entry_32.S 36.5 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2
/*
3
 *  Copyright (C) 1991,1992  Linus Torvalds
L
Linus Torvalds 已提交
4
 *
5
 * entry_32.S contains the system-call and low-level fault and trap handling routines.
L
Linus Torvalds 已提交
6
 *
7
 * Stack layout while running C code:
8 9 10
 *	ptrace needs to have all registers on the stack.
 *	If the order here is changed, it needs to be
 *	updated in fork.c:copy_process(), signal.c:do_signal(),
L
Linus Torvalds 已提交
11 12 13 14 15
 *	ptrace.c and ptrace.h
 *
 *	 0(%esp) - %ebx
 *	 4(%esp) - %ecx
 *	 8(%esp) - %edx
16
 *	 C(%esp) - %esi
L
Linus Torvalds 已提交
17 18 19 20 21
 *	10(%esp) - %edi
 *	14(%esp) - %ebp
 *	18(%esp) - %eax
 *	1C(%esp) - %ds
 *	20(%esp) - %es
22
 *	24(%esp) - %fs
23 24 25 26 27 28 29
 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
 *	2C(%esp) - orig_eax
 *	30(%esp) - %eip
 *	34(%esp) - %cs
 *	38(%esp) - %eflags
 *	3C(%esp) - %oldesp
 *	40(%esp) - %oldss
L
Linus Torvalds 已提交
30 31 32
 */

#include <linux/linkage.h>
33
#include <linux/err.h>
L
Linus Torvalds 已提交
34
#include <asm/thread_info.h>
35
#include <asm/irqflags.h>
L
Linus Torvalds 已提交
36 37 38
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
S
Stas Sergeev 已提交
39
#include <asm/percpu.h>
40
#include <asm/processor-flags.h>
41
#include <asm/irq_vectors.h>
42
#include <asm/cpufeatures.h>
43
#include <asm/alternative-asm.h>
44
#include <asm/asm.h>
45
#include <asm/smap.h>
46
#include <asm/frame.h>
47
#include <asm/nospec-branch.h>
L
Linus Torvalds 已提交
48

J
Jiri Olsa 已提交
49 50
	.section .entry.text, "ax"

51 52 53 54 55
/*
 * We use macros for low-level operations which need to be overridden
 * for paravirtualization.  The following will never clobber any registers:
 *   INTERRUPT_RETURN (aka. "iret")
 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
56
 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
57 58 59 60 61 62 63
 *
 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
 * Allowing a register to be clobbered can shrink the paravirt replacement
 * enough to patch inline, increasing performance.
 */

L
Linus Torvalds 已提交
64
#ifdef CONFIG_PREEMPT
65
# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
L
Linus Torvalds 已提交
66
#else
67
# define preempt_stop(clobbers)
68
# define resume_kernel		restore_all_kernel
L
Linus Torvalds 已提交
69 70
#endif

71 72
.macro TRACE_IRQS_IRET
#ifdef CONFIG_TRACE_IRQFLAGS
73 74
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
	jz	1f
75 76 77 78 79
	TRACE_IRQS_ON
1:
#endif
.endm

80 81
#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)

82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * User gs save/restore
 *
 * %gs is used for userland TLS and kernel only uses it for stack
 * canary which is required to be at %gs:20 by gcc.  Read the comment
 * at the top of stackprotector.h for more info.
 *
 * Local labels 98 and 99 are used.
 */
#ifdef CONFIG_X86_32_LAZY_GS

 /* unfortunately push/pop can't be no-op */
.macro PUSH_GS
95
	pushl	$0
96 97
.endm
.macro POP_GS pop=0
98
	addl	$(4 + \pop), %esp
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
.endm
.macro POP_GS_EX
.endm

 /* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm

#else	/* CONFIG_X86_32_LAZY_GS */

.macro PUSH_GS
118
	pushl	%gs
119 120 121
.endm

.macro POP_GS pop=0
122
98:	popl	%gs
123
  .if \pop <> 0
124
	add	$\pop, %esp
125 126 127 128
  .endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
129 130
99:	movl	$0, (%esp)
	jmp	98b
131
.popsection
132
	_ASM_EXTABLE(98b, 99b)
133 134 135
.endm

.macro PTGS_TO_GS
136
98:	mov	PT_GS(%esp), %gs
137 138 139
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
140 141
99:	movl	$0, PT_GS(%esp)
	jmp	98b
142
.popsection
143
	_ASM_EXTABLE(98b, 99b)
144 145 146
.endm

.macro GS_TO_REG reg
147
	movl	%gs, \reg
148 149
.endm
.macro REG_TO_PTGS reg
150
	movl	\reg, PT_GS(%esp)
151 152
.endm
.macro SET_KERNEL_GS reg
153 154
	movl	$(__KERNEL_STACK_CANARY), \reg
	movl	\reg, %gs
155 156
.endm

157
#endif /* CONFIG_X86_32_LAZY_GS */
158

159 160 161 162 163 164 165 166 167 168
/* Unconditionally switch to user cr3 */
.macro SWITCH_TO_USER_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI

	movl	%cr3, \scratch_reg
	orl	$PTI_SWITCH_MASK, \scratch_reg
	movl	\scratch_reg, %cr3
.Lend_\@:
.endm

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
.macro BUG_IF_WRONG_CR3 no_user_check=0
#ifdef CONFIG_DEBUG_ENTRY
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	.if \no_user_check == 0
	/* coming from usermode? */
	testl	$SEGMENT_RPL_MASK, PT_CS(%esp)
	jz	.Lend_\@
	.endif
	/* On user-cr3? */
	movl	%cr3, %eax
	testl	$PTI_SWITCH_MASK, %eax
	jnz	.Lend_\@
	/* From userspace with kernel cr3 - BUG */
	ud2
.Lend_\@:
#endif
.endm

