entry_32.S 41.8 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2
/*
3
 *  Copyright (C) 1991,1992  Linus Torvalds
L
Linus Torvalds 已提交
4
 *
5
 * entry_32.S contains the system-call and low-level fault and trap handling routines.
L
Linus Torvalds 已提交
6
 *
7
 * Stack layout while running C code:
8 9 10
 *	ptrace needs to have all registers on the stack.
 *	If the order here is changed, it needs to be
 *	updated in fork.c:copy_process(), signal.c:do_signal(),
L
Linus Torvalds 已提交
11 12 13 14 15
 *	ptrace.c and ptrace.h
 *
 *	 0(%esp) - %ebx
 *	 4(%esp) - %ecx
 *	 8(%esp) - %edx
16
 *	 C(%esp) - %esi
L
Linus Torvalds 已提交
17 18 19 20 21
 *	10(%esp) - %edi
 *	14(%esp) - %ebp
 *	18(%esp) - %eax
 *	1C(%esp) - %ds
 *	20(%esp) - %es
22
 *	24(%esp) - %fs
23 24 25 26 27 28 29
 *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
 *	2C(%esp) - orig_eax
 *	30(%esp) - %eip
 *	34(%esp) - %cs
 *	38(%esp) - %eflags
 *	3C(%esp) - %oldesp
 *	40(%esp) - %oldss
L
Linus Torvalds 已提交
30 31 32
 */

#include <linux/linkage.h>
33
#include <linux/err.h>
L
Linus Torvalds 已提交
34
#include <asm/thread_info.h>
35
#include <asm/irqflags.h>
L
Linus Torvalds 已提交
36 37 38
#include <asm/errno.h>
#include <asm/segment.h>
#include <asm/smp.h>
S
Stas Sergeev 已提交
39
#include <asm/percpu.h>
40
#include <asm/processor-flags.h>
41
#include <asm/irq_vectors.h>
42
#include <asm/cpufeatures.h>
43
#include <asm/alternative-asm.h>
44
#include <asm/asm.h>
45
#include <asm/smap.h>
46
#include <asm/frame.h>
47
#include <asm/trapnr.h>
48
#include <asm/nospec-branch.h>
L
Linus Torvalds 已提交
49

50 51
#include "calling.h"

J
Jiri Olsa 已提交
52 53
	.section .entry.text, "ax"

54 55 56 57 58
/*
 * We use macros for low-level operations which need to be overridden
 * for paravirtualization.  The following will never clobber any registers:
 *   INTERRUPT_RETURN (aka. "iret")
 *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
59
 *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
60 61 62 63 64 65 66
 *
 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
 * Allowing a register to be clobbered can shrink the paravirt replacement
 * enough to patch inline, increasing performance.
 */

T
Thomas Gleixner 已提交
67
#ifdef CONFIG_PREEMPTION
68
# define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
L
Linus Torvalds 已提交
69
#else
70
# define preempt_stop(clobbers)
L
Linus Torvalds 已提交
71 72
#endif

73 74
.macro TRACE_IRQS_IRET
#ifdef CONFIG_TRACE_IRQFLAGS
75 76
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
	jz	1f
77 78 79 80 81
	TRACE_IRQS_ON
1:
#endif
.endm

82 83
#define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)

84 85 86 87 88 89 90 91 92 93 94 95 96
/*
 * User gs save/restore
 *
 * %gs is used for userland TLS and kernel only uses it for stack
 * canary which is required to be at %gs:20 by gcc.  Read the comment
 * at the top of stackprotector.h for more info.
 *
 * Local labels 98 and 99 are used.
 */
#ifdef CONFIG_X86_32_LAZY_GS

 /* unfortunately push/pop can't be no-op */
.macro PUSH_GS
97
	pushl	$0
98 99
.endm
.macro POP_GS pop=0
100
	addl	$(4 + \pop), %esp
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
.endm
.macro POP_GS_EX
.endm

 /* all the rest are no-op */
.macro PTGS_TO_GS
.endm
.macro PTGS_TO_GS_EX
.endm
.macro GS_TO_REG reg
.endm
.macro REG_TO_PTGS reg
.endm
.macro SET_KERNEL_GS reg
.endm

#else	/* CONFIG_X86_32_LAZY_GS */

.macro PUSH_GS
120
	pushl	%gs
121 122 123
.endm

.macro POP_GS pop=0
124
98:	popl	%gs
125
  .if \pop <> 0
126
	add	$\pop, %esp
127 128 129 130
  .endif
.endm
.macro POP_GS_EX
.pushsection .fixup, "ax"
131 132
99:	movl	$0, (%esp)
	jmp	98b
133
.popsection
134
	_ASM_EXTABLE(98b, 99b)
135 136 137
.endm

