entry_32.S 39.3 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2
/*
3
 *  Copyright (C) 1991,1992  Linus Torvalds
L
Linus Torvalds 已提交
4
 *
5
 * entry_32.S contains the system-call and low-level fault and trap handling routines.
L
Linus Torvalds 已提交
6
 *
7
 * Stack layout while running C code:
8 9 10
 *	ptrace needs to have all registers on the stack.
 *	If the order here is changed, it needs to be
 *	updated in fork.c:copy_process(), signal.c:do_signal(),
L
Linus Torvalds 已提交
11 12 13 14 15
 *	ptrace.c and ptrace.h
 *
 *	 0(%esp) - %ebx
 *	 4(%esp) - %ecx
 *	 8(%esp) - %edx
16
 *	 C(%esp) - %esi
L
Linus Torvalds 已提交
17 18 19 20 21
 *	10(%esp) - %edi
 *	14(%esp) - %ebp
 *	18(%esp) - %eax
 *	1C(%esp) - %ds
 *	20(%esp) - %es
22
 *	24(%esp) - %fs
23 24 25 26 27 28 29
 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
 *	2C(%esp) - orig_eax
 *	30(%esp) - %eip
 *	34(%esp) - %cs
 *	38(%esp) - %eflags
 *	3C(%esp) - %oldesp
 *	40(%esp) - %oldss
L
Linus Torvalds 已提交
30 31 32
 */

#include <linux/linkage.h>
33
#include <linux/err.h>
L
Linus Torvalds 已提交
34
#include <asm/thread_info.h>
35
#include <asm/irqflags.h>
L
Linus Torvalds 已提交
36 37 38
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
S
Stas Sergeev 已提交
39
#include <asm/percpu.h>
40
#include <asm/processor-flags.h>
41
#include <asm/irq_vectors.h>
42
#include <asm/cpufeatures.h>
43
#include <asm/alternative-asm.h>
44
#include <asm/asm.h>
45
#include <asm/smap.h>
46
#include <asm/frame.h>
47
#include <asm/nospec-branch.h>
L
Linus Torvalds 已提交
48

49 50
#include "calling.h"

J
Jiri Olsa 已提交
51 52
	.section .entry.text, "ax"

53 54 55 56 57
/*
 * We use macros for low-level operations which need to be overridden
 * for paravirtualization.  The following will never clobber any registers:
 *   INTERRUPT_RETURN (aka. "iret")
 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
58
 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
59 60 61 62 63 64 65
 *
 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
 * Allowing a register to be clobbered can shrink the paravirt replacement
 * enough to patch inline, increasing performance.
 */

T
Thomas Gleixner 已提交
66
#ifdef CONFIG_PREEMPTION
67
# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
L
Linus Torvalds 已提交
68
#else
69
# define preempt_stop(clobbers)
L
Linus Torvalds 已提交
70 71
#endif

72 73
.macro TRACE_IRQS_IRET
#ifdef CONFIG_TRACE_IRQFLAGS
74 75
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
	jz	1f
76 77 78 79 80
	TRACE_IRQS_ON
1:
#endif
.endm

81 82
#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * User gs save/restore
 *
 * %gs is used for userland TLS and kernel only uses it for stack
 * canary which is required to be at %gs:20 by gcc.  Read the comment
 * at the top of stackprotector.h for more info.
 *
 * Local labels 98 and 99 are used.
 */
#ifdef CONFIG_X86_32_LAZY_GS

 /* unfortunately push/pop can't be no-op */
.macro PUSH_GS
96
	pushl	$0
97 98
.endm
.macro POP_GS pop=0
99
	addl	$(4 + \pop), %esp
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
.endm
.macro POP_GS_EX
.endm

 /* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm

#else	/* CONFIG_X86_32_LAZY_GS */

.macro PUSH_GS
119
	pushl	%gs
120 121 122
.endm

.macro POP_GS pop=0
123
98:	popl	%gs
124
  .if \pop <> 0
125
	add	$\pop, %esp
126 127 128 129
  .endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
130 131
99:	movl	$0, (%esp)
	jmp	98b
132
.popsection
133
	_ASM_EXTABLE(98b, 99b)
134 135 136
.endm

.macro PTGS_TO_GS
137
98:	mov	PT_GS(%esp), %gs
138 139 140
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
141 142
99:	movl	$0, PT_GS(%esp)
	jmp	98b
143
.popsection
144
	_ASM_EXTABLE(98b, 99b)
145 146 147
.endm

.macro GS_TO_REG reg
148
	movl	%gs, \reg
149 150
.endm
.macro REG_TO_PTGS reg
151
	movl	\reg, PT_GS(%esp)
152 153
.endm
.macro SET_KERNEL_GS reg
154 155
	movl	$(__KERNEL_STACK_CANARY), \reg
	movl	\reg, %gs
156 157
.endm

158
#endif /* CONFIG_X86_32_LAZY_GS */
159

160 161 162 163 164 165 166 167 168 169
/* Unconditionally switch to user cr3 */
.macro SWITCH_TO_USER_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI

	movl	%cr3, \scratch_reg
	orl	$PTI_SWITCH_MASK, \scratch_reg
	movl	\scratch_reg, %cr3
.Lend_\@:
.endm

170 171 172 173 174
.macro BUG_IF_WRONG_CR3 no_user_check=0
#ifdef CONFIG_DEBUG_ENTRY
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	.if \no_user_check == 0
	/* coming from usermode? */
175
	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
176 177 178 179 180 181 182 183 184 185 186 187
	jz	.Lend_\@
	.endif
	/* On user-cr3? */
	movl	%cr3, %eax
	testl	$PTI_SWITCH_MASK, %eax
	jnz	.Lend_\@
	/* From userspace with kernel cr3 - BUG */
	ud2
.Lend_\@:
#endif
.endm

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/*
 * Switch to kernel cr3 if not already loaded and return current cr3 in
 * \scratch_reg
 */
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	movl	%cr3, \scratch_reg
	/* Test if we are already on kernel CR3 */
	testl	$PTI_SWITCH_MASK, \scratch_reg
	jz	.Lend_\@
	andl	$(~PTI_SWITCH_MASK), \scratch_reg
	movl	\scratch_reg, %cr3
	/* Return original CR3 in \scratch_reg */
	orl	$PTI_SWITCH_MASK, \scratch_reg
.Lend_\@:
.endm

205 206 207 208 209 210 211 212
#define CS_FROM_ENTRY_STACK	(1 << 31)
#define CS_FROM_USER_CR3	(1 << 30)
#define CS_FROM_KERNEL		(1 << 29)