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * Switch to kernel cr3 if not already loaded and return current cr3 in
 * \scratch_reg
 */
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	movl	%cr3, \scratch_reg
	/* Test if we are already on kernel CR3 */
	testl	$PTI_SWITCH_MASK, \scratch_reg
	jz	.Lend_\@
	andl	$(~PTI_SWITCH_MASK), \scratch_reg
	movl	\scratch_reg, %cr3
	/* Return original CR3 in \scratch_reg */
	orl	$PTI_SWITCH_MASK, \scratch_reg
.Lend_\@:
.endm

204
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0
205
	cld
206
	PUSH_GS
207 208 209
	pushl	%fs
	pushl	%es
	pushl	%ds
210
	pushl	\pt_regs_ax
211 212 213 214 215 216 217 218 219 220 221
	pushl	%ebp
	pushl	%edi
	pushl	%esi
	pushl	%edx
	pushl	%ecx
	pushl	%ebx
	movl	$(__USER_DS), %edx
	movl	%edx, %ds
	movl	%edx, %es
	movl	$(__KERNEL_PERCPU), %edx
	movl	%edx, %fs
222
	SET_KERNEL_GS %edx
223 224 225 226 227 228

	/* Switch to kernel stack if necessary */
.if \switch_stacks > 0
	SWITCH_TO_KERNEL_STACK
.endif

229
.endm
L
Linus Torvalds 已提交
230

231
.macro SAVE_ALL_NMI cr3_reg:req
232
	SAVE_ALL
233

234 235
	BUG_IF_WRONG_CR3

236 237 238 239 240 241 242 243 244 245
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We can enter with either user or kernel cr3, the code will
	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
	 * if necessary.
	 */
	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg

.Lend_\@:
246
.endm
247

248 249 250
/*
 * This is a sneaky trick to help the unwinder find pt_regs on the stack.  The
 * frame pointer is replaced with an encoded pointer to pt_regs.  The encoding
251
 * is just clearing the MSB, which makes it an invalid stack address and is also
252 253 254 255 256 257 258 259
 * a signal to the unwinder that it's a pt_regs pointer in disguise.
 *
 * NOTE: This macro must be used *after* SAVE_ALL because it corrupts the
 * original rbp.
 */
.macro ENCODE_FRAME_POINTER
#ifdef CONFIG_FRAME_POINTER
	mov %esp, %ebp
260
	andl $0x7fffffff, %ebp
261 262 263
#endif
.endm

264
.macro RESTORE_INT_REGS
265 266 267 268 269 270 271
	popl	%ebx
	popl	%ecx
	popl	%edx
	popl	%esi
	popl	%edi
	popl	%ebp
	popl	%eax
272
.endm
L
Linus Torvalds 已提交
273

274
.macro RESTORE_REGS pop=0
275
	RESTORE_INT_REGS
276 277 278
1:	popl	%ds
2:	popl	%es
3:	popl	%fs
279
	POP_GS \pop
280
.pushsection .fixup, "ax"
281 282 283 284 285 286
4:	movl	$0, (%esp)
	jmp	1b
5:	movl	$0, (%esp)
	jmp	2b
6:	movl	$0, (%esp)
	jmp	3b
287
.popsection
288 289 290
	_ASM_EXTABLE(1b, 4b)
	_ASM_EXTABLE(2b, 5b)
	_ASM_EXTABLE(3b, 6b)
291
	POP_GS_EX
292
.endm
L
Linus Torvalds 已提交
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We enter with kernel cr3 and switch the cr3 to the value
	 * stored on \cr3_reg, which is either a user or a kernel cr3.
	 */
	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI

	testl	$PTI_SWITCH_MASK, \cr3_reg
	jz	.Lswitched_\@

	/* User cr3 in \cr3_reg - write it to hardware cr3 */
	movl	\cr3_reg, %cr3

.Lswitched_\@:

311 312
	BUG_IF_WRONG_CR3

313 314 315
	RESTORE_REGS pop=\pop
.endm

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
.macro CHECK_AND_APPLY_ESPFIX
#ifdef CONFIG_X86_ESPFIX32
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)

	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX

	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
	/*
	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
	 * are returning to the kernel.
	 * See comments in process.c:copy_thread() for details.
	 */
	movb	PT_OLDSS(%esp), %ah
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
	jne	.Lend_\@	# returning to user-space with LDT SS

	/*
	 * Setup and switch to ESPFIX stack
	 *
	 * We're returning to userspace with a 16 bit stack. The CPU will not
	 * restore the high word of ESP for us on executing iret... This is an
	 * "official" bug of all the x86-compatible CPUs, which we can work
	 * around to make dosemu and wine happy. We do this by preloading the
	 * high word of ESP with the high word of the userspace ESP while
	 * compensating for the offset by changing to the ESPFIX segment with
	 * a base address that matches for the difference.
	 */
	mov	%esp, %edx			/* load kernel esp */
	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
	mov	%dx, %ax			/* eax: new kernel esp */
	sub	%eax, %edx			/* offset (low word is 0) */
	shr	$16, %edx
	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
	pushl	$__ESPFIX_SS
	pushl	%eax				/* new kernel esp */
	/*
	 * Disable interrupts, but do not irqtrace this section: we
	 * will soon execute iret and the tracer was already set to
	 * the irqstate after the IRET:
	 */
	DISABLE_INTERRUPTS(CLBR_ANY)
	lss	(%esp), %esp			/* switch to espfix segment */
.Lend_\@:
#endif /* CONFIG_X86_ESPFIX32 */
.endm
364 365 366 367 368 369 370 371 372 373 374

/*
 * Called with pt_regs fully populated and kernel segments loaded,
 * so we can access PER_CPU and use the integer registers.
 *
 * We need to be very careful here with the %esp switch, because an NMI
 * can happen everywhere. If the NMI handler finds itself on the
 * entry-stack, it will overwrite the task-stack and everything we
 * copied there. So allocate the stack-frame on the task-stack and
 * switch to it before we do any copying.
 */
375 376

#define CS_FROM_ENTRY_STACK	(1 << 31)
377
#define CS_FROM_USER_CR3	(1 << 30)
378

379 380 381 382
.macro SWITCH_TO_KERNEL_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

