
70 71
#endif

72 73
.macro TRACE_IRQS_IRET
#ifdef CONFIG_TRACE_IRQFLAGS
74 75
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
	jz	1f
76 77 78 79 80
	TRACE_IRQS_ON
1:
#endif
.endm

81 82
#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * User gs save/restore
 *
 * %gs is used for userland TLS and kernel only uses it for stack
 * canary which is required to be at %gs:20 by gcc.  Read the comment
 * at the top of stackprotector.h for more info.
 *
 * Local labels 98 and 99 are used.
 */
#ifdef CONFIG_X86_32_LAZY_GS

 /* unfortunately push/pop can't be no-op */
.macro PUSH_GS
96
	pushl	$0
97 98
.endm
.macro POP_GS pop=0
99
	addl	$(4 + \pop), %esp
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
.endm
.macro POP_GS_EX
.endm

 /* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm

#else	/* CONFIG_X86_32_LAZY_GS */

.macro PUSH_GS
119
	pushl	%gs
120 121 122
.endm

.macro POP_GS pop=0
123
98:	popl	%gs
124
  .if \pop <> 0
125
	add	$\pop, %esp
126 127 128 129
  .endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
130 131
99:	movl	$0, (%esp)
	jmp	98b
132
.popsection
133
	_ASM_EXTABLE(98b, 99b)
134 135 136
.endm

.macro PTGS_TO_GS
137
98:	mov	PT_GS(%esp), %gs
138 139 140
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
141 142
99:	movl	$0, PT_GS(%esp)
	jmp	98b
143
.popsection
144
	_ASM_EXTABLE(98b, 99b)
145 146 147
.endm

.macro GS_TO_REG reg
148
	movl	%gs, \reg
149 150
.endm
.macro REG_TO_PTGS reg
151
	movl	\reg, PT_GS(%esp)
152 153
.endm
.macro SET_KERNEL_GS reg
154 155
	movl	$(__KERNEL_STACK_CANARY), \reg
	movl	\reg, %gs
156 157
.endm

158
#endif /* CONFIG_X86_32_LAZY_GS */
159

160 161 162 163 164 165 166 167 168 169
/* Unconditionally switch to user cr3 */
.macro SWITCH_TO_USER_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI

	movl	%cr3, \scratch_reg
	orl	$PTI_SWITCH_MASK, \scratch_reg
	movl	\scratch_reg, %cr3
.Lend_\@:
.endm

170 171 172 173 174
.macro BUG_IF_WRONG_CR3 no_user_check=0
#ifdef CONFIG_DEBUG_ENTRY
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	.if \no_user_check == 0
	/* coming from usermode? */
175
	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
176 177 178 179 180 181 182 183 184 185 186 187
	jz	.Lend_\@
	.endif
	/* On user-cr3? */
	movl	%cr3, %eax
	testl	$PTI_SWITCH_MASK, %eax
	jnz	.Lend_\@
	/* From userspace with kernel cr3 - BUG */
	ud2
.Lend_\@:
#endif
.endm

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Switch to kernel cr3 if not already loaded and return current cr3 in
 * \scratch_reg
 */
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	movl	%cr3, \scratch_reg
	/* Test if we are already on kernel CR3 */
	testl	$PTI_SWITCH_MASK, \scratch_reg
	jz	.Lend_\@
	andl	$(~PTI_SWITCH_MASK), \scratch_reg
	movl	\scratch_reg, %cr3
	/* Return original CR3 in \scratch_reg */
	orl	$PTI_SWITCH_MASK, \scratch_reg
.Lend_\@:
.endm

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
#define CS_FROM_ENTRY_STACK	(1 << 31)
#define CS_FROM_USER_CR3	(1 << 30)
#define CS_FROM_KERNEL		(1 << 29)

.macro FIXUP_FRAME
	/*
	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
	 * Clear them in case hardware didn't do this for us.
	 */
	andl	$0x0000ffff, 3*4(%esp)

#ifdef CONFIG_VM86
	testl	$X86_EFLAGS_VM, 4*4(%esp)
	jnz	.Lfrom_usermode_no_fixup_\@
#endif
220
	testl	$USER_SEGMENT_RPL_MASK, 3*4(%esp)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	jnz	.Lfrom_usermode_no_fixup_\@

	orl	$CS_FROM_KERNEL, 3*4(%esp)

	/*
	 * When we're here from kernel mode; the (exception) stack looks like:
	 *
	 *  5*4(%esp) - <previous context>
	 *  4*4(%esp) - flags
	 *  3*4(%esp) - cs
	 *  2*4(%esp) - ip
	 *  1*4(%esp) - orig_eax
	 *  0*4(%esp) - gs / function
	 *
	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
	 * is complete and in particular regs->sp is correct. This gives us
	 * the original 5 enties as gap:
	 *
	 * 12*4(%esp) - <previous context>
	 * 11*4(%esp) - gap / flags
	 * 10*4(%esp) - gap / cs
	 *  9*4(%esp) - gap / ip
	 *  8*4(%esp) - gap / orig_eax
	 *  7*4(%esp) - gap / gs / function
	 *  6*4(%esp) - ss
	 *  5*4(%esp) - sp
	 *  4*4(%esp) - flags
	 *  3*4(%esp) - cs
	 *  2*4(%esp) - ip
	 *  1*4(%esp) - orig_eax
	 *  0*4(%esp) - gs / function
	 */

	pushl	%ss		# ss
	pushl	%esp		# sp (points at ss)
	addl	$6*4, (%esp)	# point sp back at the previous context
	pushl	6*4(%esp)	# flags
	pushl	6*4(%esp)	# cs
	pushl	6*4(%esp)	# ip
	pushl	6*4(%esp)	# orig_eax
	pushl	6*4(%esp)	# gs / function
.Lfrom_usermode_no_fixup_\@:
.endm