.macro FIXUP_FRAME
	/*
	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
	 * Clear them in case hardware didn't do this for us.
213 214
	 *
	 * Be careful: we may have nonzero SS base due to ESPFIX.
215 216 217 218 219 220 221
	 */
	andl	$0x0000ffff, 3*4(%esp)

#ifdef CONFIG_VM86
	testl	$X86_EFLAGS_VM, 4*4(%esp)
	jnz	.Lfrom_usermode_no_fixup_\@
#endif
222
	testl	$USER_SEGMENT_RPL_MASK, 3*4(%esp)
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	jnz	.Lfrom_usermode_no_fixup_\@

	orl	$CS_FROM_KERNEL, 3*4(%esp)

	/*
	 * When we're here from kernel mode; the (exception) stack looks like:
	 *
	 *  5*4(%esp) - <previous context>
	 *  4*4(%esp) - flags
	 *  3*4(%esp) - cs
	 *  2*4(%esp) - ip
	 *  1*4(%esp) - orig_eax
	 *  0*4(%esp) - gs / function
	 *
	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
	 * is complete and in particular regs->sp is correct. This gives us
	 * the original 5 enties as gap:
	 *
	 * 12*4(%esp) - <previous context>
	 * 11*4(%esp) - gap / flags
	 * 10*4(%esp) - gap / cs
	 *  9*4(%esp) - gap / ip
	 *  8*4(%esp) - gap / orig_eax
	 *  7*4(%esp) - gap / gs / function
	 *  6*4(%esp) - ss
	 *  5*4(%esp) - sp
	 *  4*4(%esp) - flags
	 *  3*4(%esp) - cs
	 *  2*4(%esp) - ip
	 *  1*4(%esp) - orig_eax
	 *  0*4(%esp) - gs / function
	 */

	pushl	%ss		# ss
	pushl	%esp		# sp (points at ss)
	addl	$6*4, (%esp)	# point sp back at the previous context
	pushl	6*4(%esp)	# flags
	pushl	6*4(%esp)	# cs
	pushl	6*4(%esp)	# ip
	pushl	6*4(%esp)	# orig_eax
	pushl	6*4(%esp)	# gs / function
.Lfrom_usermode_no_fixup_\@:
.endm

.macro IRET_FRAME
268 269 270 271 272 273 274
	/*
	 * We're called with %ds, %es, %fs, and %gs from the interrupted
	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
	 * mode and therefore have a nonzero SS base and an offset ESP,
	 * so any attempt to access the stack needs to use SS.  (except for
	 * accesses through %esp, which automatically use SS.)
	 */
275 276 277 278 279 280 281 282 283 284 285 286 287
	testl $CS_FROM_KERNEL, 1*4(%esp)
	jz .Lfinished_frame_\@

	/*
	 * Reconstruct the 3 entry IRET frame right after the (modified)
	 * regs->sp without lowering %esp in between, such that an NMI in the
	 * middle doesn't scribble our stack.
	 */
	pushl	%eax
	pushl	%ecx
	movl	5*4(%esp), %eax		# (modified) regs->sp

	movl	4*4(%esp), %ecx		# flags
288
	movl	%ecx, %ss:-1*4(%eax)
289 290 291

	movl	3*4(%esp), %ecx		# cs
	andl	$0x0000ffff, %ecx
292
	movl	%ecx, %ss:-2*4(%eax)
293 294

	movl	2*4(%esp), %ecx		# ip
295
	movl	%ecx, %ss:-3*4(%eax)
296 297

	movl	1*4(%esp), %ecx		# eax
298
	movl	%ecx, %ss:-4*4(%eax)
299 300

	popl	%ecx
301
	lea	-4*4(%eax), %esp
302 303 304 305
	popl	%eax
.Lfinished_frame_\@:
.endm

306
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0
307
	cld
308
.if \skip_gs == 0
309
	PUSH_GS
310
.endif
311
	FIXUP_FRAME
312 313 314
	pushl	%fs
	pushl	%es
	pushl	%ds
315
	pushl	\pt_regs_ax
316 317 318 319 320 321 322 323 324 325 326
	pushl	%ebp
	pushl	%edi
	pushl	%esi
	pushl	%edx
	pushl	%ecx
	pushl	%ebx
	movl	$(__USER_DS), %edx
	movl	%edx, %ds
	movl	%edx, %es
	movl	$(__KERNEL_PERCPU), %edx
	movl	%edx, %fs
327
.if \skip_gs == 0
328
	SET_KERNEL_GS %edx
329
.endif
330 331 332 333
	/* Switch to kernel stack if necessary */
.if \switch_stacks > 0
	SWITCH_TO_KERNEL_STACK
.endif
334
.endm
L
Linus Torvalds 已提交
335

336
.macro SAVE_ALL_NMI cr3_reg:req
337
	SAVE_ALL
338

339 340
	BUG_IF_WRONG_CR3

341 342 343 344 345 346 347 348 349 350
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We can enter with either user or kernel cr3, the code will
	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
	 * if necessary.
	 */
	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg

.Lend_\@:
351
.endm
352

353
.macro RESTORE_INT_REGS
354 355 356 357 358 359 360
	popl	%ebx
	popl	%ecx
	popl	%edx
	popl	%esi
	popl	%edi
	popl	%ebp
	popl	%eax
361
.endm
L
Linus Torvalds 已提交
362

363
.macro RESTORE_REGS pop=0
364
	RESTORE_INT_REGS
365 366 367
1:	popl	%ds
2:	popl	%es
3:	popl	%fs
368
	POP_GS \pop
P
Peter Zijlstra 已提交
369
	IRET_FRAME
370
.pushsection .fixup, "ax"
371 372 373 374 375 376
4:	movl	$0, (%esp)
	jmp	1b
5:	movl	$0, (%esp)
	jmp	2b
6:	movl	$0, (%esp)
	jmp	3b
377
.popsection
378 379 380
	_ASM_EXTABLE(1b, 4b)
	_ASM_EXTABLE(2b, 5b)
	_ASM_EXTABLE(3b, 6b)
381
	POP_GS_EX
382
.endm
L
Linus Torvalds 已提交
383

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We enter with kernel cr3 and switch the cr3 to the value
	 * stored on \cr3_reg, which is either a user or a kernel cr3.
	 */
	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI

	testl	$PTI_SWITCH_MASK, \cr3_reg
	jz	.Lswitched_\@

	/* User cr3 in \cr3_reg - write it to hardware cr3 */
	movl	\cr3_reg, %cr3

.Lswitched_\@:

401 402
	BUG_IF_WRONG_CR3

403 404 405
	RESTORE_REGS pop=\pop
.endm

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
.macro CHECK_AND_APPLY_ESPFIX
#ifdef CONFIG_X86_ESPFIX32
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)

	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX

	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
	/*
	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
	 * are returning to the kernel.
	 * See comments in process.c:copy_thread() for details.
	 */
	movb	PT_OLDSS(%esp), %ah
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
	jne	.Lend_\@	# returning to user-space with LDT SS

	/*
	 * Setup and switch to ESPFIX stack
	 *
	 * We're returning to userspace with a 16 bit stack. The CPU will not
	 * restore the high word of ESP for us on executing iret... This is an
	 * "official" bug of all the x86-compatible CPUs, which we can work
	 * around to make dosemu and wine happy. We do this by preloading the
	 * high word of ESP with the high word of the userspace ESP while
	 * compensating for the offset by changing to the ESPFIX segment with
	 * a base address that matches for the difference.
	 */
	mov	%esp, %edx			/* load kernel esp */
	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
	mov	%dx, %ax			/* eax: new kernel esp */
	sub	%eax, %edx			/* offset (low word is 0) */
	shr	$16, %edx
	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
	pushl	$__ESPFIX_SS
	pushl	%eax				/* new kernel esp */
	/*
	 * Disable interrupts, but do not irqtrace this section: we
	 * will soon execute iret and the tracer was already set to
	 * the irqstate after the IRET:
	 */
	DISABLE_INTERRUPTS(CLBR_ANY)
	lss	(%esp), %esp			/* switch to espfix segment */
.Lend_\@:
#endif /* CONFIG_X86_ESPFIX32 */
.endm
454 455 456 457 458 459 460 461 462 463 464

/*
 * Called with pt_regs fully populated and kernel segments loaded,
 * so we can access PER_CPU and use the integer registers.
 *
 * We need to be very careful here with the %esp switch, because an NMI
 * can happen everywhere. If the NMI handler finds itself on the
 * entry-stack, it will overwrite the task-stack and everything we
 * copied there. So allocate the stack-frame on the task-stack and
 * switch to it before we do any copying.
 */
465

466 467 468 469
.macro SWITCH_TO_KERNEL_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

470 471
	BUG_IF_WRONG_CR3

472 473 474 475 476 477 478
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax

	/*
	 * %eax now contains the entry cr3 and we carry it forward in
	 * that register for the time this macro runs
	 */

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
	/* Are we on the entry stack? Bail out if not! */
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
	jae	.Lend_\@

	/* Load stack pointer into %esi and %edi */
	movl	%esp, %esi
	movl	%esi, %edi

	/* Move %edi to the top of the entry stack */
	andl	$(MASK_entry_stack), %edi
	addl	$(SIZEOF_entry_stack), %edi

	/* Load top of task-stack into %edi */
	movl	TSS_entry2task_stack(%edi), %edi

497
	/* Special case - entry from kernel mode via entry stack */
498 499 500 501 502 503 504 505 506 507
#ifdef CONFIG_VM86
	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
	movb	PT_CS(%esp), %cl
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
#else
	movl	PT_CS(%esp), %ecx
	andl	$SEGMENT_RPL_MASK, %ecx
#endif
	cmpl	$USER_RPL, %ecx
	jb	.Lentry_from_kernel_\@
508

509 510 511 512 513 514 515 516 517 518 519 520 521 522
	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
	jz	.Lcopy_pt_regs_\@

	/*
	 * Stack-frame contains 4 additional segment registers when
	 * coming from VM86 mode
	 */
	addl	$(4 * 4), %ecx

#endif
523
.Lcopy_pt_regs_\@:
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538

	/* Allocate frame on task-stack */
	subl	%ecx, %edi

	/* Switch to task-stack */
	movl	%edi, %esp

	/*
	 * We are now on the task-stack and can safely copy over the
	 * stack-frame
	 */
	shrl	$2, %ecx
	cld
	rep movsl

539 540 541 542 543 544 545 546 547 548 549
	jmp .Lend_\@

.Lentry_from_kernel_\@:

	/*
	 * This handles the case when we enter the kernel from
	 * kernel-mode and %esp points to the entry-stack. When this
	 * happens we need to switch to the task-stack to run C code,
	 * but switch back to the entry-stack again when we approach
	 * iret and return to the interrupted code-path. This usually
	 * happens when we hit an exception while restoring user-space
550 551
	 * segment registers on the way back to user-space or when the
	 * sysenter handler runs with eflags.tf set.
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	 *
	 * When we switch to the task-stack here, we can't trust the
	 * contents of the entry-stack anymore, as the exception handler
	 * might be scheduled out or moved to another CPU. Therefore we
	 * copy the complete entry-stack to the task-stack and set a
	 * marker in the iret-frame (bit 31 of the CS dword) to detect
	 * what we've done on the iret path.
	 *
	 * On the iret path we copy everything back and switch to the
	 * entry-stack, so that the interrupted kernel code-path
	 * continues on the same stack it was interrupted with.
	 *
	 * Be aware that an NMI can happen anytime in this code.
	 *
	 * %esi: Entry-Stack pointer (same as %esp)
	 * %edi: Top of the task stack
568
	 * %eax: CR3 on kernel entry
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
	 */

	/* Calculate number of bytes on the entry stack in %ecx */
	movl	%esi, %ecx

	/* %ecx to the top of entry-stack */
	andl	$(MASK_entry_stack), %ecx
	addl	$(SIZEOF_entry_stack), %ecx

	/* Number of bytes on the entry stack to %ecx */
	sub	%esi, %ecx

	/* Mark stackframe as coming from entry stack */
	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)

584 585 586 587 588 589 590 591
	/*
	 * Test the cr3 used to enter the kernel and add a marker
	 * so that we can switch back to it before iret.
	 */
	testl	$PTI_SWITCH_MASK, %eax
	jz	.Lcopy_pt_regs_\@
	orl	$CS_FROM_USER_CR3, PT_CS(%esp)

592 593 594 595 596 597 598
	/*
	 * %esi and %edi are unchanged, %ecx contains the number of
	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
	 * the stack-frame on task-stack and copy everything over
	 */
	jmp .Lcopy_pt_regs_\@

599 600 601
.Lend_\@:
.endm

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
/*
 * Switch back from the kernel stack to the entry stack.
 *
 * The %esp register must point to pt_regs on the task stack. It will
 * first calculate the size of the stack-frame to copy, depending on
 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 * to copy the contents of the stack over to the entry stack.
 *
 * We must be very careful here, as we can't trust the contents of the
 * task-stack once we switched to the entry-stack. When an NMI happens
 * while on the entry-stack, the NMI handler will switch back to the top
 * of the task stack, overwriting our stack-frame we are about to copy.
 * Therefore we switch the stack only after everything is copied over.
 */
.macro SWITCH_TO_ENTRY_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
	jz	.Lcopy_pt_regs_\@