383 384
	BUG_IF_WRONG_CR3

385 386 387 388 389 390 391
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax

	/*
	 * %eax now contains the entry cr3 and we carry it forward in
	 * that register for the time this macro runs
	 */

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
	/* Are we on the entry stack? Bail out if not! */
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
	jae	.Lend_\@

	/* Load stack pointer into %esi and %edi */
	movl	%esp, %esi
	movl	%esi, %edi

	/* Move %edi to the top of the entry stack */
	andl	$(MASK_entry_stack), %edi
	addl	$(SIZEOF_entry_stack), %edi

	/* Load top of task-stack into %edi */
	movl	TSS_entry2task_stack(%edi), %edi

410 411 412 413 414 415 416
	/*
	 * Clear unused upper bits of the dword containing the word-sized CS
	 * slot in pt_regs in case hardware didn't clear it for us.
	 */
	andl	$(0x0000ffff), PT_CS(%esp)

	/* Special case - entry from kernel mode via entry stack */
417 418 419 420 421 422 423 424 425 426
#ifdef CONFIG_VM86
	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
	movb	PT_CS(%esp), %cl
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
#else
	movl	PT_CS(%esp), %ecx
	andl	$SEGMENT_RPL_MASK, %ecx
#endif
	cmpl	$USER_RPL, %ecx
	jb	.Lentry_from_kernel_\@
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441
	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
	jz	.Lcopy_pt_regs_\@

	/*
	 * Stack-frame contains 4 additional segment registers when
	 * coming from VM86 mode
	 */
	addl	$(4 * 4), %ecx

#endif
442
.Lcopy_pt_regs_\@:
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457

	/* Allocate frame on task-stack */
	subl	%ecx, %edi

	/* Switch to task-stack */
	movl	%edi, %esp

	/*
	 * We are now on the task-stack and can safely copy over the
	 * stack-frame
	 */
	shrl	$2, %ecx
	cld
	rep movsl

458 459 460 461 462 463 464 465 466 467 468
	jmp .Lend_\@

.Lentry_from_kernel_\@:

	/*
	 * This handles the case when we enter the kernel from
	 * kernel-mode and %esp points to the entry-stack. When this
	 * happens we need to switch to the task-stack to run C code,
	 * but switch back to the entry-stack again when we approach
	 * iret and return to the interrupted code-path. This usually
	 * happens when we hit an exception while restoring user-space
469 470
	 * segment registers on the way back to user-space or when the
	 * sysenter handler runs with eflags.tf set.
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	 *
	 * When we switch to the task-stack here, we can't trust the
	 * contents of the entry-stack anymore, as the exception handler
	 * might be scheduled out or moved to another CPU. Therefore we
	 * copy the complete entry-stack to the task-stack and set a
	 * marker in the iret-frame (bit 31 of the CS dword) to detect
	 * what we've done on the iret path.
	 *
	 * On the iret path we copy everything back and switch to the
	 * entry-stack, so that the interrupted kernel code-path
	 * continues on the same stack it was interrupted with.
	 *
	 * Be aware that an NMI can happen anytime in this code.
	 *
	 * %esi: Entry-Stack pointer (same as %esp)
	 * %edi: Top of the task stack
487
	 * %eax: CR3 on kernel entry
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	 */

	/* Calculate number of bytes on the entry stack in %ecx */
	movl	%esi, %ecx

	/* %ecx to the top of entry-stack */
	andl	$(MASK_entry_stack), %ecx
	addl	$(SIZEOF_entry_stack), %ecx

	/* Number of bytes on the entry stack to %ecx */
	sub	%esi, %ecx

	/* Mark stackframe as coming from entry stack */
	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)

503 504 505 506 507 508 509 510
	/*
	 * Test the cr3 used to enter the kernel and add a marker
	 * so that we can switch back to it before iret.
	 */
	testl	$PTI_SWITCH_MASK, %eax
	jz	.Lcopy_pt_regs_\@
	orl	$CS_FROM_USER_CR3, PT_CS(%esp)

511 512 513 514 515 516 517
	/*
	 * %esi and %edi are unchanged, %ecx contains the number of
	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
	 * the stack-frame on task-stack and copy everything over
	 */
	jmp .Lcopy_pt_regs_\@

518 519 520
.Lend_\@:
.endm

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * Switch back from the kernel stack to the entry stack.
 *
 * The %esp register must point to pt_regs on the task stack. It will
 * first calculate the size of the stack-frame to copy, depending on
 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 * to copy the contents of the stack over to the entry stack.
 *
 * We must be very careful here, as we can't trust the contents of the
 * task-stack once we switched to the entry-stack. When an NMI happens
 * while on the entry-stack, the NMI handler will switch back to the top
 * of the task stack, overwriting our stack-frame we are about to copy.
 * Therefore we switch the stack only after everything is copied over.
 */
.macro SWITCH_TO_ENTRY_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
	jz	.Lcopy_pt_regs_\@

	/* Additional 4 registers to copy when returning to VM86 mode */
	addl    $(4 * 4), %ecx

.Lcopy_pt_regs_\@:
#endif

	/* Initialize source and destination for movsl */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
	subl	%ecx, %edi
	movl	%esp, %esi

	/* Save future stack pointer in %ebx */
	movl	%edi, %ebx

	/* Copy over the stack-frame */
	shrl	$2, %ecx
	cld
	rep movsl

	/*
	 * Switch to entry-stack - needs to happen after everything is
	 * copied because the NMI handler will overwrite the task-stack
	 * when on entry-stack
	 */
	movl	%ebx, %esp

.Lend_\@:
.endm

575 576
/*
 * This macro handles the case when we return to kernel-mode on the iret
577
 * path and have to switch back to the entry stack and/or user-cr3
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
 *
 * See the comments below the .Lentry_from_kernel_\@ label in the
 * SWITCH_TO_KERNEL_STACK macro for more details.
 */
.macro PARANOID_EXIT_TO_KERNEL_MODE

