entry_32.S 39.4 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2
/*
3
 *  Copyright (C) 1991,1992  Linus Torvalds
L
Linus Torvalds 已提交
4
 *
5
 * entry_32.S contains the system-call and low-level fault and trap handling routines.
L
Linus Torvalds 已提交
6
 *
7
 * Stack layout while running C code:
8 9 10
 *	ptrace needs to have all registers on the stack.
 *	If the order here is changed, it needs to be
 *	updated in fork.c:copy_process(), signal.c:do_signal(),
L
Linus Torvalds 已提交
11 12 13 14 15
 *	ptrace.c and ptrace.h
 *
 *	 0(%esp) - %ebx
 *	 4(%esp) - %ecx
 *	 8(%esp) - %edx
16
 *	 C(%esp) - %esi
L
Linus Torvalds 已提交
17 18 19 20 21
 *	10(%esp) - %edi
 *	14(%esp) - %ebp
 *	18(%esp) - %eax
 *	1C(%esp) - %ds
 *	20(%esp) - %es
22
 *	24(%esp) - %fs
23 24 25 26 27 28 29
 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
 *	2C(%esp) - orig_eax
 *	30(%esp) - %eip
 *	34(%esp) - %cs
 *	38(%esp) - %eflags
 *	3C(%esp) - %oldesp
 *	40(%esp) - %oldss
L
Linus Torvalds 已提交
30 31 32
 */

#include <linux/linkage.h>
33
#include <linux/err.h>
L
Linus Torvalds 已提交
34
#include <asm/thread_info.h>
35
#include <asm/irqflags.h>
L
Linus Torvalds 已提交
36 37 38
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
S
Stas Sergeev 已提交
39
#include <asm/percpu.h>
40
#include <asm/processor-flags.h>
41
#include <asm/irq_vectors.h>
42
#include <asm/cpufeatures.h>
43
#include <asm/alternative-asm.h>
44
#include <asm/asm.h>
45
#include <asm/smap.h>
46
#include <asm/frame.h>
47
#include <asm/nospec-branch.h>
L
Linus Torvalds 已提交
48

49 50
#include "calling.h"

J
Jiri Olsa 已提交
51 52
	.section .entry.text, "ax"

53 54 55 56 57
/*
 * We use macros for low-level operations which need to be overridden
 * for paravirtualization.  The following will never clobber any registers:
 *   INTERRUPT_RETURN (aka. "iret")
 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
58
 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
59 60 61 62 63 64 65
 *
 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
 * Allowing a register to be clobbered can shrink the paravirt replacement
 * enough to patch inline, increasing performance.
 */

T
Thomas Gleixner 已提交
66
#ifdef CONFIG_PREEMPTION
67
# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
L
Linus Torvalds 已提交
68
#else
69
# define preempt_stop(clobbers)
L
Linus Torvalds 已提交
70 71
#endif

72 73
.macro TRACE_IRQS_IRET
#ifdef CONFIG_TRACE_IRQFLAGS
74 75
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
	jz	1f
76 77 78 79 80
	TRACE_IRQS_ON
1:
#endif
.endm

81 82
#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * User gs save/restore
 *
 * %gs is used for userland TLS and kernel only uses it for stack
 * canary which is required to be at %gs:20 by gcc.  Read the comment
 * at the top of stackprotector.h for more info.
 *
 * Local labels 98 and 99 are used.
 */
#ifdef CONFIG_X86_32_LAZY_GS

 /* unfortunately push/pop can't be no-op */
.macro PUSH_GS
96
	pushl	$0
97 98
.endm
.macro POP_GS pop=0
99
	addl	$(4 + \pop), %esp
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
.endm
.macro POP_GS_EX
.endm

 /* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm

#else	/* CONFIG_X86_32_LAZY_GS */

.macro PUSH_GS
119
	pushl	%gs
120 121 122
.endm

.macro POP_GS pop=0
123
98:	popl	%gs
124
  .if \pop <> 0
125
	add	$\pop, %esp
126 127 128 129
  .endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
130 131
99:	movl	$0, (%esp)
	jmp	98b
132
.popsection
133
	_ASM_EXTABLE(98b, 99b)
134 135 136
.endm

.macro PTGS_TO_GS
137
98:	mov	PT_GS(%esp), %gs
138 139 140
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
141 142
99:	movl	$0, PT_GS(%esp)
	jmp	98b
143
.popsection
144
	_ASM_EXTABLE(98b, 99b)
145 146 147
.endm

.macro GS_TO_REG reg
148
	movl	%gs, \reg
149 150
.endm
.macro REG_TO_PTGS reg
151
	movl	\reg, PT_GS(%esp)
152 153
.endm
.macro SET_KERNEL_GS reg
154 155
	movl	$(__KERNEL_STACK_CANARY), \reg
	movl	\reg, %gs
156 157
.endm

158
#endif /* CONFIG_X86_32_LAZY_GS */
159

160 161 162 163 164 165 166 167 168 169
/* Unconditionally switch to user cr3 */
.macro SWITCH_TO_USER_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI

	movl	%cr3, \scratch_reg
	orl	$PTI_SWITCH_MASK, \scratch_reg
	movl	\scratch_reg, %cr3
.Lend_\@:
.endm

170 171 172 173 174
.macro BUG_IF_WRONG_CR3 no_user_check=0
#ifdef CONFIG_DEBUG_ENTRY
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	.if \no_user_check == 0
	/* coming from usermode? */
175
	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
176 177 178 179 180 181 182 183 184 185 186 187
	jz	.Lend_\@
	.endif
	/* On user-cr3? */
	movl	%cr3, %eax
	testl	$PTI_SWITCH_MASK, %eax
	jnz	.Lend_\@
	/* From userspace with kernel cr3 - BUG */
	ud2
.Lend_\@:
#endif
.endm

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Switch to kernel cr3 if not already loaded and return current cr3 in
 * \scratch_reg
 */
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	movl	%cr3, \scratch_reg
	/* Test if we are already on kernel CR3 */
	testl	$PTI_SWITCH_MASK, \scratch_reg
	jz	.Lend_\@
	andl	$(~PTI_SWITCH_MASK), \scratch_reg
	movl	\scratch_reg, %cr3
	/* Return original CR3 in \scratch_reg */
	orl	$PTI_SWITCH_MASK, \scratch_reg
.Lend_\@:
.endm

205 206 207 208 209 210 211 212
#define CS_FROM_ENTRY_STACK	(1 << 31)
#define CS_FROM_USER_CR3	(1 << 30)
#define CS_FROM_KERNEL		(1 << 29)