	/* Additional 4 registers to copy when returning to VM86 mode */
	addl    $(4 * 4), %ecx

.Lcopy_pt_regs_\@:
#endif

	/* Initialize source and destination for movsl */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
	subl	%ecx, %edi
	movl	%esp, %esi

	/* Save future stack pointer in %ebx */
	movl	%edi, %ebx

	/* Copy over the stack-frame */
	shrl	$2, %ecx
	cld
	rep movsl

	/*
	 * Switch to entry-stack - needs to happen after everything is
	 * copied because the NMI handler will overwrite the task-stack
	 * when on entry-stack
	 */
	movl	%ebx, %esp

.Lend_\@:
.endm

656 657
/*
 * This macro handles the case when we return to kernel-mode on the iret
658
 * path and have to switch back to the entry stack and/or user-cr3
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
 *
 * See the comments below the .Lentry_from_kernel_\@ label in the
 * SWITCH_TO_KERNEL_STACK macro for more details.
 */
.macro PARANOID_EXIT_TO_KERNEL_MODE

	/*
	 * Test if we entered the kernel with the entry-stack. Most
	 * likely we did not, because this code only runs on the
	 * return-to-kernel path.
	 */
	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
	jz	.Lend_\@

	/* Unlikely slow-path */

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)

	/* Copy the remaining task-stack contents to entry-stack */
	movl	%esp, %esi
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi

	/* Bytes on the task-stack to ecx */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
	subl	%esi, %ecx

	/* Allocate stack-frame on entry-stack */
	subl	%ecx, %edi

	/*
	 * Save future stack-pointer, we must not switch until the
	 * copy is done, otherwise the NMI handler could destroy the
	 * contents of the task-stack we are about to copy.
	 */
	movl	%edi, %ebx

	/* Do the copy */
	shrl	$2, %ecx
	cld
	rep movsl

	/* Safe to switch to entry-stack now */
	movl	%ebx, %esp

704 705 706 707 708 709 710 711 712 713 714 715
	/*
	 * We came from entry-stack and need to check if we also need to
	 * switch back to user cr3.
	 */
	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
	jz	.Lend_\@

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)

	SWITCH_TO_USER_CR3 scratch_reg=%eax

716 717
.Lend_\@:
.endm
718 719 720 721 722 723 724 725 726 727 728 729 730
/*
 * %eax: prev task
 * %edx: next task
 */
ENTRY(__switch_to_asm)
	/*
	 * Save callee-saved registers
	 * This must match the order in struct inactive_task_frame
	 */
	pushl	%ebp
	pushl	%ebx
	pushl	%edi
	pushl	%esi
731
	pushfl
732 733 734 735 736

	/* switch stack */
	movl	%esp, TASK_threadsp(%eax)
	movl	TASK_threadsp(%edx), %esp

737
#ifdef CONFIG_STACKPROTECTOR
738 739 740 741
	movl	TASK_stack_canary(%edx), %ebx
	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif

742 743 744 745 746 747 748 749
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
750
	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
751 752
#endif

753
	/* restore callee-saved registers */
754
	popfl
755 756 757 758 759 760 761 762
	popl	%esi
	popl	%edi
	popl	%ebx
	popl	%ebp

	jmp	__switch_to
END(__switch_to_asm)

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
/*
 * The unwinder expects the last frame on the stack to always be at the same
 * offset from the end of the page, which allows it to validate the stack.
 * Calling schedule_tail() directly would break that convention because its an
 * asmlinkage function so its argument has to be pushed on the stack.  This
 * wrapper creates a proper "end of stack" frame header before the call.
 */
ENTRY(schedule_tail_wrapper)
	FRAME_BEGIN

	pushl	%eax
	call	schedule_tail
	popl	%eax

	FRAME_END
	ret
ENDPROC(schedule_tail_wrapper)
780 781 782 783
/*
 * A newly forked process directly context switches into this address.
 *
 * eax: prev task we switched from
784 785
 * ebx: kernel thread func (NULL for user thread)
 * edi: kernel thread arg
786
 */
L
Linus Torvalds 已提交
787
ENTRY(ret_from_fork)
788
	call	schedule_tail_wrapper
789

790 791 792 793
	testl	%ebx, %ebx
	jnz	1f		/* kernel threads are uncommon */

2:
794
	/* When we fork, we trace the syscall return in the child, too. */
795
	movl    %esp, %eax
796
	call    syscall_return_slowpath
797
	STACKLEAK_ERASE
798 799
	jmp     restore_all

800 801
	/* kernel thread */
1:	movl	%edi, %eax
802
	CALL_NOSPEC %ebx
803
	/*
804 805 806
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
807
	 */
808 809 810
	movl	$0, PT_EAX(%esp)
	jmp	2b
END(ret_from_fork)
811

L
Linus Torvalds 已提交
812 813 814 815 816 817 818 819 820 821
/*
 * Return to user mode is not as complex as all this looks,
 * but we want the default path for a system call return to
 * go as quickly as possible which is why some of this is
 * less clear than it otherwise should be.
 */

	# userspace resumption stub bypassing syscall exit tracing
	ALIGN
ret_from_exception:
822
	preempt_stop(CLBR_ANY)
L
Linus Torvalds 已提交
823
ret_from_intr:
824
#ifdef CONFIG_VM86
825 826 827
	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
828 829
#else
	/*
830
	 * We can be coming here from child spawned by kernel_thread().
831
	 */
832 833
	movl	PT_CS(%esp), %eax
	andl	$SEGMENT_RPL_MASK, %eax
834
#endif
835
	cmpl	$USER_RPL, %eax
836
	jb	restore_all_kernel		# not returning to v8086 or userspace
837

L
Linus Torvalds 已提交
838
ENTRY(resume_userspace)
839
	DISABLE_INTERRUPTS(CLBR_ANY)
840
	TRACE_IRQS_OFF
841 842
	movl	%esp, %eax
	call	prepare_exit_to_usermode
843
	jmp	restore_all
844
END(ret_from_exception)
L
Linus Torvalds 已提交
845

846 847 848 849 850 851 852 853 854 855
GLOBAL(__begin_SYSENTER_singlestep_region)
/*
 * All code from here through __end_SYSENTER_singlestep_region is subject
 * to being single-stepped if a user program sets TF and executes SYSENTER.
 * There is absolutely nothing that we can do to prevent this from happening
 * (thanks Intel!).  To keep our handling of this situation as simple as
 * possible, we handle TF just like AC and NT, except that our #DB handler
 * will ignore all of the single-step traps generated in this range.
 */