.macro IRET_FRAME
	testl $CS_FROM_KERNEL, 1*4(%esp)
	jz .Lfinished_frame_\@

	/*
	 * Reconstruct the 3 entry IRET frame right after the (modified)
	 * regs->sp without lowering %esp in between, such that an NMI in the
	 * middle doesn't scribble our stack.
	 */
	pushl	%eax
	pushl	%ecx
	movl	5*4(%esp), %eax		# (modified) regs->sp

	movl	4*4(%esp), %ecx		# flags
	movl	%ecx, -4(%eax)

	movl	3*4(%esp), %ecx		# cs
	andl	$0x0000ffff, %ecx
	movl	%ecx, -8(%eax)

	movl	2*4(%esp), %ecx		# ip
	movl	%ecx, -12(%eax)

	movl	1*4(%esp), %ecx		# eax
	movl	%ecx, -16(%eax)

	popl	%ecx
	lea	-16(%eax), %esp
	popl	%eax
.Lfinished_frame_\@:
.endm

297
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0
298
	cld
299
.if \skip_gs == 0
300
	PUSH_GS
301
.endif
302
	FIXUP_FRAME
303 304 305
	pushl	%fs
	pushl	%es
	pushl	%ds
306
	pushl	\pt_regs_ax
307 308 309 310 311 312 313 314 315 316 317
	pushl	%ebp
	pushl	%edi
	pushl	%esi
	pushl	%edx
	pushl	%ecx
	pushl	%ebx
	movl	$(__USER_DS), %edx
	movl	%edx, %ds
	movl	%edx, %es
	movl	$(__KERNEL_PERCPU), %edx
	movl	%edx, %fs
318
.if \skip_gs == 0
319
	SET_KERNEL_GS %edx
320
.endif
321 322 323 324
	/* Switch to kernel stack if necessary */
.if \switch_stacks > 0
	SWITCH_TO_KERNEL_STACK
.endif
325
.endm
L
Linus Torvalds 已提交
326

327
.macro SAVE_ALL_NMI cr3_reg:req
328
	SAVE_ALL
329

330 331
	BUG_IF_WRONG_CR3

332 333 334 335 336 337 338 339 340 341
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We can enter with either user or kernel cr3, the code will
	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
	 * if necessary.
	 */
	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg

.Lend_\@:
342
.endm
343

344
.macro RESTORE_INT_REGS
345 346 347 348 349 350 351
	popl	%ebx
	popl	%ecx
	popl	%edx
	popl	%esi
	popl	%edi
	popl	%ebp
	popl	%eax
352
.endm
L
Linus Torvalds 已提交
353

354
.macro RESTORE_REGS pop=0
355
	RESTORE_INT_REGS
356 357 358
1:	popl	%ds
2:	popl	%es
3:	popl	%fs
359
	POP_GS \pop
P
Peter Zijlstra 已提交
360
	IRET_FRAME
361
.pushsection .fixup, "ax"
362 363 364 365 366 367
4:	movl	$0, (%esp)
	jmp	1b
5:	movl	$0, (%esp)
	jmp	2b
6:	movl	$0, (%esp)
	jmp	3b
368
.popsection
369 370 371
	_ASM_EXTABLE(1b, 4b)
	_ASM_EXTABLE(2b, 5b)
	_ASM_EXTABLE(3b, 6b)
372
	POP_GS_EX
373
.endm
L
Linus Torvalds 已提交
374

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We enter with kernel cr3 and switch the cr3 to the value
	 * stored on \cr3_reg, which is either a user or a kernel cr3.
	 */
	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI

	testl	$PTI_SWITCH_MASK, \cr3_reg
	jz	.Lswitched_\@

	/* User cr3 in \cr3_reg - write it to hardware cr3 */
	movl	\cr3_reg, %cr3

.Lswitched_\@:

392 393
	BUG_IF_WRONG_CR3

394 395 396
	RESTORE_REGS pop=\pop
.endm

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
.macro CHECK_AND_APPLY_ESPFIX
#ifdef CONFIG_X86_ESPFIX32
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)

	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX

	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
	/*
	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
	 * are returning to the kernel.
	 * See comments in process.c:copy_thread() for details.
	 */
	movb	PT_OLDSS(%esp), %ah
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
	jne	.Lend_\@	# returning to user-space with LDT SS

	/*
	 * Setup and switch to ESPFIX stack
	 *
	 * We're returning to userspace with a 16 bit stack. The CPU will not
	 * restore the high word of ESP for us on executing iret... This is an
	 * "official" bug of all the x86-compatible CPUs, which we can work
	 * around to make dosemu and wine happy. We do this by preloading the
	 * high word of ESP with the high word of the userspace ESP while
	 * compensating for the offset by changing to the ESPFIX segment with
	 * a base address that matches for the difference.
	 */
	mov	%esp, %edx			/* load kernel esp */
	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
	mov	%dx, %ax			/* eax: new kernel esp */
	sub	%eax, %edx			/* offset (low word is 0) */
	shr	$16, %edx
	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
	pushl	$__ESPFIX_SS
	pushl	%eax				/* new kernel esp */
	/*
	 * Disable interrupts, but do not irqtrace this section: we
	 * will soon execute iret and the tracer was already set to
	 * the irqstate after the IRET:
	 */
	DISABLE_INTERRUPTS(CLBR_ANY)
	lss	(%esp), %esp			/* switch to espfix segment */
.Lend_\@:
#endif /* CONFIG_X86_ESPFIX32 */
.endm
445 446 447 448 449 450 451 452 453 454 455

/*
 * Called with pt_regs fully populated and kernel segments loaded,
 * so we can access PER_CPU and use the integer registers.
 *
 * We need to be very careful here with the %esp switch, because an NMI
 * can happen everywhere. If the NMI handler finds itself on the
 * entry-stack, it will overwrite the task-stack and everything we
 * copied there. So allocate the stack-frame on the task-stack and
 * switch to it before we do any copying.
 */
456

457 458 459 460
.macro SWITCH_TO_KERNEL_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

461 462
	BUG_IF_WRONG_CR3

463 464 465 466 467 468 469
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax

	/*
	 * %eax now contains the entry cr3 and we carry it forward in
	 * that register for the time this macro runs
	 */

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	/* Are we on the entry stack? Bail out if not! */
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
	jae	.Lend_\@

	/* Load stack pointer into %esi and %edi */
	movl	%esp, %esi
	movl	%esi, %edi

	/* Move %edi to the top of the entry stack */
	andl	$(MASK_entry_stack), %edi
	addl	$(SIZEOF_entry_stack), %edi