.macro FIXUP_FRAME
	/*
	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
	 * Clear them in case hardware didn't do this for us.
213 214
	 *
	 * Be careful: we may have nonzero SS base due to ESPFIX.
215
	 */
216
	andl	$0x0000ffff, 4*4(%esp)
217 218

#ifdef CONFIG_VM86
219
	testl	$X86_EFLAGS_VM, 5*4(%esp)
220 221
	jnz	.Lfrom_usermode_no_fixup_\@
#endif
222
	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
223 224
	jnz	.Lfrom_usermode_no_fixup_\@

225
	orl	$CS_FROM_KERNEL, 4*4(%esp)
226 227 228 229

	/*
	 * When we're here from kernel mode; the (exception) stack looks like:
	 *
230 231 232 233 234 235 236
	 *  6*4(%esp) - <previous context>
	 *  5*4(%esp) - flags
	 *  4*4(%esp) - cs
	 *  3*4(%esp) - ip
	 *  2*4(%esp) - orig_eax
	 *  1*4(%esp) - gs / function
	 *  0*4(%esp) - fs
237 238 239
	 *
	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
	 * is complete and in particular regs->sp is correct. This gives us
240
	 * the original 6 enties as gap:
241
	 *
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	 * 14*4(%esp) - <previous context>
	 * 13*4(%esp) - gap / flags
	 * 12*4(%esp) - gap / cs
	 * 11*4(%esp) - gap / ip
	 * 10*4(%esp) - gap / orig_eax
	 *  9*4(%esp) - gap / gs / function
	 *  8*4(%esp) - gap / fs
	 *  7*4(%esp) - ss
	 *  6*4(%esp) - sp
	 *  5*4(%esp) - flags
	 *  4*4(%esp) - cs
	 *  3*4(%esp) - ip
	 *  2*4(%esp) - orig_eax
	 *  1*4(%esp) - gs / function
	 *  0*4(%esp) - fs
257 258 259 260
	 */

	pushl	%ss		# ss
	pushl	%esp		# sp (points at ss)
261 262 263 264 265 266 267
	addl	$7*4, (%esp)	# point sp back at the previous context
	pushl	7*4(%esp)	# flags
	pushl	7*4(%esp)	# cs
	pushl	7*4(%esp)	# ip
	pushl	7*4(%esp)	# orig_eax
	pushl	7*4(%esp)	# gs / function
	pushl	7*4(%esp)	# fs
268 269 270 271
.Lfrom_usermode_no_fixup_\@:
.endm

.macro IRET_FRAME
272 273 274 275 276 277 278
	/*
	 * We're called with %ds, %es, %fs, and %gs from the interrupted
	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
	 * mode and therefore have a nonzero SS base and an offset ESP,
	 * so any attempt to access the stack needs to use SS.  (except for
	 * accesses through %esp, which automatically use SS.)
	 */
279 280 281 282 283 284 285 286 287 288 289 290 291
	testl $CS_FROM_KERNEL, 1*4(%esp)
	jz .Lfinished_frame_\@

	/*
	 * Reconstruct the 3 entry IRET frame right after the (modified)
	 * regs->sp without lowering %esp in between, such that an NMI in the
	 * middle doesn't scribble our stack.
	 */
	pushl	%eax
	pushl	%ecx
	movl	5*4(%esp), %eax		# (modified) regs->sp

	movl	4*4(%esp), %ecx		# flags
292
	movl	%ecx, %ss:-1*4(%eax)
293 294 295

	movl	3*4(%esp), %ecx		# cs
	andl	$0x0000ffff, %ecx
296
	movl	%ecx, %ss:-2*4(%eax)
297 298

	movl	2*4(%esp), %ecx		# ip
299
	movl	%ecx, %ss:-3*4(%eax)
300 301

	movl	1*4(%esp), %ecx		# eax
302
	movl	%ecx, %ss:-4*4(%eax)
303 304

	popl	%ecx
305
	lea	-4*4(%eax), %esp
306 307 308 309
	popl	%eax
.Lfinished_frame_\@:
.endm

310
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0
311
	cld
312
.if \skip_gs == 0
313
	PUSH_GS
314
.endif
315
	pushl	%fs
316
	FIXUP_FRAME
317 318
	pushl	%es
	pushl	%ds
319
	pushl	\pt_regs_ax
320 321 322 323 324 325 326 327 328 329 330
	pushl	%ebp
	pushl	%edi
	pushl	%esi
	pushl	%edx
	pushl	%ecx
	pushl	%ebx
	movl	$(__USER_DS), %edx
	movl	%edx, %ds
	movl	%edx, %es
	movl	$(__KERNEL_PERCPU), %edx
	movl	%edx, %fs
331
.if \skip_gs == 0
332
	SET_KERNEL_GS %edx
333
.endif
334 335 336 337
	/* Switch to kernel stack if necessary */
.if \switch_stacks > 0
	SWITCH_TO_KERNEL_STACK
.endif
338
.endm
L
Linus Torvalds 已提交
339

340
.macro SAVE_ALL_NMI cr3_reg:req
341
	SAVE_ALL
342

343 344
	BUG_IF_WRONG_CR3

345 346 347 348 349 350 351 352 353 354
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We can enter with either user or kernel cr3, the code will
	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
	 * if necessary.
	 */
	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg

.Lend_\@:
355
.endm
356

357
.macro RESTORE_INT_REGS
358 359 360 361 362 363 364
	popl	%ebx
	popl	%ecx
	popl	%edx
	popl	%esi
	popl	%edi
	popl	%ebp
	popl	%eax
365
.endm
L
Linus Torvalds 已提交
366

367
.macro RESTORE_REGS pop=0
368
	RESTORE_INT_REGS
369 370 371
1:	popl	%ds
2:	popl	%es
3:	popl	%fs
372
	POP_GS \pop
P
Peter Zijlstra 已提交
373
	IRET_FRAME
374
.pushsection .fixup, "ax"
375 376 377 378 379 380
4:	movl	$0, (%esp)
	jmp	1b
5:	movl	$0, (%esp)
	jmp	2b
6:	movl	$0, (%esp)
	jmp	3b
381
.popsection
382 383 384
	_ASM_EXTABLE(1b, 4b)
	_ASM_EXTABLE(2b, 5b)
	_ASM_EXTABLE(3b, 6b)
385
	POP_GS_EX
386
.endm
L
Linus Torvalds 已提交
387

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We enter with kernel cr3 and switch the cr3 to the value
	 * stored on \cr3_reg, which is either a user or a kernel cr3.
	 */
	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI

	testl	$PTI_SWITCH_MASK, \cr3_reg
	jz	.Lswitched_\@

	/* User cr3 in \cr3_reg - write it to hardware cr3 */
	movl	\cr3_reg, %cr3

.Lswitched_\@:

405 406
	BUG_IF_WRONG_CR3

407 408 409
	RESTORE_REGS pop=\pop
.endm

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
.macro CHECK_AND_APPLY_ESPFIX
#ifdef CONFIG_X86_ESPFIX32
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)

	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX

	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
	/*
	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
	 * are returning to the kernel.
	 * See comments in process.c:copy_thread() for details.
	 */
	movb	PT_OLDSS(%esp), %ah
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
	jne	.Lend_\@	# returning to user-space with LDT SS

	/*
	 * Setup and switch to ESPFIX stack
	 *
	 * We're returning to userspace with a 16 bit stack. The CPU will not
	 * restore the high word of ESP for us on executing iret... This is an
	 * "official" bug of all the x86-compatible CPUs, which we can work
	 * around to make dosemu and wine happy. We do this by preloading the
	 * high word of ESP with the high word of the userspace ESP while
	 * compensating for the offset by changing to the ESPFIX segment with
	 * a base address that matches for the difference.
	 */
	mov	%esp, %edx			/* load kernel esp */
	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
	mov	%dx, %ax			/* eax: new kernel esp */
	sub	%eax, %edx			/* offset (low word is 0) */
	shr	$16, %edx
	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
	pushl	$__ESPFIX_SS
	pushl	%eax				/* new kernel esp */
	/*
	 * Disable interrupts, but do not irqtrace this section: we
	 * will soon execute iret and the tracer was already set to
	 * the irqstate after the IRET:
	 */
	DISABLE_INTERRUPTS(CLBR_ANY)
	lss	(%esp), %esp			/* switch to espfix segment */
.Lend_\@:
#endif /* CONFIG_X86_ESPFIX32 */
.endm
458 459 460 461 462 463 464 465 466 467 468

/*
 * Called with pt_regs fully populated and kernel segments loaded,
 * so we can access PER_CPU and use the integer registers.
 *
 * We need to be very careful here with the %esp switch, because an NMI
 * can happen everywhere. If the NMI handler finds itself on the
 * entry-stack, it will overwrite the task-stack and everything we
 * copied there. So allocate the stack-frame on the task-stack and
 * switch to it before we do any copying.
 */
469

470 471 472 473
.macro SWITCH_TO_KERNEL_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

474 475
	BUG_IF_WRONG_CR3

476 477 478 479 480 481 482
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax

	/*
	 * %eax now contains the entry cr3 and we carry it forward in
	 * that register for the time this macro runs
	 */

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	/* Are we on the entry stack? Bail out if not! */
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
	jae	.Lend_\@

	/* Load stack pointer into %esi and %edi */
	movl	%esp, %esi
	movl	%esi, %edi

	/* Move %edi to the top of the entry stack */
	andl	$(MASK_entry_stack), %edi
	addl	$(SIZEOF_entry_stack), %edi

	/* Load top of task-stack into %edi */
	movl	TSS_entry2task_stack(%edi), %edi

501
	/* Special case - entry from kernel mode via entry stack */
502 503 504 505 506 507 508 509 510 511
#ifdef CONFIG_VM86
	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
	movb	PT_CS(%esp), %cl
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
#else
	movl	PT_CS(%esp), %ecx
	andl	$SEGMENT_RPL_MASK, %ecx
#endif
	cmpl	$USER_RPL, %ecx
	jb	.Lentry_from_kernel_\@
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526
	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
	jz	.Lcopy_pt_regs_\@

	/*
	 * Stack-frame contains 4 additional segment registers when
	 * coming from VM86 mode
	 */
	addl	$(4 * 4), %ecx

#endif
527
.Lcopy_pt_regs_\@:
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542

	/* Allocate frame on task-stack */
	subl	%ecx, %edi

	/* Switch to task-stack */
	movl	%edi, %esp

	/*
	 * We are now on the task-stack and can safely copy over the
	 * stack-frame
	 */
	shrl	$2, %ecx
	cld
	rep movsl

543 544 545 546 547 548 549 550 551 552 553
	jmp .Lend_\@

.Lentry_from_kernel_\@:

	/*
	 * This handles the case when we enter the kernel from
	 * kernel-mode and %esp points to the entry-stack. When this
	 * happens we need to switch to the task-stack to run C code,
	 * but switch back to the entry-stack again when we approach
	 * iret and return to the interrupted code-path. This usually
	 * happens when we hit an exception while restoring user-space
554 555
	 * segment registers on the way back to user-space or when the
	 * sysenter handler runs with eflags.tf set.
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	 *
	 * When we switch to the task-stack here, we can't trust the
	 * contents of the entry-stack anymore, as the exception handler
	 * might be scheduled out or moved to another CPU. Therefore we
	 * copy the complete entry-stack to the task-stack and set a
	 * marker in the iret-frame (bit 31 of the CS dword) to detect
	 * what we've done on the iret path.
	 *
	 * On the iret path we copy everything back and switch to the
	 * entry-stack, so that the interrupted kernel code-path
	 * continues on the same stack it was interrupted with.
	 *
	 * Be aware that an NMI can happen anytime in this code.
	 *
	 * %esi: Entry-Stack pointer (same as %esp)
	 * %edi: Top of the task stack
572
	 * %eax: CR3 on kernel entry
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
	 */

	/* Calculate number of bytes on the entry stack in %ecx */
	movl	%esi, %ecx

	/* %ecx to the top of entry-stack */
	andl	$(MASK_entry_stack), %ecx
	addl	$(SIZEOF_entry_stack), %ecx

	/* Number of bytes on the entry stack to %ecx */
	sub	%esi, %ecx

	/* Mark stackframe as coming from entry stack */
	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)

588 589 590 591 592 593 594 595
	/*
	 * Test the cr3 used to enter the kernel and add a marker
	 * so that we can switch back to it before iret.
	 */
	testl	$PTI_SWITCH_MASK, %eax
	jz	.Lcopy_pt_regs_\@
	orl	$CS_FROM_USER_CR3, PT_CS(%esp)

596 597 598 599 600 601 602
	/*
	 * %esi and %edi are unchanged, %ecx contains the number of
	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
	 * the stack-frame on task-stack and copy everything over
	 */
	jmp .Lcopy_pt_regs_\@