	/*
	 * Test if we entered the kernel with the entry-stack. Most
	 * likely we did not, because this code only runs on the
	 * return-to-kernel path.
	 */
	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
	jz	.Lend_\@

	/* Unlikely slow-path */

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)

	/* Copy the remaining task-stack contents to entry-stack */
	movl	%esp, %esi
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi

	/* Bytes on the task-stack to ecx */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
	subl	%esi, %ecx

	/* Allocate stack-frame on entry-stack */
	subl	%ecx, %edi

	/*
	 * Save future stack-pointer, we must not switch until the
	 * copy is done, otherwise the NMI handler could destroy the
	 * contents of the task-stack we are about to copy.
	 */
	movl	%edi, %ebx

	/* Do the copy */
	shrl	$2, %ecx
	cld
	rep movsl

	/* Safe to switch to entry-stack now */
	movl	%ebx, %esp

623 624 625 626 627 628 629 630 631 632 633 634
	/*
	 * We came from entry-stack and need to check if we also need to
	 * switch back to user cr3.
	 */
	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
	jz	.Lend_\@

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)

	SWITCH_TO_USER_CR3 scratch_reg=%eax

635 636
.Lend_\@:
.endm
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
/*
 * %eax: prev task
 * %edx: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in struct inactive_task_frame
	 */
	pushl	%ebp
	pushl	%ebx
	pushl	%edi
	pushl	%esi

	/* switch stack */
	movl	%esp, TASK_threadsp(%eax)
	movl	TASK_threadsp(%edx), %esp

655
#ifdef CONFIG_STACKPROTECTOR
656 657 658 659
	movl	TASK_stack_canary(%edx), %ebx
	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif

660 661 662 663 664 665 666 667
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
668
	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
669 670
#endif

671 672 673 674 675 676 677 678 679
	/* restore callee-saved registers */
	popl	%esi
	popl	%edi
	popl	%ebx
	popl	%ebp

	jmp	__switch_to
END(__switch_to_asm)

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
/*
 * The unwinder expects the last frame on the stack to always be at the same
 * offset from the end of the page, which allows it to validate the stack.
 * Calling schedule_tail() directly would break that convention because its an
 * asmlinkage function so its argument has to be pushed on the stack.  This
 * wrapper creates a proper "end of stack" frame header before the call.
 */
ENTRY(schedule_tail_wrapper)
	FRAME_BEGIN

	pushl	%eax
	call	schedule_tail
	popl	%eax

	FRAME_END
	ret
ENDPROC(schedule_tail_wrapper)
697 698 699 700
/*
 * A newly forked process directly context switches into this address.
 *
 * eax: prev task we switched from
701 702
 * ebx: kernel thread func (NULL for user thread)
 * edi: kernel thread arg
703
 */
L
Linus Torvalds 已提交
704
ENTRY(ret_from_fork)
705
	call	schedule_tail_wrapper
706

707 708 709 710
	testl	%ebx, %ebx
	jnz	1f		/* kernel threads are uncommon */

2:
711
	/* When we fork, we trace the syscall return in the child, too. */
712
	movl    %esp, %eax
713 714 715
	call    syscall_return_slowpath
	jmp     restore_all

716 717
	/* kernel thread */
1:	movl	%edi, %eax
718
	CALL_NOSPEC %ebx
719
	/*
720 721 722
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
723
	 */
724 725 726
	movl	$0, PT_EAX(%esp)
	jmp	2b
END(ret_from_fork)
727

L
Linus Torvalds 已提交
728 729 730 731 732 733 734 735 736 737
/*
 * Return to user mode is not as complex as all this looks,
 * but we want the default path for a system call return to
 * go as quickly as possible which is why some of this is
 * less clear than it otherwise should be.
 */

	# userspace resumption stub bypassing syscall exit tracing
	ALIGN
ret_from_exception:
738
	preempt_stop(CLBR_ANY)
L
Linus Torvalds 已提交
739
ret_from_intr:
740
#ifdef CONFIG_VM86
741 742 743
	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
744 745
#else
	/*
746
	 * We can be coming here from child spawned by kernel_thread().
747
	 */
748 749
	movl	PT_CS(%esp), %eax
	andl	$SEGMENT_RPL_MASK, %eax
750
#endif
751 752
	cmpl	$USER_RPL, %eax
	jb	resume_kernel			# not returning to v8086 or userspace
753

L
Linus Torvalds 已提交
754
ENTRY(resume_userspace)
755
	DISABLE_INTERRUPTS(CLBR_ANY)
756
	TRACE_IRQS_OFF
757 758
	movl	%esp, %eax
	call	prepare_exit_to_usermode
759
	jmp	restore_all
760
END(ret_from_exception)
L
Linus Torvalds 已提交
761 762 763

#ifdef CONFIG_PREEMPT
ENTRY(resume_kernel)
764
	DISABLE_INTERRUPTS(CLBR_ANY)
765
.Lneed_resched:
766
	cmpl	$0, PER_CPU_VAR(__preempt_count)
767
	jnz	restore_all_kernel
768
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
769
	jz	restore_all_kernel
770
	call	preempt_schedule_irq
771
	jmp	.Lneed_resched
772
END(resume_kernel)
L
Linus Torvalds 已提交
773 774
#endif

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
GLOBAL(__begin_SYSENTER_singlestep_region)
/*
 * All code from here through __end_SYSENTER_singlestep_region is subject
 * to being single-stepped if a user program sets TF and executes SYSENTER.
 * There is absolutely nothing that we can do to prevent this from happening
 * (thanks Intel!).  To keep our handling of this situation as simple as
 * possible, we handle TF just like AC and NT, except that our #DB handler
 * will ignore all of the single-step traps generated in this range.
 */

#ifdef CONFIG_XEN
/*
 * Xen doesn't set %esp to be precisely what the normal SYSENTER
 * entry point expects, so fix it up before using the normal path.
 */
ENTRY(xen_sysenter_target)
	addl	$5*4, %esp			/* remove xen-provided frame */
792
	jmp	.Lsysenter_past_esp
793 794
#endif