.macro PTGS_TO_GS
138
98:	mov	PT_GS(%esp), %gs
139 140 141
.endm
.macro PTGS_TO_GS_EX
.pushsection .fixup, "ax"
142 143
99:	movl	$0, PT_GS(%esp)
	jmp	98b
144
.popsection
145
	_ASM_EXTABLE(98b, 99b)
146 147 148
.endm

.macro GS_TO_REG reg
149
	movl	%gs, \reg
150 151
.endm
.macro REG_TO_PTGS reg
152
	movl	\reg, PT_GS(%esp)
153 154
.endm
.macro SET_KERNEL_GS reg
155 156
	movl	$(__KERNEL_STACK_CANARY), \reg
	movl	\reg, %gs
157 158
.endm

159
#endif /* CONFIG_X86_32_LAZY_GS */
160

161 162 163 164 165 166 167 168 169 170
/* Unconditionally switch to user cr3 */
.macro SWITCH_TO_USER_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI

	movl	%cr3, \scratch_reg
	orl	$PTI_SWITCH_MASK, \scratch_reg
	movl	\scratch_reg, %cr3
.Lend_\@:
.endm

171 172 173 174 175
.macro BUG_IF_WRONG_CR3 no_user_check=0
#ifdef CONFIG_DEBUG_ENTRY
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	.if \no_user_check == 0
	/* coming from usermode? */
176
	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
177 178 179 180 181 182 183 184 185 186 187 188
	jz	.Lend_\@
	.endif
	/* On user-cr3? */
	movl	%cr3, %eax
	testl	$PTI_SWITCH_MASK, %eax
	jnz	.Lend_\@
	/* From userspace with kernel cr3 - BUG */
	ud2
.Lend_\@:
#endif
.endm

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
/*
 * Switch to kernel cr3 if not already loaded and return current cr3 in
 * \scratch_reg
 */
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
	movl	%cr3, \scratch_reg
	/* Test if we are already on kernel CR3 */
	testl	$PTI_SWITCH_MASK, \scratch_reg
	jz	.Lend_\@
	andl	$(~PTI_SWITCH_MASK), \scratch_reg
	movl	\scratch_reg, %cr3
	/* Return original CR3 in \scratch_reg */
	orl	$PTI_SWITCH_MASK, \scratch_reg
.Lend_\@:
.endm

206 207 208
#define CS_FROM_ENTRY_STACK	(1 << 31)
#define CS_FROM_USER_CR3	(1 << 30)
#define CS_FROM_KERNEL		(1 << 29)
P
Peter Zijlstra 已提交
209
#define CS_FROM_ESPFIX		(1 << 28)
210 211 212 213 214 215

.macro FIXUP_FRAME
	/*
	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
	 * Clear them in case hardware didn't do this for us.
	 */
216
	andl	$0x0000ffff, 4*4(%esp)
217 218

#ifdef CONFIG_VM86
219
	testl	$X86_EFLAGS_VM, 5*4(%esp)
220 221
	jnz	.Lfrom_usermode_no_fixup_\@
#endif
222
	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
223 224
	jnz	.Lfrom_usermode_no_fixup_\@

225
	orl	$CS_FROM_KERNEL, 4*4(%esp)
226 227 228 229

	/*
	 * When we're here from kernel mode; the (exception) stack looks like:
	 *
230 231 232 233 234 235 236
	 *  6*4(%esp) - <previous context>
	 *  5*4(%esp) - flags
	 *  4*4(%esp) - cs
	 *  3*4(%esp) - ip
	 *  2*4(%esp) - orig_eax
	 *  1*4(%esp) - gs / function
	 *  0*4(%esp) - fs
237 238 239
	 *
	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
	 * is complete and in particular regs->sp is correct. This gives us
240
	 * the original 6 enties as gap:
241
	 *
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	 * 14*4(%esp) - <previous context>
	 * 13*4(%esp) - gap / flags
	 * 12*4(%esp) - gap / cs
	 * 11*4(%esp) - gap / ip
	 * 10*4(%esp) - gap / orig_eax
	 *  9*4(%esp) - gap / gs / function
	 *  8*4(%esp) - gap / fs
	 *  7*4(%esp) - ss
	 *  6*4(%esp) - sp
	 *  5*4(%esp) - flags
	 *  4*4(%esp) - cs
	 *  3*4(%esp) - ip
	 *  2*4(%esp) - orig_eax
	 *  1*4(%esp) - gs / function
	 *  0*4(%esp) - fs
257 258 259 260
	 */

	pushl	%ss		# ss
	pushl	%esp		# sp (points at ss)
261 262 263 264 265 266 267
	addl	$7*4, (%esp)	# point sp back at the previous context
	pushl	7*4(%esp)	# flags
	pushl	7*4(%esp)	# cs
	pushl	7*4(%esp)	# ip
	pushl	7*4(%esp)	# orig_eax
	pushl	7*4(%esp)	# gs / function
	pushl	7*4(%esp)	# fs
268 269 270 271
.Lfrom_usermode_no_fixup_\@:
.endm