603 604 605
.Lend_\@:
.endm

606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
/*
 * Switch back from the kernel stack to the entry stack.
 *
 * The %esp register must point to pt_regs on the task stack. It will
 * first calculate the size of the stack-frame to copy, depending on
 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 * to copy the contents of the stack over to the entry stack.
 *
 * We must be very careful here, as we can't trust the contents of the
 * task-stack once we switched to the entry-stack. When an NMI happens
 * while on the entry-stack, the NMI handler will switch back to the top
 * of the task stack, overwriting our stack-frame we are about to copy.
 * Therefore we switch the stack only after everything is copied over.
 */
.macro SWITCH_TO_ENTRY_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
	jz	.Lcopy_pt_regs_\@

	/* Additional 4 registers to copy when returning to VM86 mode */
	addl    $(4 * 4), %ecx

.Lcopy_pt_regs_\@:
#endif

	/* Initialize source and destination for movsl */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
	subl	%ecx, %edi
	movl	%esp, %esi

	/* Save future stack pointer in %ebx */
	movl	%edi, %ebx

	/* Copy over the stack-frame */
	shrl	$2, %ecx
	cld
	rep movsl

	/*
	 * Switch to entry-stack - needs to happen after everything is
	 * copied because the NMI handler will overwrite the task-stack
	 * when on entry-stack
	 */
	movl	%ebx, %esp

.Lend_\@:
.endm

660 661
/*
 * This macro handles the case when we return to kernel-mode on the iret
662
 * path and have to switch back to the entry stack and/or user-cr3
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
 *
 * See the comments below the .Lentry_from_kernel_\@ label in the
 * SWITCH_TO_KERNEL_STACK macro for more details.
 */
.macro PARANOID_EXIT_TO_KERNEL_MODE

	/*
	 * Test if we entered the kernel with the entry-stack. Most
	 * likely we did not, because this code only runs on the
	 * return-to-kernel path.
	 */
	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
	jz	.Lend_\@

	/* Unlikely slow-path */

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)

	/* Copy the remaining task-stack contents to entry-stack */
	movl	%esp, %esi
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi

	/* Bytes on the task-stack to ecx */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
	subl	%esi, %ecx

	/* Allocate stack-frame on entry-stack */
	subl	%ecx, %edi

	/*
	 * Save future stack-pointer, we must not switch until the
	 * copy is done, otherwise the NMI handler could destroy the
	 * contents of the task-stack we are about to copy.
	 */
	movl	%edi, %ebx

	/* Do the copy */
	shrl	$2, %ecx
	cld
	rep movsl

	/* Safe to switch to entry-stack now */
	movl	%ebx, %esp

708 709 710 711 712 713 714 715 716 717 718 719
	/*
	 * We came from entry-stack and need to check if we also need to
	 * switch back to user cr3.
	 */
	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
	jz	.Lend_\@

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)

	SWITCH_TO_USER_CR3 scratch_reg=%eax

720 721
.Lend_\@:
.endm
722 723 724 725 726 727 728 729 730 731 732 733 734
/*
 * %eax: prev task
 * %edx: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in struct inactive_task_frame
	 */
	pushl	%ebp
	pushl	%ebx
	pushl	%edi
	pushl	%esi
735
	pushfl
736 737 738 739 740

	/* switch stack */
	movl	%esp, TASK_threadsp(%eax)
	movl	TASK_threadsp(%edx), %esp

741
#ifdef CONFIG_STACKPROTECTOR
742 743 744 745
	movl	TASK_stack_canary(%edx), %ebx
	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif

746 747 748 749 750 751 752 753
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
754
	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
755 756
#endif

757
	/* restore callee-saved registers */
758
	popfl
759 760 761 762 763 764 765 766
	popl	%esi
	popl	%edi
	popl	%ebx
	popl	%ebp

	jmp	__switch_to
END(__switch_to_asm)

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
/*
 * The unwinder expects the last frame on the stack to always be at the same
 * offset from the end of the page, which allows it to validate the stack.
 * Calling schedule_tail() directly would break that convention because its an
 * asmlinkage function so its argument has to be pushed on the stack.  This
 * wrapper creates a proper "end of stack" frame header before the call.
 */
ENTRY(schedule_tail_wrapper)
	FRAME_BEGIN

	pushl	%eax
	call	schedule_tail
	popl	%eax

	FRAME_END
	ret
ENDPROC(schedule_tail_wrapper)
784 785 786 787
/*
 * A newly forked process directly context switches into this address.
 *
 * eax: prev task we switched from
788 789
 * ebx: kernel thread func (NULL for user thread)
 * edi: kernel thread arg
790
 */
L
Linus Torvalds 已提交
791
ENTRY(ret_from_fork)
792
	call	schedule_tail_wrapper
793

794 795 796 797
	testl	%ebx, %ebx
	jnz	1f		/* kernel threads are uncommon */

2:
798
	/* When we fork, we trace the syscall return in the child, too. */
799
	movl    %esp, %eax
800
	call    syscall_return_slowpath
801
	STACKLEAK_ERASE
802 803
	jmp     restore_all

804 805
	/* kernel thread */
1:	movl	%edi, %eax
806
	CALL_NOSPEC %ebx
807
	/*
808 809 810
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
811
	 */
812 813 814
	movl	$0, PT_EAX(%esp)
	jmp	2b
END(ret_from_fork)
815

L
Linus Torvalds 已提交
816 817 818 819 820 821 822 823 824 825
/*
 * Return to user mode is not as complex as all this looks,
 * but we want the default path for a system call return to
 * go as quickly as possible which is why some of this is
 * less clear than it otherwise should be.
 */

	# userspace resumption stub bypassing syscall exit tracing
	ALIGN
ret_from_exception:
826
	preempt_stop(CLBR_ANY)
L
Linus Torvalds 已提交
827
ret_from_intr:
828
#ifdef CONFIG_VM86
829 830 831
	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
832 833
#else
	/*
834
	 * We can be coming here from child spawned by kernel_thread().
835
	 */
836 837
	movl	PT_CS(%esp), %eax
	andl	$SEGMENT_RPL_MASK, %eax
838
#endif
839
	cmpl	$USER_RPL, %eax
840
	jb	restore_all_kernel		# not returning to v8086 or userspace
841

L
Linus Torvalds 已提交
842
ENTRY(resume_userspace)
843
	DISABLE_INTERRUPTS(CLBR_ANY)
844
	TRACE_IRQS_OFF
845 846
	movl	%esp, %eax
	call	prepare_exit_to_usermode
847
	jmp	restore_all
848
END(ret_from_exception)
L
Linus Torvalds 已提交
849