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
/*
 * 32-bit SYSENTER entry.
 *
 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 * if X86_FEATURE_SEP is available.  This is the preferred system call
 * entry on 32-bit systems.
 *
 * The SYSENTER instruction, in principle, should *only* occur in the
 * vDSO.  In practice, a small number of Android devices were shipped
 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 * never happened in any of Google's Bionic versions -- it only happened
 * in a narrow range of Intel-provided versions.
 *
 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 * SYSENTER does not save anything on the stack,
 * and does not save old EIP (!!!), ESP, or EFLAGS.
 *
 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 * user and/or vm86 state), we explicitly disable the SYSENTER
 * instruction in vm86 mode by reprogramming the MSRs.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  user stack
 * 0(%ebp) arg6
 */
827
ENTRY(entry_SYSENTER_32)
828 829 830 831 832 833 834
	/*
	 * On entry-stack with all userspace-regs live - save and
	 * restore eflags and %eax to use it as scratch-reg for the cr3
	 * switch.
	 */
	pushfl
	pushl	%eax
835
	BUG_IF_WRONG_CR3 no_user_check=1
836 837 838 839 840
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
	popl	%eax
	popfl

	/* Stack empty again, switch to task stack */
841
	movl	TSS_entry2task_stack(%esp), %esp
842

843
.Lsysenter_past_esp:
844
	pushl	$__USER_DS		/* pt_regs->ss */
845
	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
846 847 848 849 850
	pushfl				/* pt_regs->flags (except IF = 0) */
	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
	pushl	$__USER_CS		/* pt_regs->cs */
	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
	pushl	%eax			/* pt_regs->orig_ax */
851
	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
852

853
	/*
854 855
	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
	 * and TF ourselves.  To save a few cycles, we can check whether
856 857 858 859
	 * either was set instead of doing an unconditional popfq.
	 * This needs to happen before enabling interrupts so that
	 * we don't get preempted with NT set.
	 *
860 861 862 863 864 865
	 * If TF is set, we will single-step all the way to here -- do_debug
	 * will ignore all the traps.  (Yes, this is slow, but so is
	 * single-stepping in general.  This allows us to avoid having
	 * a more complicated code to handle the case where a user program
	 * forces us to single-step through the SYSENTER entry code.)
	 *
866 867 868 869 870 871
	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
	 * out-of-line as an optimization: NT is unlikely to be set in the
	 * majority of the cases and instead of polluting the I$ unnecessarily,
	 * we're keeping that code behind a branch which will predict as
	 * not-taken and therefore its instructions won't be fetched.
	 */
872
	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
873 874 875
	jnz	.Lsysenter_fix_flags
.Lsysenter_flags_fixed:

876
	/*
877 878
	 * User mode is traced as though IRQs are on, and SYSENTER
	 * turned them off.
879
	 */
880
	TRACE_IRQS_OFF
881 882 883

	movl	%esp, %eax
	call	do_fast_syscall_32
884 885 886
	/* XEN PV guests always use IRET path */
	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
887 888 889

/* Opportunistic SYSEXIT */
	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

	/*
	 * Setup entry stack - we keep the pointer in %eax and do the
	 * switch after almost all user-state is restored.
	 */

	/* Load entry stack pointer and allocate frame for eflags/eax */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
	subl	$(2*4), %eax

	/* Copy eflags and eax to entry stack */
	movl	PT_EFLAGS(%esp), %edi
	movl	PT_EAX(%esp), %esi
	movl	%edi, (%eax)
	movl	%esi, 4(%eax)

	/* Restore user registers and segments */
907 908
	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
909 910
1:	mov	PT_FS(%esp), %fs
	PTGS_TO_GS
911

912 913 914 915 916
	popl	%ebx			/* pt_regs->bx */
	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
	popl	%esi			/* pt_regs->si */
	popl	%edi			/* pt_regs->di */
	popl	%ebp			/* pt_regs->bp */
917 918 919

	/* Switch to entry stack */
	movl	%eax, %esp
920

921 922 923
	/* Now ready to switch the cr3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

924 925 926 927 928
	/*
	 * Restore all flags except IF. (We restore IF separately because
	 * STI gives a one-instruction window in which we won't be interrupted,
	 * whereas POPF does not.)
	 */
929
	btrl	$X86_EFLAGS_IF_BIT, (%esp)
930
	BUG_IF_WRONG_CR3 no_user_check=1
931
	popfl
932
	popl	%eax
933

934 935 936 937
	/*
	 * Return back to the vDSO, which will pop ecx and edx.
	 * Don't bother with DS and ES (they already contain __USER_DS).
	 */
938 939
	sti
	sysexit
R
Roland McGrath 已提交
940

941 942 943
.pushsection .fixup, "ax"
2:	movl	$0, PT_FS(%esp)
	jmp	1b
944
.popsection
945
	_ASM_EXTABLE(1b, 2b)
946
	PTGS_TO_GS_EX
947 948 949 950 951

.Lsysenter_fix_flags:
	pushl	$X86_EFLAGS_FIXED
	popfl
	jmp	.Lsysenter_flags_fixed
952
GLOBAL(__end_SYSENTER_singlestep_region)
953
ENDPROC(entry_SYSENTER_32)
L
Linus Torvalds 已提交
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
/*
 * 32-bit legacy system call entry.
 *
 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 * instruction.  INT $0x80 lands here.
 *
 * This entry point can be used by any 32-bit perform system calls.
 * Instances of INT $0x80 can be found inline in various programs and
 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 * fallback for hardware that doesn't support a faster entry method.
 * Restarted 32-bit system calls also fall back to INT $0x80
 * regardless of what instruction was originally used to do the system
 * call.  (64-bit programs can use INT $0x80 as well, but they can
 * only run on 64-bit kernels and therefore land in
 * entry_INT80_compat.)
 *
 * This is considered a slow path.  It is not used by most libc
 * implementations on modern hardware except during process startup.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  arg6
 */
983
ENTRY(entry_INT80_32)
984
	ASM_CLAC
985
	pushl	%eax			/* pt_regs->orig_ax */
986 987