856
#ifdef CONFIG_XEN_PV
857 858 859 860 861 862
/*
 * Xen doesn't set %esp to be precisely what the normal SYSENTER
 * entry point expects, so fix it up before using the normal path.
 */
ENTRY(xen_sysenter_target)
	addl	$5*4, %esp			/* remove xen-provided frame */
863
	jmp	.Lsysenter_past_esp
864 865
#endif

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/*
 * 32-bit SYSENTER entry.
 *
 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 * if X86_FEATURE_SEP is available.  This is the preferred system call
 * entry on 32-bit systems.
 *
 * The SYSENTER instruction, in principle, should *only* occur in the
 * vDSO.  In practice, a small number of Android devices were shipped
 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 * never happened in any of Google's Bionic versions -- it only happened
 * in a narrow range of Intel-provided versions.
 *
 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 * SYSENTER does not save anything on the stack,
 * and does not save old EIP (!!!), ESP, or EFLAGS.
 *
 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 * user and/or vm86 state), we explicitly disable the SYSENTER
 * instruction in vm86 mode by reprogramming the MSRs.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  user stack
 * 0(%ebp) arg6
 */
898
ENTRY(entry_SYSENTER_32)
899 900 901 902 903 904 905
	/*
	 * On entry-stack with all userspace-regs live - save and
	 * restore eflags and %eax to use it as scratch-reg for the cr3
	 * switch.
	 */
	pushfl
	pushl	%eax
906
	BUG_IF_WRONG_CR3 no_user_check=1
907 908 909 910 911
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
	popl	%eax
	popfl

	/* Stack empty again, switch to task stack */
912
	movl	TSS_entry2task_stack(%esp), %esp
913

914
.Lsysenter_past_esp:
915
	pushl	$__USER_DS		/* pt_regs->ss */
916
	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
917 918 919 920 921
	pushfl				/* pt_regs->flags (except IF = 0) */
	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
	pushl	$__USER_CS		/* pt_regs->cs */
	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
	pushl	%eax			/* pt_regs->orig_ax */
922
	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
923

924
	/*
925 926
	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
	 * and TF ourselves.  To save a few cycles, we can check whether
927 928 929 930
	 * either was set instead of doing an unconditional popfq.
	 * This needs to happen before enabling interrupts so that
	 * we don't get preempted with NT set.
	 *
931 932 933 934 935 936
	 * If TF is set, we will single-step all the way to here -- do_debug
	 * will ignore all the traps.  (Yes, this is slow, but so is
	 * single-stepping in general.  This allows us to avoid having
	 * a more complicated code to handle the case where a user program
	 * forces us to single-step through the SYSENTER entry code.)
	 *
937 938 939 940 941 942
	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
	 * out-of-line as an optimization: NT is unlikely to be set in the
	 * majority of the cases and instead of polluting the I$ unnecessarily,
	 * we're keeping that code behind a branch which will predict as
	 * not-taken and therefore its instructions won't be fetched.
	 */
943
	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
944 945 946
	jnz	.Lsysenter_fix_flags
.Lsysenter_flags_fixed:

947
	/*
948 949
	 * User mode is traced as though IRQs are on, and SYSENTER
	 * turned them off.
950
	 */
951
	TRACE_IRQS_OFF
952 953 954

	movl	%esp, %eax
	call	do_fast_syscall_32
955 956 957
	/* XEN PV guests always use IRET path */
	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
958

959 960
	STACKLEAK_ERASE

961 962
/* Opportunistic SYSEXIT */
	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

	/*
	 * Setup entry stack - we keep the pointer in %eax and do the
	 * switch after almost all user-state is restored.
	 */

	/* Load entry stack pointer and allocate frame for eflags/eax */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
	subl	$(2*4), %eax

	/* Copy eflags and eax to entry stack */
	movl	PT_EFLAGS(%esp), %edi
	movl	PT_EAX(%esp), %esi
	movl	%edi, (%eax)
	movl	%esi, 4(%eax)

	/* Restore user registers and segments */
980 981
	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
982 983
1:	mov	PT_FS(%esp), %fs
	PTGS_TO_GS
984

985 986 987 988 989
	popl	%ebx			/* pt_regs->bx */
	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
	popl	%esi			/* pt_regs->si */
	popl	%edi			/* pt_regs->di */
	popl	%ebp			/* pt_regs->bp */
990 991 992

	/* Switch to entry stack */
	movl	%eax, %esp
993

994 995 996
	/* Now ready to switch the cr3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

997 998 999 1000 1001
	/*
	 * Restore all flags except IF. (We restore IF separately because
	 * STI gives a one-instruction window in which we won't be interrupted,
	 * whereas POPF does not.)
	 */
1002
	btrl	$X86_EFLAGS_IF_BIT, (%esp)
1003
	BUG_IF_WRONG_CR3 no_user_check=1
1004
	popfl
1005
	popl	%eax
1006

1007 1008 1009 1010
	/*
	 * Return back to the vDSO, which will pop ecx and edx.
	 * Don't bother with DS and ES (they already contain __USER_DS).
	 */
1011 1012
	sti
	sysexit
R
Roland McGrath 已提交
1013

1014 1015 1016
.pushsection .fixup, "ax"
2:	movl	$0, PT_FS(%esp)
	jmp	1b
1017
.popsection
1018
	_ASM_EXTABLE(1b, 2b)
1019
	PTGS_TO_GS_EX
1020 1021 1022 1023 1024

.Lsysenter_fix_flags:
	pushl	$X86_EFLAGS_FIXED
	popfl
	jmp	.Lsysenter_flags_fixed
1025
GLOBAL(__end_SYSENTER_singlestep_region)
1026
ENDPROC(entry_SYSENTER_32)
L
Linus Torvalds 已提交
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * 32-bit legacy system call entry.
 *
 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 * instruction.  INT $0x80 lands here.
 *
 * This entry point can be used by any 32-bit perform system calls.
 * Instances of INT $0x80 can be found inline in various programs and
 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 * fallback for hardware that doesn't support a faster entry method.
 * Restarted 32-bit system calls also fall back to INT $0x80
 * regardless of what instruction was originally used to do the system
 * call.  (64-bit programs can use INT $0x80 as well, but they can
 * only run on 64-bit kernels and therefore land in
 * entry_INT80_compat.)
 *
 * This is considered a slow path.  It is not used by most libc
 * implementations on modern hardware except during process startup.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  arg6
 */
1056
ENTRY(entry_INT80_32)
1057
	ASM_CLAC
1058
	pushl	%eax			/* pt_regs->orig_ax */
1059 1060