	/* Load top of task-stack into %edi */
	movl	TSS_entry2task_stack(%edi), %edi

488
	/* Special case - entry from kernel mode via entry stack */
489 490 491 492 493 494 495 496 497 498
#ifdef CONFIG_VM86
	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
	movb	PT_CS(%esp), %cl
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
#else
	movl	PT_CS(%esp), %ecx
	andl	$SEGMENT_RPL_MASK, %ecx
#endif
	cmpl	$USER_RPL, %ecx
	jb	.Lentry_from_kernel_\@
499

500 501 502 503 504 505 506 507 508 509 510 511 512 513
	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
	jz	.Lcopy_pt_regs_\@

	/*
	 * Stack-frame contains 4 additional segment registers when
	 * coming from VM86 mode
	 */
	addl	$(4 * 4), %ecx

#endif
514
.Lcopy_pt_regs_\@:
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

	/* Allocate frame on task-stack */
	subl	%ecx, %edi

	/* Switch to task-stack */
	movl	%edi, %esp

	/*
	 * We are now on the task-stack and can safely copy over the
	 * stack-frame
	 */
	shrl	$2, %ecx
	cld
	rep movsl

530 531 532 533 534 535 536 537 538 539 540
	jmp .Lend_\@

.Lentry_from_kernel_\@:

	/*
	 * This handles the case when we enter the kernel from
	 * kernel-mode and %esp points to the entry-stack. When this
	 * happens we need to switch to the task-stack to run C code,
	 * but switch back to the entry-stack again when we approach
	 * iret and return to the interrupted code-path. This usually
	 * happens when we hit an exception while restoring user-space
541 542
	 * segment registers on the way back to user-space or when the
	 * sysenter handler runs with eflags.tf set.
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	 *
	 * When we switch to the task-stack here, we can't trust the
	 * contents of the entry-stack anymore, as the exception handler
	 * might be scheduled out or moved to another CPU. Therefore we
	 * copy the complete entry-stack to the task-stack and set a
	 * marker in the iret-frame (bit 31 of the CS dword) to detect
	 * what we've done on the iret path.
	 *
	 * On the iret path we copy everything back and switch to the
	 * entry-stack, so that the interrupted kernel code-path
	 * continues on the same stack it was interrupted with.
	 *
	 * Be aware that an NMI can happen anytime in this code.
	 *
	 * %esi: Entry-Stack pointer (same as %esp)
	 * %edi: Top of the task stack
559
	 * %eax: CR3 on kernel entry
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	 */

	/* Calculate number of bytes on the entry stack in %ecx */
	movl	%esi, %ecx

	/* %ecx to the top of entry-stack */
	andl	$(MASK_entry_stack), %ecx
	addl	$(SIZEOF_entry_stack), %ecx

	/* Number of bytes on the entry stack to %ecx */
	sub	%esi, %ecx

	/* Mark stackframe as coming from entry stack */
	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)

575 576 577 578 579 580 581 582
	/*
	 * Test the cr3 used to enter the kernel and add a marker
	 * so that we can switch back to it before iret.
	 */
	testl	$PTI_SWITCH_MASK, %eax
	jz	.Lcopy_pt_regs_\@
	orl	$CS_FROM_USER_CR3, PT_CS(%esp)

583 584 585 586 587 588 589
	/*
	 * %esi and %edi are unchanged, %ecx contains the number of
	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
	 * the stack-frame on task-stack and copy everything over
	 */
	jmp .Lcopy_pt_regs_\@

590 591 592
.Lend_\@:
.endm

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * Switch back from the kernel stack to the entry stack.
 *
 * The %esp register must point to pt_regs on the task stack. It will
 * first calculate the size of the stack-frame to copy, depending on
 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 * to copy the contents of the stack over to the entry stack.
 *
 * We must be very careful here, as we can't trust the contents of the
 * task-stack once we switched to the entry-stack. When an NMI happens
 * while on the entry-stack, the NMI handler will switch back to the top
 * of the task stack, overwriting our stack-frame we are about to copy.
 * Therefore we switch the stack only after everything is copied over.
 */
.macro SWITCH_TO_ENTRY_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
	jz	.Lcopy_pt_regs_\@

	/* Additional 4 registers to copy when returning to VM86 mode */
	addl    $(4 * 4), %ecx

.Lcopy_pt_regs_\@:
#endif

	/* Initialize source and destination for movsl */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
	subl	%ecx, %edi
	movl	%esp, %esi

	/* Save future stack pointer in %ebx */
	movl	%edi, %ebx

	/* Copy over the stack-frame */
	shrl	$2, %ecx
	cld
	rep movsl

	/*
	 * Switch to entry-stack - needs to happen after everything is
	 * copied because the NMI handler will overwrite the task-stack
	 * when on entry-stack
	 */
	movl	%ebx, %esp

.Lend_\@:
.endm

647 648
/*
 * This macro handles the case when we return to kernel-mode on the iret
649
 * path and have to switch back to the entry stack and/or user-cr3
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
 *
 * See the comments below the .Lentry_from_kernel_\@ label in the
 * SWITCH_TO_KERNEL_STACK macro for more details.
 */
.macro PARANOID_EXIT_TO_KERNEL_MODE

	/*
	 * Test if we entered the kernel with the entry-stack. Most
	 * likely we did not, because this code only runs on the
	 * return-to-kernel path.
	 */
	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
	jz	.Lend_\@

	/* Unlikely slow-path */

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)

	/* Copy the remaining task-stack contents to entry-stack */
	movl	%esp, %esi
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi

	/* Bytes on the task-stack to ecx */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
	subl	%esi, %ecx

	/* Allocate stack-frame on entry-stack */
	subl	%ecx, %edi

	/*
	 * Save future stack-pointer, we must not switch until the
	 * copy is done, otherwise the NMI handler could destroy the
	 * contents of the task-stack we are about to copy.
	 */
	movl	%edi, %ebx