850 851 852 853 854 855 856 857 858 859
GLOBAL(__begin_SYSENTER_singlestep_region)
/*
 * All code from here through __end_SYSENTER_singlestep_region is subject
 * to being single-stepped if a user program sets TF and executes SYSENTER.
 * There is absolutely nothing that we can do to prevent this from happening
 * (thanks Intel!).  To keep our handling of this situation as simple as
 * possible, we handle TF just like AC and NT, except that our #DB handler
 * will ignore all of the single-step traps generated in this range.
 */

860
#ifdef CONFIG_XEN_PV
861 862 863 864 865 866
/*
 * Xen doesn't set %esp to be precisely what the normal SYSENTER
 * entry point expects, so fix it up before using the normal path.
 */
ENTRY(xen_sysenter_target)
	addl	$5*4, %esp			/* remove xen-provided frame */
867
	jmp	.Lsysenter_past_esp
868 869
#endif

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/*
 * 32-bit SYSENTER entry.
 *
 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 * if X86_FEATURE_SEP is available.  This is the preferred system call
 * entry on 32-bit systems.
 *
 * The SYSENTER instruction, in principle, should *only* occur in the
 * vDSO.  In practice, a small number of Android devices were shipped
 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 * never happened in any of Google's Bionic versions -- it only happened
 * in a narrow range of Intel-provided versions.
 *
 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 * SYSENTER does not save anything on the stack,
 * and does not save old EIP (!!!), ESP, or EFLAGS.
 *
 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 * user and/or vm86 state), we explicitly disable the SYSENTER
 * instruction in vm86 mode by reprogramming the MSRs.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  user stack
 * 0(%ebp) arg6
 */
902
ENTRY(entry_SYSENTER_32)
903 904 905 906 907 908 909
	/*
	 * On entry-stack with all userspace-regs live - save and
	 * restore eflags and %eax to use it as scratch-reg for the cr3
	 * switch.
	 */
	pushfl
	pushl	%eax
910
	BUG_IF_WRONG_CR3 no_user_check=1
911 912 913 914 915
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
	popl	%eax
	popfl

	/* Stack empty again, switch to task stack */
916
	movl	TSS_entry2task_stack(%esp), %esp
917

918
.Lsysenter_past_esp:
919
	pushl	$__USER_DS		/* pt_regs->ss */
920
	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
921 922 923 924 925
	pushfl				/* pt_regs->flags (except IF = 0) */
	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
	pushl	$__USER_CS		/* pt_regs->cs */
	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
	pushl	%eax			/* pt_regs->orig_ax */
926
	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
927

928
	/*
929 930
	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
	 * and TF ourselves.  To save a few cycles, we can check whether
931 932 933 934
	 * either was set instead of doing an unconditional popfq.
	 * This needs to happen before enabling interrupts so that
	 * we don't get preempted with NT set.
	 *
935 936 937 938 939 940
	 * If TF is set, we will single-step all the way to here -- do_debug
	 * will ignore all the traps.  (Yes, this is slow, but so is
	 * single-stepping in general.  This allows us to avoid having
	 * a more complicated code to handle the case where a user program
	 * forces us to single-step through the SYSENTER entry code.)
	 *
941 942 943 944 945 946
	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
	 * out-of-line as an optimization: NT is unlikely to be set in the
	 * majority of the cases and instead of polluting the I$ unnecessarily,
	 * we're keeping that code behind a branch which will predict as
	 * not-taken and therefore its instructions won't be fetched.
	 */
947
	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
948 949 950
	jnz	.Lsysenter_fix_flags
.Lsysenter_flags_fixed:

951
	/*
952 953
	 * User mode is traced as though IRQs are on, and SYSENTER
	 * turned them off.
954
	 */
955
	TRACE_IRQS_OFF
956 957 958

	movl	%esp, %eax
	call	do_fast_syscall_32
959 960 961
	/* XEN PV guests always use IRET path */
	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
962

963 964
	STACKLEAK_ERASE

965 966
/* Opportunistic SYSEXIT */
	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983

	/*
	 * Setup entry stack - we keep the pointer in %eax and do the
	 * switch after almost all user-state is restored.
	 */

	/* Load entry stack pointer and allocate frame for eflags/eax */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
	subl	$(2*4), %eax

	/* Copy eflags and eax to entry stack */
	movl	PT_EFLAGS(%esp), %edi
	movl	PT_EAX(%esp), %esi
	movl	%edi, (%eax)
	movl	%esi, 4(%eax)

	/* Restore user registers and segments */
984 985
	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
986 987
1:	mov	PT_FS(%esp), %fs
	PTGS_TO_GS
988

989 990 991 992 993
	popl	%ebx			/* pt_regs->bx */
	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
	popl	%esi			/* pt_regs->si */
	popl	%edi			/* pt_regs->di */
	popl	%ebp			/* pt_regs->bp */
994 995 996

	/* Switch to entry stack */
	movl	%eax, %esp
997

998 999 1000
	/* Now ready to switch the cr3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1001 1002 1003 1004 1005
	/*
	 * Restore all flags except IF. (We restore IF separately because
	 * STI gives a one-instruction window in which we won't be interrupted,
	 * whereas POPF does not.)
	 */
1006
	btrl	$X86_EFLAGS_IF_BIT, (%esp)
1007
	BUG_IF_WRONG_CR3 no_user_check=1
1008
	popfl
1009
	popl	%eax
1010

1011 1012 1013 1014
	/*
	 * Return back to the vDSO, which will pop ecx and edx.
	 * Don't bother with DS and ES (they already contain __USER_DS).
	 */
1015 1016
	sti
	sysexit
R
Roland McGrath 已提交
1017

1018 1019 1020
.pushsection .fixup, "ax"
2:	movl	$0, PT_FS(%esp)
	jmp	1b
1021
.popsection
1022
	_ASM_EXTABLE(1b, 2b)
1023
	PTGS_TO_GS_EX
1024 1025 1026 1027 1028

.Lsysenter_fix_flags:
	pushl	$X86_EFLAGS_FIXED
	popfl
	jmp	.Lsysenter_flags_fixed
1029
GLOBAL(__end_SYSENTER_singlestep_region)
1030
ENDPROC(entry_SYSENTER_32)
L
Linus Torvalds 已提交
1031

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
/*
 * 32-bit legacy system call entry.
 *
 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 * instruction.  INT $0x80 lands here.
 *
 * This entry point can be used by any 32-bit perform system calls.
 * Instances of INT $0x80 can be found inline in various programs and
 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 * fallback for hardware that doesn't support a faster entry method.
 * Restarted 32-bit system calls also fall back to INT $0x80
 * regardless of what instruction was originally used to do the system
 * call.  (64-bit programs can use INT $0x80 as well, but they can
 * only run on 64-bit kernels and therefore land in
 * entry_INT80_compat.)
 *
 * This is considered a slow path.  It is not used by most libc
 * implementations on modern hardware except during process startup.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  arg6
 */
1060
ENTRY(entry_INT80_32)
1061
	ASM_CLAC
1062
	pushl	%eax			/* pt_regs->orig_ax */
1063 1064