	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
1061 1062

	/*
1063 1064
	 * User mode is traced as though IRQs are on, and the interrupt gate
	 * turned them off.
1065
	 */
1066
	TRACE_IRQS_OFF
1067 1068

	movl	%esp, %eax
1069
	call	do_int80_syscall_32
1070
.Lsyscall_32_done:
L
Linus Torvalds 已提交
1071

1072 1073
	STACKLEAK_ERASE

L
Linus Torvalds 已提交
1074
restore_all:
1075
	TRACE_IRQS_IRET
1076
	SWITCH_TO_ENTRY_STACK
1077
.Lrestore_all_notrace:
1078
	CHECK_AND_APPLY_ESPFIX
1079
.Lrestore_nocheck:
1080 1081 1082
	/* Switch back to user CR3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1083 1084
	BUG_IF_WRONG_CR3

1085 1086
	/* Restore user state */
	RESTORE_REGS pop=4			# skip orig_eax/error_code
1087
.Lirq_return:
1088 1089 1090 1091 1092
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler and when returning from
	 * scheduler to user-space.
	 */
I
Ingo Molnar 已提交
1093
	INTERRUPT_RETURN
1094

1095
restore_all_kernel:
T
Thomas Gleixner 已提交
1096
#ifdef CONFIG_PREEMPTION
1097 1098 1099 1100 1101 1102 1103 1104
	DISABLE_INTERRUPTS(CLBR_ANY)
	cmpl	$0, PER_CPU_VAR(__preempt_count)
	jnz	.Lno_preempt
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
	jz	.Lno_preempt
	call	preempt_schedule_irq
.Lno_preempt:
#endif
1105
	TRACE_IRQS_IRET
1106
	PARANOID_EXIT_TO_KERNEL_MODE
1107
	BUG_IF_WRONG_CR3
1108 1109 1110
	RESTORE_REGS 4
	jmp	.Lirq_return

1111 1112 1113 1114
.section .fixup, "ax"
ENTRY(iret_exc	)
	pushl	$0				# no error code
	pushl	$do_iret_error
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * The stack-frame here is the one that iret faulted on, so its a
	 * return-to-user frame. We are on kernel-cr3 because we come here from
	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
	 * as the checker expects it.
	 */
	pushl	%eax
	SWITCH_TO_USER_CR3 scratch_reg=%eax
	popl	%eax
#endif

1128
	jmp	common_exception
L
Linus Torvalds 已提交
1129
.previous
1130
	_ASM_EXTABLE(.Lirq_return, iret_exc)
1131
ENDPROC(entry_INT80_32)
L
Linus Torvalds 已提交
1132

1133
.macro FIXUP_ESPFIX_STACK
1134 1135 1136 1137 1138 1139 1140
/*
 * Switch back for ESPFIX stack to the normal zerobased stack
 *
 * We can't call C functions using the ESPFIX stack. This code reads
 * the high word of the segment base from the GDT and swiches to the
 * normal stack and adjusts ESP with the matching offset.
 */
1141
#ifdef CONFIG_X86_ESPFIX32
1142
	/* fixup the stack */
1143 1144
	mov	GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
	mov	GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
1145
	shl	$16, %eax
1146 1147 1148 1149
	addl	%esp, %eax			/* the adjusted stack pointer */
	pushl	$__KERNEL_DS
	pushl	%eax
	lss	(%esp), %esp			/* switch to the normal stack segment */
1150
#endif
1151 1152
.endm
.macro UNWIND_ESPFIX_STACK
1153
#ifdef CONFIG_X86_ESPFIX32
1154
	movl	%ss, %eax
1155
	/* see if on espfix stack */
1156 1157 1158 1159 1160
	cmpw	$__ESPFIX_SS, %ax
	jne	27f
	movl	$__KERNEL_DS, %eax
	movl	%eax, %ds
	movl	%eax, %es
1161 1162 1163
	/* switch to normal stack */
	FIXUP_ESPFIX_STACK
27:
1164
#endif
1165
.endm
L
Linus Torvalds 已提交
1166 1167

/*
1168 1169
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
L
Linus Torvalds 已提交
1170
 */
1171
	.align 8
L
Linus Torvalds 已提交
1172
ENTRY(irq_entries_start)
1173 1174
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
1175
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
1176 1177 1178 1179
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
1180 1181
END(irq_entries_start)

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
#ifdef CONFIG_X86_LOCAL_APIC
	.align 8
ENTRY(spurious_entries_start)
    vector=FIRST_SYSTEM_VECTOR
    .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
    vector=vector+1
	jmp	common_spurious
	.align	8
    .endr
END(spurious_entries_start)

common_spurious:
	ASM_CLAC
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
	SAVE_ALL switch_stacks=1
	ENCODE_FRAME_POINTER
	TRACE_IRQS_OFF
	movl	%esp, %eax
	call	smp_spurious_interrupt
	jmp	ret_from_intr
1203
ENDPROC(common_spurious)
1204 1205
#endif

1206 1207 1208 1209
/*
 * the CPU automatically disables interrupts when executing an IRQ vector,
 * so IRQ-flags tracing has to follow that:
 */
1210
	.p2align CONFIG_X86_L1_CACHE_SHIFT
L
Linus Torvalds 已提交
1211
common_interrupt:
1212
	ASM_CLAC
1213
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
1214 1215

	SAVE_ALL switch_stacks=1
1216
	ENCODE_FRAME_POINTER
1217
	TRACE_IRQS_OFF
1218 1219 1220
	movl	%esp, %eax
	call	do_IRQ
	jmp	ret_from_intr
1221
ENDPROC(common_interrupt)
L
Linus Torvalds 已提交
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
#define BUILD_INTERRUPT3(name, nr, fn)			\
ENTRY(name)						\
	ASM_CLAC;					\
	pushl	$~(nr);					\
	SAVE_ALL switch_stacks=1;			\
	ENCODE_FRAME_POINTER;				\
	TRACE_IRQS_OFF					\
	movl	%esp, %eax;				\
	call	fn;					\
	jmp	ret_from_intr;				\
1233
ENDPROC(name)
L
Linus Torvalds 已提交
1234

1235 1236
#define BUILD_INTERRUPT(name, nr)		\
	BUILD_INTERRUPT3(name, nr, smp_##name);	\
T
Tejun Heo 已提交
1237

L
Linus Torvalds 已提交
1238
/* The include is where all of the SMP etc. interrupts come from */
1239
#include <asm/entry_arch.h>
L
Linus Torvalds 已提交
1240 1241