	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
988 989

	/*
990 991
	 * User mode is traced as though IRQs are on, and the interrupt gate
	 * turned them off.
992
	 */
993
	TRACE_IRQS_OFF
994 995

	movl	%esp, %eax
996
	call	do_int80_syscall_32
997
.Lsyscall_32_done:
L
Linus Torvalds 已提交
998 999

restore_all:
1000
	TRACE_IRQS_IRET
1001
	SWITCH_TO_ENTRY_STACK
1002
.Lrestore_all_notrace:
1003
	CHECK_AND_APPLY_ESPFIX
1004
.Lrestore_nocheck:
1005 1006 1007
	/* Switch back to user CR3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1008 1009
	BUG_IF_WRONG_CR3

1010 1011
	/* Restore user state */
	RESTORE_REGS pop=4			# skip orig_eax/error_code
1012
.Lirq_return:
1013 1014 1015 1016 1017
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler and when returning from
	 * scheduler to user-space.
	 */
I
Ingo Molnar 已提交
1018
	INTERRUPT_RETURN
1019

1020 1021
restore_all_kernel:
	TRACE_IRQS_IRET
1022
	PARANOID_EXIT_TO_KERNEL_MODE
1023
	BUG_IF_WRONG_CR3
1024 1025 1026
	RESTORE_REGS 4
	jmp	.Lirq_return

1027 1028 1029 1030
.section .fixup, "ax"
ENTRY(iret_exc	)
	pushl	$0				# no error code
	pushl	$do_iret_error
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * The stack-frame here is the one that iret faulted on, so its a
	 * return-to-user frame. We are on kernel-cr3 because we come here from
	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
	 * as the checker expects it.
	 */
	pushl	%eax
	SWITCH_TO_USER_CR3 scratch_reg=%eax
	popl	%eax
#endif

1044
	jmp	common_exception
L
Linus Torvalds 已提交
1045
.previous
1046
	_ASM_EXTABLE(.Lirq_return, iret_exc)
1047
ENDPROC(entry_INT80_32)
L
Linus Torvalds 已提交
1048

1049
.macro FIXUP_ESPFIX_STACK
1050 1051 1052 1053 1054 1055 1056
/*
 * Switch back for ESPFIX stack to the normal zerobased stack
 *
 * We can't call C functions using the ESPFIX stack. This code reads
 * the high word of the segment base from the GDT and swiches to the
 * normal stack and adjusts ESP with the matching offset.
 */
1057
#ifdef CONFIG_X86_ESPFIX32
1058
	/* fixup the stack */
1059 1060
	mov	GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
	mov	GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
1061
	shl	$16, %eax
1062 1063 1064 1065
	addl	%esp, %eax			/* the adjusted stack pointer */
	pushl	$__KERNEL_DS
	pushl	%eax
	lss	(%esp), %esp			/* switch to the normal stack segment */
1066
#endif
1067 1068
.endm
.macro UNWIND_ESPFIX_STACK
1069
#ifdef CONFIG_X86_ESPFIX32
1070
	movl	%ss, %eax
1071
	/* see if on espfix stack */
1072 1073 1074 1075 1076
	cmpw	$__ESPFIX_SS, %ax
	jne	27f
	movl	$__KERNEL_DS, %eax
	movl	%eax, %ds
	movl	%eax, %es
1077 1078 1079
	/* switch to normal stack */
	FIXUP_ESPFIX_STACK
27:
1080
#endif
1081
.endm
L
Linus Torvalds 已提交
1082 1083

/*
1084 1085
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
L
Linus Torvalds 已提交
1086
 */
1087
	.align 8
L
Linus Torvalds 已提交
1088
ENTRY(irq_entries_start)
1089 1090
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
1091
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
1092 1093 1094 1095
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
1096 1097
END(irq_entries_start)

1098 1099 1100 1101
/*
 * the CPU automatically disables interrupts when executing an IRQ vector,
 * so IRQ-flags tracing has to follow that:
 */
1102
	.p2align CONFIG_X86_L1_CACHE_SHIFT
L
Linus Torvalds 已提交
1103
common_interrupt:
1104
	ASM_CLAC
1105
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
1106 1107

	SAVE_ALL switch_stacks=1
1108
	ENCODE_FRAME_POINTER
1109
	TRACE_IRQS_OFF
1110 1111 1112
	movl	%esp, %eax
	call	do_IRQ
	jmp	ret_from_intr
1113
ENDPROC(common_interrupt)
L
Linus Torvalds 已提交
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
#define BUILD_INTERRUPT3(name, nr, fn)			\
ENTRY(name)						\
	ASM_CLAC;					\
	pushl	$~(nr);					\
	SAVE_ALL switch_stacks=1;			\
	ENCODE_FRAME_POINTER;				\
	TRACE_IRQS_OFF					\
	movl	%esp, %eax;				\
	call	fn;					\
	jmp	ret_from_intr;				\
1125
ENDPROC(name)
L
Linus Torvalds 已提交
1126

1127 1128
#define BUILD_INTERRUPT(name, nr)		\
	BUILD_INTERRUPT3(name, nr, smp_##name);	\
T
Tejun Heo 已提交
1129

L
Linus Torvalds 已提交
1130
/* The include is where all of the SMP etc. interrupts come from */
1131
#include <asm/entry_arch.h>
L
Linus Torvalds 已提交
1132 1133

ENTRY(coprocessor_error)
1134
	ASM_CLAC
1135 1136
	pushl	$0
	pushl	$do_coprocessor_error
1137
	jmp	common_exception
1138
END(coprocessor_error)
L
Linus Torvalds 已提交
1139 1140

ENTRY(simd_coprocessor_error)
1141
	ASM_CLAC
1142
	pushl	$0
1143 1144
#ifdef CONFIG_X86_INVD_BUG
	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
1145 1146
	ALTERNATIVE "pushl	$do_general_protection",	\
		    "pushl	$do_simd_coprocessor_error",	\
1147
		    X86_FEATURE_XMM
1148
#else
1149
	pushl	$do_simd_coprocessor_error
1150
#endif
1151
	jmp	common_exception
1152
END(simd_coprocessor_error)
L
Linus Torvalds 已提交
1153 1154