	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
1065 1066

	/*
1067 1068
	 * User mode is traced as though IRQs are on, and the interrupt gate
	 * turned them off.
1069
	 */
1070
	TRACE_IRQS_OFF
1071 1072

	movl	%esp, %eax
1073
	call	do_int80_syscall_32
1074
.Lsyscall_32_done:
L
Linus Torvalds 已提交
1075

1076 1077
	STACKLEAK_ERASE

L
Linus Torvalds 已提交
1078
restore_all:
1079
	TRACE_IRQS_IRET
1080
	SWITCH_TO_ENTRY_STACK
1081
.Lrestore_all_notrace:
1082
	CHECK_AND_APPLY_ESPFIX
1083
.Lrestore_nocheck:
1084 1085 1086
	/* Switch back to user CR3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1087 1088
	BUG_IF_WRONG_CR3

1089 1090
	/* Restore user state */
	RESTORE_REGS pop=4			# skip orig_eax/error_code
1091
.Lirq_return:
1092 1093 1094 1095 1096
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler and when returning from
	 * scheduler to user-space.
	 */
I
Ingo Molnar 已提交
1097
	INTERRUPT_RETURN
1098

1099
restore_all_kernel:
T
Thomas Gleixner 已提交
1100
#ifdef CONFIG_PREEMPTION
1101 1102 1103 1104 1105 1106 1107 1108
	DISABLE_INTERRUPTS(CLBR_ANY)
	cmpl	$0, PER_CPU_VAR(__preempt_count)
	jnz	.Lno_preempt
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
	jz	.Lno_preempt
	call	preempt_schedule_irq
.Lno_preempt:
#endif
1109
	TRACE_IRQS_IRET
1110
	PARANOID_EXIT_TO_KERNEL_MODE
1111
	BUG_IF_WRONG_CR3
1112 1113 1114
	RESTORE_REGS 4
	jmp	.Lirq_return

1115 1116 1117 1118
.section .fixup, "ax"
ENTRY(iret_exc	)
	pushl	$0				# no error code
	pushl	$do_iret_error
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * The stack-frame here is the one that iret faulted on, so its a
	 * return-to-user frame. We are on kernel-cr3 because we come here from
	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
	 * as the checker expects it.
	 */
	pushl	%eax
	SWITCH_TO_USER_CR3 scratch_reg=%eax
	popl	%eax
#endif

1132
	jmp	common_exception
L
Linus Torvalds 已提交
1133
.previous
1134
	_ASM_EXTABLE(.Lirq_return, iret_exc)
1135
ENDPROC(entry_INT80_32)
L
Linus Torvalds 已提交
1136

1137
.macro FIXUP_ESPFIX_STACK
1138 1139 1140 1141 1142 1143 1144
/*
 * Switch back for ESPFIX stack to the normal zerobased stack
 *
 * We can't call C functions using the ESPFIX stack. This code reads
 * the high word of the segment base from the GDT and swiches to the
 * normal stack and adjusts ESP with the matching offset.
 */
1145
#ifdef CONFIG_X86_ESPFIX32
1146
	/* fixup the stack */
1147 1148
	mov	GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
	mov	GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
1149
	shl	$16, %eax
1150 1151 1152 1153
	addl	%esp, %eax			/* the adjusted stack pointer */
	pushl	$__KERNEL_DS
	pushl	%eax
	lss	(%esp), %esp			/* switch to the normal stack segment */
1154
#endif
1155 1156
.endm
.macro UNWIND_ESPFIX_STACK
1157
#ifdef CONFIG_X86_ESPFIX32
1158
	movl	%ss, %eax
1159
	/* see if on espfix stack */
1160 1161 1162 1163 1164
	cmpw	$__ESPFIX_SS, %ax
	jne	27f
	movl	$__KERNEL_DS, %eax
	movl	%eax, %ds
	movl	%eax, %es
1165 1166 1167
	/* switch to normal stack */
	FIXUP_ESPFIX_STACK
27:
1168
#endif
1169
.endm
L
Linus Torvalds 已提交
1170 1171

/*
1172 1173
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
L
Linus Torvalds 已提交
1174
 */
1175
	.align 8
L
Linus Torvalds 已提交
1176
ENTRY(irq_entries_start)
1177 1178
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
1179
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
1180 1181 1182 1183
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
1184 1185
END(irq_entries_start)

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
#ifdef CONFIG_X86_LOCAL_APIC
	.align 8
ENTRY(spurious_entries_start)
    vector=FIRST_SYSTEM_VECTOR
    .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
    vector=vector+1
	jmp	common_spurious
	.align	8
    .endr
END(spurious_entries_start)

common_spurious:
	ASM_CLAC
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
	SAVE_ALL switch_stacks=1
	ENCODE_FRAME_POINTER
	TRACE_IRQS_OFF
	movl	%esp, %eax
	call	smp_spurious_interrupt
	jmp	ret_from_intr
1207
ENDPROC(common_spurious)
1208 1209
#endif

1210 1211 1212 1213
/*
 * the CPU automatically disables interrupts when executing an IRQ vector,
 * so IRQ-flags tracing has to follow that:
 */
1214
	.p2align CONFIG_X86_L1_CACHE_SHIFT
L
Linus Torvalds 已提交
1215
common_interrupt:
1216
	ASM_CLAC
1217
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
1218 1219

	SAVE_ALL switch_stacks=1
1220
	ENCODE_FRAME_POINTER
1221
	TRACE_IRQS_OFF
1222 1223 1224
	movl	%esp, %eax
	call	do_IRQ
	jmp	ret_from_intr
1225
ENDPROC(common_interrupt)
L
Linus Torvalds 已提交
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
#define BUILD_INTERRUPT3(name, nr, fn)			\
ENTRY(name)						\
	ASM_CLAC;					\
	pushl	$~(nr);					\
	SAVE_ALL switch_stacks=1;			\
	ENCODE_FRAME_POINTER;				\
	TRACE_IRQS_OFF					\
	movl	%esp, %eax;				\
	call	fn;					\
	jmp	ret_from_intr;				\
1237
ENDPROC(name)
L
Linus Torvalds 已提交
1238

1239 1240
#define BUILD_INTERRUPT(name, nr)		\
	BUILD_INTERRUPT3(name, nr, smp_##name);	\
T
Tejun Heo 已提交
1241