ENTRY(coprocessor_error)
1242
	ASM_CLAC
1243 1244
	pushl	$0
	pushl	$do_coprocessor_error
1245
	jmp	common_exception
1246
END(coprocessor_error)
L
Linus Torvalds 已提交
1247 1248

ENTRY(simd_coprocessor_error)
1249
	ASM_CLAC
1250
	pushl	$0
1251 1252
#ifdef CONFIG_X86_INVD_BUG
	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
1253 1254
	ALTERNATIVE "pushl	$do_general_protection",	\
		    "pushl	$do_simd_coprocessor_error",	\
1255
		    X86_FEATURE_XMM
1256
#else
1257
	pushl	$do_simd_coprocessor_error
1258
#endif
1259
	jmp	common_exception
1260
END(simd_coprocessor_error)
L
Linus Torvalds 已提交
1261 1262

ENTRY(device_not_available)
1263
	ASM_CLAC
1264 1265
	pushl	$-1				# mark this as an int
	pushl	$do_device_not_available
1266
	jmp	common_exception
1267
END(device_not_available)
L
Linus Torvalds 已提交
1268

1269 1270
#ifdef CONFIG_PARAVIRT
ENTRY(native_iret)
I
Ingo Molnar 已提交
1271
	iret
1272
	_ASM_EXTABLE(native_iret, iret_exc)
1273
END(native_iret)
1274 1275
#endif

L
Linus Torvalds 已提交
1276
ENTRY(overflow)
1277
	ASM_CLAC
1278 1279
	pushl	$0
	pushl	$do_overflow
1280
	jmp	common_exception
1281
END(overflow)
L
Linus Torvalds 已提交
1282 1283

ENTRY(bounds)
1284
	ASM_CLAC
1285 1286
	pushl	$0
	pushl	$do_bounds
1287
	jmp	common_exception
1288
END(bounds)
L
Linus Torvalds 已提交
1289 1290

ENTRY(invalid_op)
1291
	ASM_CLAC
1292 1293
	pushl	$0
	pushl	$do_invalid_op
1294
	jmp	common_exception
1295
END(invalid_op)
L
Linus Torvalds 已提交
1296 1297

ENTRY(coprocessor_segment_overrun)
1298
	ASM_CLAC
1299 1300
	pushl	$0
	pushl	$do_coprocessor_segment_overrun
1301
	jmp	common_exception
1302
END(coprocessor_segment_overrun)
L
Linus Torvalds 已提交
1303 1304

ENTRY(invalid_TSS)
1305
	ASM_CLAC
1306
	pushl	$do_invalid_TSS
1307
	jmp	common_exception
1308
END(invalid_TSS)
L
Linus Torvalds 已提交
1309 1310

ENTRY(segment_not_present)
1311
	ASM_CLAC
1312
	pushl	$do_segment_not_present
1313
	jmp	common_exception
1314
END(segment_not_present)
L
Linus Torvalds 已提交
1315 1316

ENTRY(stack_segment)
1317
	ASM_CLAC
1318
	pushl	$do_stack_segment
1319
	jmp	common_exception
1320
END(stack_segment)
L
Linus Torvalds 已提交
1321 1322

ENTRY(alignment_check)
1323
	ASM_CLAC
1324
	pushl	$do_alignment_check
1325
	jmp	common_exception
1326
END(alignment_check)
L
Linus Torvalds 已提交
1327

1328
ENTRY(divide_error)
1329
	ASM_CLAC
1330 1331
	pushl	$0				# no error code
	pushl	$do_divide_error
1332
	jmp	common_exception
1333
END(divide_error)
L
Linus Torvalds 已提交
1334 1335 1336

#ifdef CONFIG_X86_MCE
ENTRY(machine_check)
1337
	ASM_CLAC
1338 1339
	pushl	$0
	pushl	machine_check_vector
1340
	jmp	common_exception
1341
END(machine_check)
L
Linus Torvalds 已提交
1342 1343 1344
#endif

ENTRY(spurious_interrupt_bug)
1345
	ASM_CLAC
1346 1347
	pushl	$0
	pushl	$do_spurious_interrupt_bug
1348
	jmp	common_exception
1349
END(spurious_interrupt_bug)
L
Linus Torvalds 已提交
1350

1351
#ifdef CONFIG_XEN_PV
1352
ENTRY(xen_hypervisor_callback)
1353 1354 1355 1356 1357 1358 1359
	/*
	 * Check to see if we got the event in the critical
	 * region in xen_iret_direct, after we've reenabled
	 * events and checked for pending events.  This simulates
	 * iret instruction's behaviour where it delivers a
	 * pending interrupt when enabling interrupts:
	 */
1360
	cmpl	$xen_iret_start_crit, (%esp)
1361
	jb	1f
1362
	cmpl	$xen_iret_end_crit, (%esp)
1363
	jae	1f
1364 1365 1366 1367 1368 1369 1370
	call	xen_iret_crit_fixup
1:
	pushl	$-1				/* orig_ax = -1 => not a system call */
	SAVE_ALL
	ENCODE_FRAME_POINTER
	TRACE_IRQS_OFF
	mov	%esp, %eax
1371
	call	xen_evtchn_do_upcall
T
Thomas Gleixner 已提交
1372
#ifndef CONFIG_PREEMPTION
1373
	call	xen_maybe_preempt_hcall
1374
#endif
1375
	jmp	ret_from_intr
1376 1377
ENDPROC(xen_hypervisor_callback)

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/*
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we fix up by reattempting the load, and zeroing the segment
 * register if the load fails.
 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by maintaining a status value in EAX.
 */
1390
ENTRY(xen_failsafe_callback)
1391 1392 1393 1394 1395 1396
	pushl	%eax
	movl	$1, %eax
1:	mov	4(%esp), %ds
2:	mov	8(%esp), %es
3:	mov	12(%esp), %fs
4:	mov	16(%esp), %gs
1397 1398
	/* EAX == 0 => Category 1 (Bad segment)
	   EAX != 0 => Category 2 (Bad IRET) */
1399 1400 1401 1402 1403 1404
	testl	%eax, %eax
	popl	%eax
	lea	16(%esp), %esp
	jz	5f
	jmp	iret_exc
5:	pushl	$-1				/* orig_ax = -1 => not a system call */
1405
	SAVE_ALL
1406
	ENCODE_FRAME_POINTER
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	jmp	ret_from_exception