	/* Do the copy */
	shrl	$2, %ecx
	cld
	rep movsl

	/* Safe to switch to entry-stack now */
	movl	%ebx, %esp

695 696 697 698 699 700 701 702 703 704 705 706
	/*
	 * We came from entry-stack and need to check if we also need to
	 * switch back to user cr3.
	 */
	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
	jz	.Lend_\@

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)

	SWITCH_TO_USER_CR3 scratch_reg=%eax

707 708
.Lend_\@:
.endm
709 710 711 712 713 714 715 716 717 718 719 720 721
/*
 * %eax: prev task
 * %edx: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in struct inactive_task_frame
	 */
	pushl	%ebp
	pushl	%ebx
	pushl	%edi
	pushl	%esi
722
	pushfl
723 724 725 726 727

	/* switch stack */
	movl	%esp, TASK_threadsp(%eax)
	movl	TASK_threadsp(%edx), %esp

728
#ifdef CONFIG_STACKPROTECTOR
729 730 731 732
	movl	TASK_stack_canary(%edx), %ebx
	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif

733 734 735 736 737 738 739 740
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
741
	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
742 743
#endif

744
	/* restore callee-saved registers */
745
	popfl
746 747 748 749 750 751 752 753
	popl	%esi
	popl	%edi
	popl	%ebx
	popl	%ebp

	jmp	__switch_to
END(__switch_to_asm)

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/*
 * The unwinder expects the last frame on the stack to always be at the same
 * offset from the end of the page, which allows it to validate the stack.
 * Calling schedule_tail() directly would break that convention because its an
 * asmlinkage function so its argument has to be pushed on the stack.  This
 * wrapper creates a proper "end of stack" frame header before the call.
 */
ENTRY(schedule_tail_wrapper)
	FRAME_BEGIN

	pushl	%eax
	call	schedule_tail
	popl	%eax

	FRAME_END
	ret
ENDPROC(schedule_tail_wrapper)
771 772 773 774
/*
 * A newly forked process directly context switches into this address.
 *
 * eax: prev task we switched from
775 776
 * ebx: kernel thread func (NULL for user thread)
 * edi: kernel thread arg
777
 */
L
Linus Torvalds 已提交
778
ENTRY(ret_from_fork)
779
	call	schedule_tail_wrapper
780

781 782 783 784
	testl	%ebx, %ebx
	jnz	1f		/* kernel threads are uncommon */

2:
785
	/* When we fork, we trace the syscall return in the child, too. */
786
	movl    %esp, %eax
787
	call    syscall_return_slowpath
788
	STACKLEAK_ERASE
789 790
	jmp     restore_all

791 792
	/* kernel thread */
1:	movl	%edi, %eax
793
	CALL_NOSPEC %ebx
794
	/*
795 796 797
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
798
	 */
799 800 801
	movl	$0, PT_EAX(%esp)
	jmp	2b
END(ret_from_fork)
802

L
Linus Torvalds 已提交
803 804 805 806 807 808 809 810 811 812
/*
 * Return to user mode is not as complex as all this looks,
 * but we want the default path for a system call return to
 * go as quickly as possible which is why some of this is
 * less clear than it otherwise should be.
 */

	# userspace resumption stub bypassing syscall exit tracing
	ALIGN
ret_from_exception:
813
	preempt_stop(CLBR_ANY)
L
Linus Torvalds 已提交
814
ret_from_intr:
815
#ifdef CONFIG_VM86
816 817 818
	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
819 820
#else
	/*
821
	 * We can be coming here from child spawned by kernel_thread().
822
	 */
823 824
	movl	PT_CS(%esp), %eax
	andl	$SEGMENT_RPL_MASK, %eax
825
#endif
826
	cmpl	$USER_RPL, %eax
827
	jb	restore_all_kernel		# not returning to v8086 or userspace
828

L
Linus Torvalds 已提交
829
ENTRY(resume_userspace)
830
	DISABLE_INTERRUPTS(CLBR_ANY)
831
	TRACE_IRQS_OFF
832 833
	movl	%esp, %eax
	call	prepare_exit_to_usermode
834
	jmp	restore_all
835
END(ret_from_exception)
L
Linus Torvalds 已提交
836

837 838 839 840 841 842 843 844 845 846
GLOBAL(__begin_SYSENTER_singlestep_region)
/*
 * All code from here through __end_SYSENTER_singlestep_region is subject
 * to being single-stepped if a user program sets TF and executes SYSENTER.
 * There is absolutely nothing that we can do to prevent this from happening
 * (thanks Intel!).  To keep our handling of this situation as simple as
 * possible, we handle TF just like AC and NT, except that our #DB handler
 * will ignore all of the single-step traps generated in this range.
 */

847
#ifdef CONFIG_XEN_PV
848 849 850 851 852 853
/*
 * Xen doesn't set %esp to be precisely what the normal SYSENTER
 * entry point expects, so fix it up before using the normal path.
 */
ENTRY(xen_sysenter_target)
	addl	$5*4, %esp			/* remove xen-provided frame */
854
	jmp	.Lsysenter_past_esp
855 856
#endif

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/*
 * 32-bit SYSENTER entry.
 *
 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 * if X86_FEATURE_SEP is available.  This is the preferred system call
 * entry on 32-bit systems.
 *
 * The SYSENTER instruction, in principle, should *only* occur in the
 * vDSO.  In practice, a small number of Android devices were shipped
 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 * never happened in any of Google's Bionic versions -- it only happened
 * in a narrow range of Intel-provided versions.
 *
 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 * SYSENTER does not save anything on the stack,
 * and does not save old EIP (!!!), ESP, or EFLAGS.
 *
 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 * user and/or vm86 state), we explicitly disable the SYSENTER
 * instruction in vm86 mode by reprogramming the MSRs.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  user stack
 * 0(%ebp) arg6
 */
889
ENTRY(entry_SYSENTER_32)
890 891 892 893 894 895 896
	/*
	 * On entry-stack with all userspace-regs live - save and
	 * restore eflags and %eax to use it as scratch-reg for the cr3
	 * switch.
	 */
	pushfl
	pushl	%eax
897
	BUG_IF_WRONG_CR3 no_user_check=1
898 899 900 901 902
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
	popl	%eax
	popfl