ENTRY(device_not_available)
1155
	ASM_CLAC
1156 1157
	pushl	$-1				# mark this as an int
	pushl	$do_device_not_available
1158
	jmp	common_exception
1159
END(device_not_available)
L
Linus Torvalds 已提交
1160

1161 1162
#ifdef CONFIG_PARAVIRT
ENTRY(native_iret)
I
Ingo Molnar 已提交
1163
	iret
1164
	_ASM_EXTABLE(native_iret, iret_exc)
1165
END(native_iret)
1166 1167
#endif

L
Linus Torvalds 已提交
1168
ENTRY(overflow)
1169
	ASM_CLAC
1170 1171
	pushl	$0
	pushl	$do_overflow
1172
	jmp	common_exception
1173
END(overflow)
L
Linus Torvalds 已提交
1174 1175

ENTRY(bounds)
1176
	ASM_CLAC
1177 1178
	pushl	$0
	pushl	$do_bounds
1179
	jmp	common_exception
1180
END(bounds)
L
Linus Torvalds 已提交
1181 1182

ENTRY(invalid_op)
1183
	ASM_CLAC
1184 1185
	pushl	$0
	pushl	$do_invalid_op
1186
	jmp	common_exception
1187
END(invalid_op)
L
Linus Torvalds 已提交
1188 1189

ENTRY(coprocessor_segment_overrun)
1190
	ASM_CLAC
1191 1192
	pushl	$0
	pushl	$do_coprocessor_segment_overrun
1193
	jmp	common_exception
1194
END(coprocessor_segment_overrun)
L
Linus Torvalds 已提交
1195 1196

ENTRY(invalid_TSS)
1197
	ASM_CLAC
1198
	pushl	$do_invalid_TSS
1199
	jmp	common_exception
1200
END(invalid_TSS)
L
Linus Torvalds 已提交
1201 1202

ENTRY(segment_not_present)
1203
	ASM_CLAC
1204
	pushl	$do_segment_not_present
1205
	jmp	common_exception
1206
END(segment_not_present)
L
Linus Torvalds 已提交
1207 1208

ENTRY(stack_segment)
1209
	ASM_CLAC
1210
	pushl	$do_stack_segment
1211
	jmp	common_exception
1212
END(stack_segment)
L
Linus Torvalds 已提交
1213 1214

ENTRY(alignment_check)
1215
	ASM_CLAC
1216
	pushl	$do_alignment_check
1217
	jmp	common_exception
1218
END(alignment_check)
L
Linus Torvalds 已提交
1219

1220
ENTRY(divide_error)
1221
	ASM_CLAC
1222 1223
	pushl	$0				# no error code
	pushl	$do_divide_error
1224
	jmp	common_exception
1225
END(divide_error)
L
Linus Torvalds 已提交
1226 1227 1228

#ifdef CONFIG_X86_MCE
ENTRY(machine_check)
1229
	ASM_CLAC
1230 1231
	pushl	$0
	pushl	machine_check_vector
1232
	jmp	common_exception
1233
END(machine_check)
L
Linus Torvalds 已提交
1234 1235 1236
#endif

ENTRY(spurious_interrupt_bug)
1237
	ASM_CLAC
1238 1239
	pushl	$0
	pushl	$do_spurious_interrupt_bug
1240
	jmp	common_exception
1241
END(spurious_interrupt_bug)
L
Linus Torvalds 已提交
1242

1243 1244
#ifdef CONFIG_XEN
ENTRY(xen_hypervisor_callback)
1245
	pushl	$-1				/* orig_ax = -1 => not a system call */
1246
	SAVE_ALL
1247
	ENCODE_FRAME_POINTER
1248
	TRACE_IRQS_OFF
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	/*
	 * Check to see if we got the event in the critical
	 * region in xen_iret_direct, after we've reenabled
	 * events and checked for pending events.  This simulates
	 * iret instruction's behaviour where it delivers a
	 * pending interrupt when enabling interrupts:
	 */
	movl	PT_EIP(%esp), %eax
	cmpl	$xen_iret_start_crit, %eax
	jb	1f
	cmpl	$xen_iret_end_crit, %eax
	jae	1f
1262

1263
	jmp	xen_iret_crit_fixup
1264 1265

ENTRY(xen_do_upcall)
1266 1267
1:	mov	%esp, %eax
	call	xen_evtchn_do_upcall
1268
#ifndef CONFIG_PREEMPT
1269
	call	xen_maybe_preempt_hcall
1270
#endif
1271
	jmp	ret_from_intr
1272 1273
ENDPROC(xen_hypervisor_callback)

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we fix up by reattempting the load, and zeroing the segment
 * register if the load fails.
 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by maintaining a status value in EAX.
 */
1286
ENTRY(xen_failsafe_callback)
1287 1288 1289 1290 1291 1292
	pushl	%eax
	movl	$1, %eax
1:	mov	4(%esp), %ds
2:	mov	8(%esp), %es
3:	mov	12(%esp), %fs
4:	mov	16(%esp), %gs
1293 1294
	/* EAX == 0 => Category 1 (Bad segment)
	   EAX != 0 => Category 2 (Bad IRET) */
1295 1296 1297 1298 1299 1300
	testl	%eax, %eax
	popl	%eax
	lea	16(%esp), %esp
	jz	5f
	jmp	iret_exc
5:	pushl	$-1				/* orig_ax = -1 => not a system call */
1301
	SAVE_ALL
1302
	ENCODE_FRAME_POINTER
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
	jmp	ret_from_exception