L
Linus Torvalds 已提交
1242
/* The include is where all of the SMP etc. interrupts come from */
1243
#include <asm/entry_arch.h>
L
Linus Torvalds 已提交
1244 1245

ENTRY(coprocessor_error)
1246
	ASM_CLAC
1247 1248
	pushl	$0
	pushl	$do_coprocessor_error
1249
	jmp	common_exception
1250
END(coprocessor_error)
L
Linus Torvalds 已提交
1251 1252

ENTRY(simd_coprocessor_error)
1253
	ASM_CLAC
1254
	pushl	$0
1255 1256
#ifdef CONFIG_X86_INVD_BUG
	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
1257 1258
	ALTERNATIVE "pushl	$do_general_protection",	\
		    "pushl	$do_simd_coprocessor_error",	\
1259
		    X86_FEATURE_XMM
1260
#else
1261
	pushl	$do_simd_coprocessor_error
1262
#endif
1263
	jmp	common_exception
1264
END(simd_coprocessor_error)
L
Linus Torvalds 已提交
1265 1266

ENTRY(device_not_available)
1267
	ASM_CLAC
1268 1269
	pushl	$-1				# mark this as an int
	pushl	$do_device_not_available
1270
	jmp	common_exception
1271
END(device_not_available)
L
Linus Torvalds 已提交
1272

1273 1274
#ifdef CONFIG_PARAVIRT
ENTRY(native_iret)
I
Ingo Molnar 已提交
1275
	iret
1276
	_ASM_EXTABLE(native_iret, iret_exc)
1277
END(native_iret)
1278 1279
#endif

L
Linus Torvalds 已提交
1280
ENTRY(overflow)
1281
	ASM_CLAC
1282 1283
	pushl	$0
	pushl	$do_overflow
1284
	jmp	common_exception
1285
END(overflow)
L
Linus Torvalds 已提交
1286 1287

ENTRY(bounds)
1288
	ASM_CLAC
1289 1290
	pushl	$0
	pushl	$do_bounds
1291
	jmp	common_exception
1292
END(bounds)
L
Linus Torvalds 已提交
1293 1294

ENTRY(invalid_op)
1295
	ASM_CLAC
1296 1297
	pushl	$0
	pushl	$do_invalid_op
1298
	jmp	common_exception
1299
END(invalid_op)
L
Linus Torvalds 已提交
1300 1301

ENTRY(coprocessor_segment_overrun)
1302
	ASM_CLAC
1303 1304
	pushl	$0
	pushl	$do_coprocessor_segment_overrun
1305
	jmp	common_exception
1306
END(coprocessor_segment_overrun)
L
Linus Torvalds 已提交
1307 1308

ENTRY(invalid_TSS)
1309
	ASM_CLAC
1310
	pushl	$do_invalid_TSS
1311
	jmp	common_exception
1312
END(invalid_TSS)
L
Linus Torvalds 已提交
1313 1314

ENTRY(segment_not_present)
1315
	ASM_CLAC
1316
	pushl	$do_segment_not_present
1317
	jmp	common_exception
1318
END(segment_not_present)
L
Linus Torvalds 已提交
1319 1320

ENTRY(stack_segment)
1321
	ASM_CLAC
1322
	pushl	$do_stack_segment
1323
	jmp	common_exception
1324
END(stack_segment)
L
Linus Torvalds 已提交
1325 1326

ENTRY(alignment_check)
1327
	ASM_CLAC
1328
	pushl	$do_alignment_check
1329
	jmp	common_exception
1330
END(alignment_check)
L
Linus Torvalds 已提交
1331

1332
ENTRY(divide_error)
1333
	ASM_CLAC
1334 1335
	pushl	$0				# no error code
	pushl	$do_divide_error
1336
	jmp	common_exception
1337
END(divide_error)
L
Linus Torvalds 已提交
1338 1339 1340

#ifdef CONFIG_X86_MCE
ENTRY(machine_check)
1341
	ASM_CLAC
1342 1343
	pushl	$0
	pushl	machine_check_vector
1344
	jmp	common_exception
1345
END(machine_check)
L
Linus Torvalds 已提交
1346 1347 1348
#endif

ENTRY(spurious_interrupt_bug)
1349
	ASM_CLAC
1350 1351
	pushl	$0
	pushl	$do_spurious_interrupt_bug
1352
	jmp	common_exception
1353
END(spurious_interrupt_bug)
L
Linus Torvalds 已提交
1354

1355
#ifdef CONFIG_XEN_PV
1356
ENTRY(xen_hypervisor_callback)
1357 1358 1359 1360 1361 1362 1363
	/*
	 * Check to see if we got the event in the critical
	 * region in xen_iret_direct, after we've reenabled
	 * events and checked for pending events.  This simulates
	 * iret instruction's behaviour where it delivers a
	 * pending interrupt when enabling interrupts:
	 */
1364
	cmpl	$xen_iret_start_crit, (%esp)
1365
	jb	1f
1366
	cmpl	$xen_iret_end_crit, (%esp)
1367
	jae	1f
1368 1369 1370 1371 1372 1373 1374
	call	xen_iret_crit_fixup
1:
	pushl	$-1				/* orig_ax = -1 => not a system call */
	SAVE_ALL
	ENCODE_FRAME_POINTER
	TRACE_IRQS_OFF
	mov	%esp, %eax
1375
	call	xen_evtchn_do_upcall
T
Thomas Gleixner 已提交
1376
#ifndef CONFIG_PREEMPTION
1377
	call	xen_maybe_preempt_hcall
1378
#endif
1379
	jmp	ret_from_intr
1380 1381
ENDPROC(xen_hypervisor_callback)

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/*
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we fix up by reattempting the load, and zeroing the segment
 * register if the load fails.
 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by maintaining a status value in EAX.
 */
1394
ENTRY(xen_failsafe_callback)
1395 1396 1397 1398 1399 1400
	pushl	%eax
	movl	$1, %eax
1:	mov	4(%esp), %ds
2:	mov	8(%esp), %es
3:	mov	12(%esp), %fs
4:	mov	16(%esp), %gs
1401 1402
	/* EAX == 0 => Category 1 (Bad segment)
	   EAX != 0 => Category 2 (Bad IRET) */
1403 1404 1405 1406 1407 1408
	testl	%eax, %eax
	popl	%eax
	lea	16(%esp), %esp
	jz	5f
	jmp	iret_exc
5:	pushl	$-1				/* orig_ax = -1 => not a system call */
1409
	SAVE_ALL
1410
	ENCODE_FRAME_POINTER
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	jmp	ret_from_exception