	/* Stack empty again, switch to task stack */
903
	movl	TSS_entry2task_stack(%esp), %esp
904

905
.Lsysenter_past_esp:
906
	pushl	$__USER_DS		/* pt_regs->ss */
907
	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
908 909 910 911 912
	pushfl				/* pt_regs->flags (except IF = 0) */
	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
	pushl	$__USER_CS		/* pt_regs->cs */
	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
	pushl	%eax			/* pt_regs->orig_ax */
913
	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
914

915
	/*
916 917
	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
	 * and TF ourselves.  To save a few cycles, we can check whether
918 919 920 921
	 * either was set instead of doing an unconditional popfq.
	 * This needs to happen before enabling interrupts so that
	 * we don't get preempted with NT set.
	 *
922 923 924 925 926 927
	 * If TF is set, we will single-step all the way to here -- do_debug
	 * will ignore all the traps.  (Yes, this is slow, but so is
	 * single-stepping in general.  This allows us to avoid having
	 * a more complicated code to handle the case where a user program
	 * forces us to single-step through the SYSENTER entry code.)
	 *
928 929 930 931 932 933
	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
	 * out-of-line as an optimization: NT is unlikely to be set in the
	 * majority of the cases and instead of polluting the I$ unnecessarily,
	 * we're keeping that code behind a branch which will predict as
	 * not-taken and therefore its instructions won't be fetched.
	 */
934
	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
935 936 937
	jnz	.Lsysenter_fix_flags
.Lsysenter_flags_fixed:

938
	/*
939 940
	 * User mode is traced as though IRQs are on, and SYSENTER
	 * turned them off.
941
	 */
942
	TRACE_IRQS_OFF
943 944 945

	movl	%esp, %eax
	call	do_fast_syscall_32
946 947 948
	/* XEN PV guests always use IRET path */
	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
949

950 951
	STACKLEAK_ERASE

952 953
/* Opportunistic SYSEXIT */
	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

	/*
	 * Setup entry stack - we keep the pointer in %eax and do the
	 * switch after almost all user-state is restored.
	 */

	/* Load entry stack pointer and allocate frame for eflags/eax */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
	subl	$(2*4), %eax

	/* Copy eflags and eax to entry stack */
	movl	PT_EFLAGS(%esp), %edi
	movl	PT_EAX(%esp), %esi
	movl	%edi, (%eax)
	movl	%esi, 4(%eax)

	/* Restore user registers and segments */
971 972
	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
973 974
1:	mov	PT_FS(%esp), %fs
	PTGS_TO_GS
975

976 977 978 979 980
	popl	%ebx			/* pt_regs->bx */
	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
	popl	%esi			/* pt_regs->si */
	popl	%edi			/* pt_regs->di */
	popl	%ebp			/* pt_regs->bp */
981 982 983

	/* Switch to entry stack */
	movl	%eax, %esp
984

985 986 987
	/* Now ready to switch the cr3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

988 989 990 991 992
	/*
	 * Restore all flags except IF. (We restore IF separately because
	 * STI gives a one-instruction window in which we won't be interrupted,
	 * whereas POPF does not.)
	 */
993
	btrl	$X86_EFLAGS_IF_BIT, (%esp)
994
	BUG_IF_WRONG_CR3 no_user_check=1
995
	popfl
996
	popl	%eax
997

998 999 1000 1001
	/*
	 * Return back to the vDSO, which will pop ecx and edx.
	 * Don't bother with DS and ES (they already contain __USER_DS).
	 */
1002 1003
	sti
	sysexit
R
Roland McGrath 已提交
1004

1005 1006 1007
.pushsection .fixup, "ax"
2:	movl	$0, PT_FS(%esp)
	jmp	1b
1008
.popsection
1009
	_ASM_EXTABLE(1b, 2b)
1010
	PTGS_TO_GS_EX
1011 1012 1013 1014 1015

.Lsysenter_fix_flags:
	pushl	$X86_EFLAGS_FIXED
	popfl
	jmp	.Lsysenter_flags_fixed
1016
GLOBAL(__end_SYSENTER_singlestep_region)
1017
ENDPROC(entry_SYSENTER_32)
L
Linus Torvalds 已提交
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/*
 * 32-bit legacy system call entry.
 *
 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 * instruction.  INT $0x80 lands here.
 *
 * This entry point can be used by any 32-bit perform system calls.
 * Instances of INT $0x80 can be found inline in various programs and
 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 * fallback for hardware that doesn't support a faster entry method.
 * Restarted 32-bit system calls also fall back to INT $0x80
 * regardless of what instruction was originally used to do the system
 * call.  (64-bit programs can use INT $0x80 as well, but they can
 * only run on 64-bit kernels and therefore land in
 * entry_INT80_compat.)
 *
 * This is considered a slow path.  It is not used by most libc
 * implementations on modern hardware except during process startup.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  arg6
 */
1047
ENTRY(entry_INT80_32)
1048
	ASM_CLAC
1049
	pushl	%eax			/* pt_regs->orig_ax */
1050 1051

	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
1052 1053

	/*
1054 1055
	 * User mode is traced as though IRQs are on, and the interrupt gate
	 * turned them off.
1056
	 */
1057
	TRACE_IRQS_OFF
1058 1059

	movl	%esp, %eax
1060
	call	do_int80_syscall_32
1061
.Lsyscall_32_done:
L
Linus Torvalds 已提交
1062

1063 1064
	STACKLEAK_ERASE

L
Linus Torvalds 已提交
1065
restore_all:
1066
	TRACE_IRQS_IRET
1067
	SWITCH_TO_ENTRY_STACK
1068
.Lrestore_all_notrace:
1069
	CHECK_AND_APPLY_ESPFIX
1070
.Lrestore_nocheck:
1071 1072 1073
	/* Switch back to user CR3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1074 1075
	BUG_IF_WRONG_CR3

1076 1077
	/* Restore user state */
	RESTORE_REGS pop=4			# skip orig_eax/error_code
1078
.Lirq_return:
1079 1080 1081 1082 1083
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler and when returning from
	 * scheduler to user-space.
	 */
I
Ingo Molnar 已提交
1084
	INTERRUPT_RETURN
1085