.section .fixup, "ax"
6:	xorl	%eax, %eax
	movl	%eax, 4(%esp)
	jmp	1b
7:	xorl	%eax, %eax
	movl	%eax, 8(%esp)
	jmp	2b
8:	xorl	%eax, %eax
	movl	%eax, 12(%esp)
	jmp	3b
9:	xorl	%eax, %eax
	movl	%eax, 16(%esp)
	jmp	4b
1422
.previous
1423 1424 1425 1426
	_ASM_EXTABLE(1b, 6b)
	_ASM_EXTABLE(2b, 7b)
	_ASM_EXTABLE(3b, 8b)
	_ASM_EXTABLE(4b, 9b)
1427
ENDPROC(xen_failsafe_callback)
1428
#endif /* CONFIG_XEN_PV */
1429

1430
#ifdef CONFIG_XEN_PVHVM
1431
BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1432
		 xen_evtchn_do_upcall)
1433
#endif
1434

1435 1436 1437 1438

#if IS_ENABLED(CONFIG_HYPERV)

BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1439
		 hyperv_vector_handler)
1440

1441 1442 1443
BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
		 hyperv_reenlightenment_intr)

1444 1445 1446
BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
		 hv_stimer0_vector_handler)

1447
#endif /* CONFIG_HYPERV */
1448

1449
ENTRY(page_fault)
1450
	ASM_CLAC
1451 1452 1453
	pushl	$do_page_fault
	jmp	common_exception_read_cr2
END(page_fault)
1454

1455 1456
common_exception_read_cr2:
	/* the function address is in %gs's slot on the stack */
1457 1458 1459 1460 1461 1462 1463
	SAVE_ALL switch_stacks=1 skip_gs=1

	ENCODE_FRAME_POINTER
	UNWIND_ESPFIX_STACK

	/* fixup %gs */
	GS_TO_REG %ecx
1464
	movl	PT_GS(%esp), %edi
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx

	GET_CR2_INTO(%ecx)			# might clobber %eax

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

	TRACE_IRQS_OFF
	movl	%esp, %eax			# pt_regs pointer
1476
	CALL_NOSPEC %edi
1477
	jmp	ret_from_exception
1478
END(common_exception_read_cr2)
1479 1480

common_exception:
1481
	/* the function address is in %gs's slot on the stack */
1482
	SAVE_ALL switch_stacks=1 skip_gs=1
1483
	ENCODE_FRAME_POINTER
1484
	UNWIND_ESPFIX_STACK
1485 1486

	/* fixup %gs */
1487
	GS_TO_REG %ecx
1488
	movl	PT_GS(%esp), %edi		# get the function address
1489 1490
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx
1491 1492 1493 1494 1495

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

1496
	TRACE_IRQS_OFF
1497
	movl	%esp, %eax			# pt_regs pointer
1498
	CALL_NOSPEC %edi
1499
	jmp	ret_from_exception
1500
END(common_exception)
1501 1502

ENTRY(debug)
1503
	/*
1504
	 * Entry from sysenter is now handled in common_exception
1505
	 */
1506
	ASM_CLAC
1507
	pushl	$-1				# mark this as an int
1508 1509
	pushl	$do_debug
	jmp	common_exception
1510 1511 1512
END(debug)

/*
1513 1514 1515 1516 1517
 * NMI is doubly nasty.  It can happen on the first instruction of
 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
 * switched stacks.  We handle both conditions by simply checking whether we
 * interrupted kernel code running on the SYSENTER stack.
1518 1519
 */
ENTRY(nmi)
1520
	ASM_CLAC
1521

1522
#ifdef CONFIG_X86_ESPFIX32
1523 1524 1525 1526
	pushl	%eax
	movl	%ss, %eax
	cmpw	$__ESPFIX_SS, %ax
	popl	%eax
1527
	je	.Lnmi_espfix_stack
1528
#endif
1529 1530

	pushl	%eax				# pt_regs->orig_ax
1531
	SAVE_ALL_NMI cr3_reg=%edi
1532
	ENCODE_FRAME_POINTER
1533 1534
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
1535 1536

	/* Are we currently on the SYSENTER stack? */
1537
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1538 1539 1540
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
1541 1542 1543
	jb	.Lnmi_from_sysenter_stack

	/* Not on SYSENTER stack. */
1544
	call	do_nmi
1545
	jmp	.Lnmi_return
1546

1547 1548 1549 1550 1551
.Lnmi_from_sysenter_stack:
	/*
	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
	 * is using the thread stack right now, so it's safe for us to use it.
	 */
1552
	movl	%esp, %ebx
1553 1554
	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
	call	do_nmi
1555
	movl	%ebx, %esp
1556 1557 1558

.Lnmi_return:
	CHECK_AND_APPLY_ESPFIX
1559
	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1560
	jmp	.Lirq_return
1561

1562
#ifdef CONFIG_X86_ESPFIX32
1563
.Lnmi_espfix_stack:
1564
	/*
1565 1566
	 * create the pointer to lss back
	 */
1567 1568 1569
	pushl	%ss
	pushl	%esp
	addl	$4, (%esp)
1570 1571
	/* copy the iret frame of 12 bytes */
	.rept 3
1572
	pushl	16(%esp)
1573
	.endr
1574
	pushl	%eax
1575
	SAVE_ALL_NMI cr3_reg=%edi
1576
	ENCODE_FRAME_POINTER
1577 1578 1579
	FIXUP_ESPFIX_STACK			# %eax == %esp
	xorl	%edx, %edx			# zero error code
	call	do_nmi
1580
	RESTORE_ALL_NMI cr3_reg=%edi
1581
	lss	12+4(%esp), %esp		# back to espfix stack
1582
	jmp	.Lirq_return
1583
#endif
1584 1585 1586
END(nmi)

ENTRY(int3)
1587
	ASM_CLAC
1588
	pushl	$-1				# mark this as an int
1589 1590

	SAVE_ALL switch_stacks=1
1591
	ENCODE_FRAME_POINTER
1592
	TRACE_IRQS_OFF
1593 1594 1595 1596
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
	call	do_int3
	jmp	ret_from_exception
1597 1598 1599
END(int3)

ENTRY(general_protection)
1600
	pushl	$do_general_protection
1601
	jmp	common_exception
1602 1603
END(general_protection)

G
Gleb Natapov 已提交
1604 1605
#ifdef CONFIG_KVM_GUEST
ENTRY(async_page_fault)
1606
	ASM_CLAC
1607
	pushl	$do_async_page_fault
1608
	jmp	common_exception_read_cr2
1609
END(async_page_fault)
G
Gleb Natapov 已提交
1610
#endif
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

ENTRY(rewind_stack_do_exit)
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp

	call	do_exit
1:	jmp 1b
END(rewind_stack_do_exit)