.section .fixup, "ax"
6:	xorl	%eax, %eax
	movl	%eax, 4(%esp)
	jmp	1b
7:	xorl	%eax, %eax
	movl	%eax, 8(%esp)
	jmp	2b
8:	xorl	%eax, %eax
	movl	%eax, 12(%esp)
	jmp	3b
9:	xorl	%eax, %eax
	movl	%eax, 16(%esp)
	jmp	4b
1426
.previous
1427 1428 1429 1430
	_ASM_EXTABLE(1b, 6b)
	_ASM_EXTABLE(2b, 7b)
	_ASM_EXTABLE(3b, 8b)
	_ASM_EXTABLE(4b, 9b)
1431
ENDPROC(xen_failsafe_callback)
1432
#endif /* CONFIG_XEN_PV */
1433

1434
#ifdef CONFIG_XEN_PVHVM
1435
BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1436
		 xen_evtchn_do_upcall)
1437
#endif
1438

1439 1440 1441 1442

#if IS_ENABLED(CONFIG_HYPERV)

BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1443
		 hyperv_vector_handler)
1444

1445 1446 1447
BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
		 hyperv_reenlightenment_intr)

1448 1449 1450
BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
		 hv_stimer0_vector_handler)

1451
#endif /* CONFIG_HYPERV */
1452

1453
ENTRY(page_fault)
1454
	ASM_CLAC
1455 1456 1457
	pushl	$do_page_fault
	jmp	common_exception_read_cr2
END(page_fault)
1458

1459 1460
common_exception_read_cr2:
	/* the function address is in %gs's slot on the stack */
1461 1462 1463 1464 1465 1466 1467
	SAVE_ALL switch_stacks=1 skip_gs=1

	ENCODE_FRAME_POINTER
	UNWIND_ESPFIX_STACK

	/* fixup %gs */
	GS_TO_REG %ecx
1468
	movl	PT_GS(%esp), %edi
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx

	GET_CR2_INTO(%ecx)			# might clobber %eax

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

	TRACE_IRQS_OFF
	movl	%esp, %eax			# pt_regs pointer
1480
	CALL_NOSPEC %edi
1481
	jmp	ret_from_exception
1482
END(common_exception_read_cr2)
1483 1484

common_exception:
1485
	/* the function address is in %gs's slot on the stack */
1486
	SAVE_ALL switch_stacks=1 skip_gs=1
1487
	ENCODE_FRAME_POINTER
1488
	UNWIND_ESPFIX_STACK
1489 1490

	/* fixup %gs */
1491
	GS_TO_REG %ecx
1492
	movl	PT_GS(%esp), %edi		# get the function address
1493 1494
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx
1495 1496 1497 1498 1499

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

1500
	TRACE_IRQS_OFF
1501
	movl	%esp, %eax			# pt_regs pointer
1502
	CALL_NOSPEC %edi
1503
	jmp	ret_from_exception
1504
END(common_exception)
1505 1506

ENTRY(debug)
1507
	/*
1508
	 * Entry from sysenter is now handled in common_exception
1509
	 */
1510
	ASM_CLAC
1511
	pushl	$-1				# mark this as an int
1512 1513
	pushl	$do_debug
	jmp	common_exception
1514 1515 1516
END(debug)

/*
1517 1518 1519 1520 1521
 * NMI is doubly nasty.  It can happen on the first instruction of
 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
 * switched stacks.  We handle both conditions by simply checking whether we
 * interrupted kernel code running on the SYSENTER stack.
1522 1523
 */
ENTRY(nmi)
1524
	ASM_CLAC
1525

1526
#ifdef CONFIG_X86_ESPFIX32
1527 1528 1529 1530
	pushl	%eax
	movl	%ss, %eax
	cmpw	$__ESPFIX_SS, %ax
	popl	%eax
1531
	je	.Lnmi_espfix_stack
1532
#endif
1533 1534

	pushl	%eax				# pt_regs->orig_ax
1535
	SAVE_ALL_NMI cr3_reg=%edi
1536
	ENCODE_FRAME_POINTER
1537 1538
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
1539 1540

	/* Are we currently on the SYSENTER stack? */
1541
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1542 1543 1544
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
1545 1546 1547
	jb	.Lnmi_from_sysenter_stack

	/* Not on SYSENTER stack. */
1548
	call	do_nmi
1549
	jmp	.Lnmi_return
1550

1551 1552 1553 1554 1555
.Lnmi_from_sysenter_stack:
	/*
	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
	 * is using the thread stack right now, so it's safe for us to use it.
	 */
1556
	movl	%esp, %ebx
1557 1558
	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
	call	do_nmi
1559
	movl	%ebx, %esp
1560 1561 1562

.Lnmi_return:
	CHECK_AND_APPLY_ESPFIX
1563
	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1564
	jmp	.Lirq_return
1565

1566
#ifdef CONFIG_X86_ESPFIX32
1567
.Lnmi_espfix_stack:
1568
	/*
1569 1570
	 * create the pointer to lss back
	 */
1571 1572 1573
	pushl	%ss
	pushl	%esp
	addl	$4, (%esp)
1574 1575
	/* copy the iret frame of 12 bytes */
	.rept 3
1576
	pushl	16(%esp)
1577
	.endr
1578
	pushl	%eax
1579
	SAVE_ALL_NMI cr3_reg=%edi
1580
	ENCODE_FRAME_POINTER
1581 1582 1583
	FIXUP_ESPFIX_STACK			# %eax == %esp
	xorl	%edx, %edx			# zero error code
	call	do_nmi
1584
	RESTORE_ALL_NMI cr3_reg=%edi
1585
	lss	12+4(%esp), %esp		# back to espfix stack
1586
	jmp	.Lirq_return
1587
#endif
1588 1589 1590
END(nmi)

ENTRY(int3)
1591
	ASM_CLAC
1592
	pushl	$-1				# mark this as an int
1593 1594

	SAVE_ALL switch_stacks=1
1595
	ENCODE_FRAME_POINTER
1596
	TRACE_IRQS_OFF
1597 1598 1599 1600
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
	call	do_int3
	jmp	ret_from_exception
1601 1602 1603
END(int3)

ENTRY(general_protection)
1604
	pushl	$do_general_protection
1605
	jmp	common_exception
1606 1607
END(general_protection)

G
Gleb Natapov 已提交
1608 1609
#ifdef CONFIG_KVM_GUEST
ENTRY(async_page_fault)
1610
	ASM_CLAC
1611
	pushl	$do_async_page_fault
1612
	jmp	common_exception_read_cr2
1613
END(async_page_fault)
G
Gleb Natapov 已提交
1614
#endif
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)