1086
restore_all_kernel:
T
Thomas Gleixner 已提交
1087
#ifdef CONFIG_PREEMPTION
1088 1089 1090 1091 1092 1093 1094 1095
	DISABLE_INTERRUPTS(CLBR_ANY)
	cmpl	$0, PER_CPU_VAR(__preempt_count)
	jnz	.Lno_preempt
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
	jz	.Lno_preempt
	call	preempt_schedule_irq
.Lno_preempt:
#endif
1096
	TRACE_IRQS_IRET
1097
	PARANOID_EXIT_TO_KERNEL_MODE
1098
	BUG_IF_WRONG_CR3
1099 1100 1101
	RESTORE_REGS 4
	jmp	.Lirq_return

1102 1103 1104 1105
.section .fixup, "ax"
ENTRY(iret_exc	)
	pushl	$0				# no error code
	pushl	$do_iret_error
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * The stack-frame here is the one that iret faulted on, so its a
	 * return-to-user frame. We are on kernel-cr3 because we come here from
	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
	 * as the checker expects it.
	 */
	pushl	%eax
	SWITCH_TO_USER_CR3 scratch_reg=%eax
	popl	%eax
#endif

1119
	jmp	common_exception
L
Linus Torvalds 已提交
1120
.previous
1121
	_ASM_EXTABLE(.Lirq_return, iret_exc)
1122
ENDPROC(entry_INT80_32)
L
Linus Torvalds 已提交
1123

1124
.macro FIXUP_ESPFIX_STACK
1125 1126 1127 1128 1129 1130 1131
/*
 * Switch back for ESPFIX stack to the normal zerobased stack
 *
 * We can't call C functions using the ESPFIX stack. This code reads
 * the high word of the segment base from the GDT and swiches to the
 * normal stack and adjusts ESP with the matching offset.
 */
1132
#ifdef CONFIG_X86_ESPFIX32
1133
	/* fixup the stack */
1134 1135
	mov	GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
	mov	GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
1136
	shl	$16, %eax
1137 1138 1139 1140
	addl	%esp, %eax			/* the adjusted stack pointer */
	pushl	$__KERNEL_DS
	pushl	%eax
	lss	(%esp), %esp			/* switch to the normal stack segment */
1141
#endif
1142 1143
.endm
.macro UNWIND_ESPFIX_STACK
1144
#ifdef CONFIG_X86_ESPFIX32
1145
	movl	%ss, %eax
1146
	/* see if on espfix stack */
1147 1148 1149 1150 1151
	cmpw	$__ESPFIX_SS, %ax
	jne	27f
	movl	$__KERNEL_DS, %eax
	movl	%eax, %ds
	movl	%eax, %es
1152 1153 1154
	/* switch to normal stack */
	FIXUP_ESPFIX_STACK
27:
1155
#endif
1156
.endm
L
Linus Torvalds 已提交
1157 1158

/*
1159 1160
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
L
Linus Torvalds 已提交
1161
 */
1162
	.align 8
L
Linus Torvalds 已提交
1163
ENTRY(irq_entries_start)
1164 1165
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
1166
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
1167 1168 1169 1170
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
1171 1172
END(irq_entries_start)

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
#ifdef CONFIG_X86_LOCAL_APIC
	.align 8
ENTRY(spurious_entries_start)
    vector=FIRST_SYSTEM_VECTOR
    .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
    vector=vector+1
	jmp	common_spurious
	.align	8
    .endr
END(spurious_entries_start)

common_spurious:
	ASM_CLAC
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
	SAVE_ALL switch_stacks=1
	ENCODE_FRAME_POINTER
	TRACE_IRQS_OFF
	movl	%esp, %eax
	call	smp_spurious_interrupt
	jmp	ret_from_intr
1194
ENDPROC(common_spurious)
1195 1196
#endif

1197 1198 1199 1200
/*
 * the CPU automatically disables interrupts when executing an IRQ vector,
 * so IRQ-flags tracing has to follow that:
 */
1201
	.p2align CONFIG_X86_L1_CACHE_SHIFT
L
Linus Torvalds 已提交
1202
common_interrupt:
1203
	ASM_CLAC
1204
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
1205 1206

	SAVE_ALL switch_stacks=1
1207
	ENCODE_FRAME_POINTER
1208
	TRACE_IRQS_OFF
1209 1210 1211
	movl	%esp, %eax
	call	do_IRQ
	jmp	ret_from_intr
1212
ENDPROC(common_interrupt)
L
Linus Torvalds 已提交
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
#define BUILD_INTERRUPT3(name, nr, fn)			\
ENTRY(name)						\
	ASM_CLAC;					\
	pushl	$~(nr);					\
	SAVE_ALL switch_stacks=1;			\
	ENCODE_FRAME_POINTER;				\
	TRACE_IRQS_OFF					\
	movl	%esp, %eax;				\
	call	fn;					\
	jmp	ret_from_intr;				\
1224
ENDPROC(name)
L
Linus Torvalds 已提交
1225

1226 1227
#define BUILD_INTERRUPT(name, nr)		\
	BUILD_INTERRUPT3(name, nr, smp_##name);	\
T
Tejun Heo 已提交
1228

L
Linus Torvalds 已提交
1229
/* The include is where all of the SMP etc. interrupts come from */
1230
#include <asm/entry_arch.h>
L
Linus Torvalds 已提交
1231 1232

ENTRY(coprocessor_error)
1233
	ASM_CLAC
1234 1235
	pushl	$0
	pushl	$do_coprocessor_error
1236
	jmp	common_exception
1237
END(coprocessor_error)
L
Linus Torvalds 已提交
1238 1239

ENTRY(simd_coprocessor_error)
1240
	ASM_CLAC
1241
	pushl	$0
1242 1243
#ifdef CONFIG_X86_INVD_BUG
	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
1244 1245
	ALTERNATIVE "pushl	$do_general_protection",	\
		    "pushl	$do_simd_coprocessor_error",	\
1246
		    X86_FEATURE_XMM
1247
#else
1248
	pushl	$do_simd_coprocessor_error
1249
#endif
1250
	jmp	common_exception
1251
END(simd_coprocessor_error)
L
Linus Torvalds 已提交
1252 1253