.section .fixup, "ax"
6:	xorl	%eax, %eax
	movl	%eax, 4(%esp)
	jmp	1b
7:	xorl	%eax, %eax
	movl	%eax, 8(%esp)
	jmp	2b
8:	xorl	%eax, %eax
	movl	%eax, 12(%esp)
	jmp	3b
9:	xorl	%eax, %eax
	movl	%eax, 16(%esp)
	jmp	4b
1318
.previous
1319 1320 1321 1322
	_ASM_EXTABLE(1b, 6b)
	_ASM_EXTABLE(2b, 7b)
	_ASM_EXTABLE(3b, 8b)
	_ASM_EXTABLE(4b, 9b)
1323 1324
ENDPROC(xen_failsafe_callback)

1325
BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1326
		 xen_evtchn_do_upcall)
1327

1328
#endif /* CONFIG_XEN */
1329 1330 1331 1332

#if IS_ENABLED(CONFIG_HYPERV)

BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1333
		 hyperv_vector_handler)
1334

1335 1336 1337
BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
		 hyperv_reenlightenment_intr)

1338 1339 1340
BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
		 hv_stimer0_vector_handler)

1341
#endif /* CONFIG_HYPERV */
1342

1343
ENTRY(page_fault)
1344
	ASM_CLAC
1345
	pushl	$do_page_fault
1346
	ALIGN
1347 1348 1349 1350
	jmp common_exception
END(page_fault)

common_exception:
1351
	/* the function address is in %gs's slot on the stack */
1352 1353 1354 1355
	pushl	%fs
	pushl	%es
	pushl	%ds
	pushl	%eax
1356 1357 1358 1359 1360
	movl	$(__USER_DS), %eax
	movl	%eax, %ds
	movl	%eax, %es
	movl	$(__KERNEL_PERCPU), %eax
	movl	%eax, %fs
1361 1362 1363 1364 1365 1366
	pushl	%ebp
	pushl	%edi
	pushl	%esi
	pushl	%edx
	pushl	%ecx
	pushl	%ebx
1367
	SWITCH_TO_KERNEL_STACK
1368
	ENCODE_FRAME_POINTER
1369 1370
	cld
	UNWIND_ESPFIX_STACK
1371
	GS_TO_REG %ecx
1372 1373 1374
	movl	PT_GS(%esp), %edi		# get the function address
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
1375 1376
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx
1377
	TRACE_IRQS_OFF
1378
	movl	%esp, %eax			# pt_regs pointer
1379
	CALL_NOSPEC %edi
1380
	jmp	ret_from_exception
1381
END(common_exception)
1382 1383

ENTRY(debug)
1384
	/*
1385
	 * Entry from sysenter is now handled in common_exception
1386
	 */
1387
	ASM_CLAC
1388
	pushl	$-1				# mark this as an int
1389 1390
	pushl	$do_debug
	jmp	common_exception
1391 1392 1393
END(debug)

/*
1394 1395 1396 1397 1398
 * NMI is doubly nasty.  It can happen on the first instruction of
 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
 * switched stacks.  We handle both conditions by simply checking whether we
 * interrupted kernel code running on the SYSENTER stack.
1399 1400
 */
ENTRY(nmi)
1401
	ASM_CLAC
1402

1403
#ifdef CONFIG_X86_ESPFIX32
1404 1405 1406 1407
	pushl	%eax
	movl	%ss, %eax
	cmpw	$__ESPFIX_SS, %ax
	popl	%eax
1408
	je	.Lnmi_espfix_stack
1409
#endif
1410 1411

	pushl	%eax				# pt_regs->orig_ax
1412
	SAVE_ALL_NMI cr3_reg=%edi
1413
	ENCODE_FRAME_POINTER
1414 1415
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
1416 1417

	/* Are we currently on the SYSENTER stack? */
1418
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1419 1420 1421
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
1422 1423 1424
	jb	.Lnmi_from_sysenter_stack

	/* Not on SYSENTER stack. */
1425
	call	do_nmi
1426
	jmp	.Lnmi_return
1427

1428 1429 1430 1431 1432
.Lnmi_from_sysenter_stack:
	/*
	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
	 * is using the thread stack right now, so it's safe for us to use it.
	 */
1433
	movl	%esp, %ebx
1434 1435
	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
	call	do_nmi
1436
	movl	%ebx, %esp
1437 1438 1439

.Lnmi_return:
	CHECK_AND_APPLY_ESPFIX
1440
	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1441
	jmp	.Lirq_return
1442

1443
#ifdef CONFIG_X86_ESPFIX32
1444
.Lnmi_espfix_stack:
1445
	/*
1446 1447
	 * create the pointer to lss back
	 */
1448 1449 1450
	pushl	%ss
	pushl	%esp
	addl	$4, (%esp)
1451 1452
	/* copy the iret frame of 12 bytes */
	.rept 3
1453
	pushl	16(%esp)
1454
	.endr
1455
	pushl	%eax
1456
	SAVE_ALL_NMI cr3_reg=%edi
1457
	ENCODE_FRAME_POINTER
1458 1459 1460
	FIXUP_ESPFIX_STACK			# %eax == %esp
	xorl	%edx, %edx			# zero error code
	call	do_nmi
1461
	RESTORE_ALL_NMI cr3_reg=%edi
1462
	lss	12+4(%esp), %esp		# back to espfix stack
1463
	jmp	.Lirq_return
1464
#endif
1465 1466 1467
END(nmi)

ENTRY(int3)
1468
	ASM_CLAC
1469
	pushl	$-1				# mark this as an int
1470 1471

	SAVE_ALL switch_stacks=1
1472
	ENCODE_FRAME_POINTER
1473
	TRACE_IRQS_OFF
1474 1475 1476 1477
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
	call	do_int3
	jmp	ret_from_exception
1478 1479 1480
END(int3)

ENTRY(general_protection)
1481
	pushl	$do_general_protection
1482
	jmp	common_exception
1483 1484
END(general_protection)

G
Gleb Natapov 已提交
1485 1486
#ifdef CONFIG_KVM_GUEST
ENTRY(async_page_fault)
1487
	ASM_CLAC
1488
	pushl	$do_async_page_fault
1489
	jmp	common_exception
1490
END(async_page_fault)
G
Gleb Natapov 已提交
1491
#endif
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)