ENTRY(device_not_available)
1254
	ASM_CLAC
1255 1256
	pushl	$-1				# mark this as an int
	pushl	$do_device_not_available
1257
	jmp	common_exception
1258
END(device_not_available)
L
Linus Torvalds 已提交
1259

1260 1261
#ifdef CONFIG_PARAVIRT
ENTRY(native_iret)
I
Ingo Molnar 已提交
1262
	iret
1263
	_ASM_EXTABLE(native_iret, iret_exc)
1264
END(native_iret)
1265 1266
#endif

L
Linus Torvalds 已提交
1267
ENTRY(overflow)
1268
	ASM_CLAC
1269 1270
	pushl	$0
	pushl	$do_overflow
1271
	jmp	common_exception
1272
END(overflow)
L
Linus Torvalds 已提交
1273 1274

ENTRY(bounds)
1275
	ASM_CLAC
1276 1277
	pushl	$0
	pushl	$do_bounds
1278
	jmp	common_exception
1279
END(bounds)
L
Linus Torvalds 已提交
1280 1281

ENTRY(invalid_op)
1282
	ASM_CLAC
1283 1284
	pushl	$0
	pushl	$do_invalid_op
1285
	jmp	common_exception
1286
END(invalid_op)
L
Linus Torvalds 已提交
1287 1288

ENTRY(coprocessor_segment_overrun)
1289
	ASM_CLAC
1290 1291
	pushl	$0
	pushl	$do_coprocessor_segment_overrun
1292
	jmp	common_exception
1293
END(coprocessor_segment_overrun)
L
Linus Torvalds 已提交
1294 1295

ENTRY(invalid_TSS)
1296
	ASM_CLAC
1297
	pushl	$do_invalid_TSS
1298
	jmp	common_exception
1299
END(invalid_TSS)
L
Linus Torvalds 已提交
1300 1301

ENTRY(segment_not_present)
1302
	ASM_CLAC
1303
	pushl	$do_segment_not_present
1304
	jmp	common_exception
1305
END(segment_not_present)
L
Linus Torvalds 已提交
1306 1307

ENTRY(stack_segment)
1308
	ASM_CLAC
1309
	pushl	$do_stack_segment
1310
	jmp	common_exception
1311
END(stack_segment)
L
Linus Torvalds 已提交
1312 1313

ENTRY(alignment_check)
1314
	ASM_CLAC
1315
	pushl	$do_alignment_check
1316
	jmp	common_exception
1317
END(alignment_check)
L
Linus Torvalds 已提交
1318

1319
ENTRY(divide_error)
1320
	ASM_CLAC
1321 1322
	pushl	$0				# no error code
	pushl	$do_divide_error
1323
	jmp	common_exception
1324
END(divide_error)
L
Linus Torvalds 已提交
1325 1326 1327

#ifdef CONFIG_X86_MCE
ENTRY(machine_check)
1328
	ASM_CLAC
1329 1330
	pushl	$0
	pushl	machine_check_vector
1331
	jmp	common_exception
1332
END(machine_check)
L
Linus Torvalds 已提交
1333 1334 1335
#endif

ENTRY(spurious_interrupt_bug)
1336
	ASM_CLAC
1337 1338
	pushl	$0
	pushl	$do_spurious_interrupt_bug
1339
	jmp	common_exception
1340
END(spurious_interrupt_bug)
L
Linus Torvalds 已提交
1341

1342
#ifdef CONFIG_XEN_PV
1343
ENTRY(xen_hypervisor_callback)
1344 1345 1346 1347 1348 1349 1350
	/*
	 * Check to see if we got the event in the critical
	 * region in xen_iret_direct, after we've reenabled
	 * events and checked for pending events.  This simulates
	 * iret instruction's behaviour where it delivers a
	 * pending interrupt when enabling interrupts:
	 */
1351
	cmpl	$xen_iret_start_crit, (%esp)
1352
	jb	1f
1353
	cmpl	$xen_iret_end_crit, (%esp)
1354
	jae	1f
1355 1356 1357 1358 1359 1360 1361
	call	xen_iret_crit_fixup
1:
	pushl	$-1				/* orig_ax = -1 => not a system call */
	SAVE_ALL
	ENCODE_FRAME_POINTER
	TRACE_IRQS_OFF
	mov	%esp, %eax
1362
	call	xen_evtchn_do_upcall
T
Thomas Gleixner 已提交
1363
#ifndef CONFIG_PREEMPTION
1364
	call	xen_maybe_preempt_hcall
1365
#endif
1366
	jmp	ret_from_intr
1367 1368
ENDPROC(xen_hypervisor_callback)

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
/*
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we fix up by reattempting the load, and zeroing the segment
 * register if the load fails.
 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by maintaining a status value in EAX.
 */
1381
ENTRY(xen_failsafe_callback)
1382 1383 1384 1385 1386 1387
	pushl	%eax
	movl	$1, %eax
1:	mov	4(%esp), %ds
2:	mov	8(%esp), %es
3:	mov	12(%esp), %fs
4:	mov	16(%esp), %gs
1388 1389
	/* EAX == 0 => Category 1 (Bad segment)
	   EAX != 0 => Category 2 (Bad IRET) */
1390 1391 1392 1393 1394 1395
	testl	%eax, %eax
	popl	%eax
	lea	16(%esp), %esp
	jz	5f
	jmp	iret_exc
5:	pushl	$-1				/* orig_ax = -1 => not a system call */
1396
	SAVE_ALL
1397
	ENCODE_FRAME_POINTER
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	jmp	ret_from_exception

.section .fixup, "ax"
6:	xorl	%eax, %eax
	movl	%eax, 4(%esp)
	jmp	1b
7:	xorl	%eax, %eax
	movl	%eax, 8(%esp)
	jmp	2b
8:	xorl	%eax, %eax
	movl	%eax, 12(%esp)
	jmp	3b
9:	xorl	%eax, %eax
	movl	%eax, 16(%esp)
	jmp	4b
1413
.previous
1414 1415 1416 1417
	_ASM_EXTABLE(1b, 6b)
	_ASM_EXTABLE(2b, 7b)
	_ASM_EXTABLE(3b, 8b)
	_ASM_EXTABLE(4b, 9b)
1418
ENDPROC(xen_failsafe_callback)
1419
#endif /* CONFIG_XEN_PV */
1420

1421
#ifdef CONFIG_XEN_PVHVM
1422
BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1423
		 xen_evtchn_do_upcall)
1424
#endif
1425

1426 1427 1428 1429

#if IS_ENABLED(CONFIG_HYPERV)

BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1430
		 hyperv_vector_handler)
1431

1432 1433 1434
BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
		 hyperv_reenlightenment_intr)

1435 1436 1437
BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
		 hv_stimer0_vector_handler)

1438
#endif /* CONFIG_HYPERV */
1439

1440
ENTRY(page_fault)
1441
	ASM_CLAC
1442 1443 1444
	pushl	$do_page_fault
	jmp	common_exception_read_cr2
END(page_fault)
1445

1446 1447
common_exception_read_cr2:
	/* the function address is in %gs's slot on the stack */
1448 1449 1450 1451 1452 1453 1454
	SAVE_ALL switch_stacks=1 skip_gs=1

	ENCODE_FRAME_POINTER
	UNWIND_ESPFIX_STACK

	/* fixup %gs */
	GS_TO_REG %ecx
1455
	movl	PT_GS(%esp), %edi
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx

	GET_CR2_INTO(%ecx)			# might clobber %eax

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

	TRACE_IRQS_OFF
	movl	%esp, %eax			# pt_regs pointer
1467
	CALL_NOSPEC %edi
1468
	jmp	ret_from_exception
1469
END(common_exception_read_cr2)
1470 1471

common_exception:
1472
	/* the function address is in %gs's slot on the stack */
1473
	SAVE_ALL switch_stacks=1 skip_gs=1
1474
	ENCODE_FRAME_POINTER
1475
	UNWIND_ESPFIX_STACK
1476 1477

	/* fixup %gs */
1478
	GS_TO_REG %ecx
1479
	movl	PT_GS(%esp), %edi		# get the function address
1480 1481
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx
1482 1483 1484 1485 1486

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

1487
	TRACE_IRQS_OFF
1488
	movl	%esp, %eax			# pt_regs pointer
1489
	CALL_NOSPEC %edi
1490
	jmp	ret_from_exception
1491
END(common_exception)
1492 1493

ENTRY(debug)
1494
	/*
1495
	 * Entry from sysenter is now handled in common_exception
1496
	 */
1497
	ASM_CLAC
1498
	pushl	$-1				# mark this as an int
1499 1500
	pushl	$do_debug
	jmp	common_exception
1501 1502 1503
END(debug)

/*
1504 1505 1506 1507 1508
 * NMI is doubly nasty.  It can happen on the first instruction of
 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
 * switched stacks.  We handle both conditions by simply checking whether we
 * interrupted kernel code running on the SYSENTER stack.
1509 1510
 */
ENTRY(nmi)
1511
	ASM_CLAC
1512

1513
#ifdef CONFIG_X86_ESPFIX32
1514 1515 1516 1517
	pushl	%eax
	movl	%ss, %eax
	cmpw	$__ESPFIX_SS, %ax
	popl	%eax
1518
	je	.Lnmi_espfix_stack
1519
#endif
1520 1521

	pushl	%eax				# pt_regs->orig_ax
1522
	SAVE_ALL_NMI cr3_reg=%edi
1523
	ENCODE_FRAME_POINTER
1524 1525
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
1526 1527

	/* Are we currently on the SYSENTER stack? */
1528
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1529 1530 1531
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
1532 1533 1534
	jb	.Lnmi_from_sysenter_stack

	/* Not on SYSENTER stack. */
1535
	call	do_nmi
1536
	jmp	.Lnmi_return
1537

1538 1539 1540 1541 1542
.Lnmi_from_sysenter_stack:
	/*
	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
	 * is using the thread stack right now, so it's safe for us to use it.
	 */
1543
	movl	%esp, %ebx
1544 1545
	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
	call	do_nmi
1546
	movl	%ebx, %esp
1547 1548 1549

.Lnmi_return:
	CHECK_AND_APPLY_ESPFIX
1550
	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1551
	jmp	.Lirq_return
1552

1553
#ifdef CONFIG_X86_ESPFIX32
1554
.Lnmi_espfix_stack:
1555
	/*
1556 1557
	 * create the pointer to lss back
	 */
1558 1559 1560
	pushl	%ss
	pushl	%esp
	addl	$4, (%esp)
1561 1562
	/* copy the iret frame of 12 bytes */
	.rept 3
1563
	pushl	16(%esp)
1564
	.endr
1565
	pushl	%eax
1566
	SAVE_ALL_NMI cr3_reg=%edi
1567
	ENCODE_FRAME_POINTER
1568 1569 1570
	FIXUP_ESPFIX_STACK			# %eax == %esp
	xorl	%edx, %edx			# zero error code
	call	do_nmi
1571
	RESTORE_ALL_NMI cr3_reg=%edi
1572
	lss	12+4(%esp), %esp		# back to espfix stack
1573
	jmp	.Lirq_return
1574
#endif
1575 1576 1577
END(nmi)

ENTRY(int3)
1578
	ASM_CLAC
1579
	pushl	$-1				# mark this as an int
1580 1581

	SAVE_ALL switch_stacks=1
1582
	ENCODE_FRAME_POINTER
1583
	TRACE_IRQS_OFF
1584 1585 1586 1587
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
	call	do_int3
	jmp	ret_from_exception
1588 1589 1590
END(int3)

ENTRY(general_protection)
1591
	pushl	$do_general_protection
1592
	jmp	common_exception
1593 1594
END(general_protection)

G
Gleb Natapov 已提交
1595 1596
#ifdef CONFIG_KVM_GUEST
ENTRY(async_page_fault)
1597
	ASM_CLAC
1598
	pushl	$do_async_page_fault
1599
	jmp	common_exception_read_cr2
1600
END(async_page_fault)
G
Gleb Natapov 已提交
1601
#endif
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)