.macro IRET_FRAME
272 273 274 275 276 277 278
	/*
	 * We're called with %ds, %es, %fs, and %gs from the interrupted
	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
	 * mode and therefore have a nonzero SS base and an offset ESP,
	 * so any attempt to access the stack needs to use SS.  (except for
	 * accesses through %esp, which automatically use SS.)
	 */
279 280 281 282 283 284 285 286 287 288 289 290 291
	testl $CS_FROM_KERNEL, 1*4(%esp)
	jz .Lfinished_frame_\@

	/*
	 * Reconstruct the 3 entry IRET frame right after the (modified)
	 * regs->sp without lowering %esp in between, such that an NMI in the
	 * middle doesn't scribble our stack.
	 */
	pushl	%eax
	pushl	%ecx
	movl	5*4(%esp), %eax		# (modified) regs->sp

	movl	4*4(%esp), %ecx		# flags
292
	movl	%ecx, %ss:-1*4(%eax)
293 294 295

	movl	3*4(%esp), %ecx		# cs
	andl	$0x0000ffff, %ecx
296
	movl	%ecx, %ss:-2*4(%eax)
297 298

	movl	2*4(%esp), %ecx		# ip
299
	movl	%ecx, %ss:-3*4(%eax)
300 301

	movl	1*4(%esp), %ecx		# eax
302
	movl	%ecx, %ss:-4*4(%eax)
303 304

	popl	%ecx
305
	lea	-4*4(%eax), %esp
306 307 308 309
	popl	%eax
.Lfinished_frame_\@:
.endm

310
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
311
	cld
312
.if \skip_gs == 0
313
	PUSH_GS
314
.endif
315
	pushl	%fs
316 317 318 319 320 321 322 323 324

	pushl	%eax
	movl	$(__KERNEL_PERCPU), %eax
	movl	%eax, %fs
.if \unwind_espfix > 0
	UNWIND_ESPFIX_STACK
.endif
	popl	%eax

325
	FIXUP_FRAME
326 327
	pushl	%es
	pushl	%ds
328
	pushl	\pt_regs_ax
329 330 331 332 333 334 335 336 337
	pushl	%ebp
	pushl	%edi
	pushl	%esi
	pushl	%edx
	pushl	%ecx
	pushl	%ebx
	movl	$(__USER_DS), %edx
	movl	%edx, %ds
	movl	%edx, %es
338
.if \skip_gs == 0
339
	SET_KERNEL_GS %edx
340
.endif
341 342 343 344
	/* Switch to kernel stack if necessary */
.if \switch_stacks > 0
	SWITCH_TO_KERNEL_STACK
.endif
345
.endm
L
Linus Torvalds 已提交
346

P
Peter Zijlstra 已提交
347 348
.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
	SAVE_ALL unwind_espfix=\unwind_espfix
349

350 351
	BUG_IF_WRONG_CR3

352 353 354 355 356 357 358 359 360 361
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We can enter with either user or kernel cr3, the code will
	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
	 * if necessary.
	 */
	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg

.Lend_\@:
362
.endm
363

364
.macro RESTORE_INT_REGS
365 366 367 368 369 370 371
	popl	%ebx
	popl	%ecx
	popl	%edx
	popl	%esi
	popl	%edi
	popl	%ebp
	popl	%eax
372
.endm
L
Linus Torvalds 已提交
373

374
.macro RESTORE_REGS pop=0
375
	RESTORE_INT_REGS
376 377 378
1:	popl	%ds
2:	popl	%es
3:	popl	%fs
379
	POP_GS \pop
P
Peter Zijlstra 已提交
380
	IRET_FRAME
381
.pushsection .fixup, "ax"
382 383 384 385 386 387
4:	movl	$0, (%esp)
	jmp	1b
5:	movl	$0, (%esp)
	jmp	2b
6:	movl	$0, (%esp)
	jmp	3b
388
.popsection
389 390 391
	_ASM_EXTABLE(1b, 4b)
	_ASM_EXTABLE(2b, 5b)
	_ASM_EXTABLE(3b, 6b)
392
	POP_GS_EX
393
.endm
L
Linus Torvalds 已提交
394

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
	/*
	 * Now switch the CR3 when PTI is enabled.
	 *
	 * We enter with kernel cr3 and switch the cr3 to the value
	 * stored on \cr3_reg, which is either a user or a kernel cr3.
	 */
	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI

	testl	$PTI_SWITCH_MASK, \cr3_reg
	jz	.Lswitched_\@

	/* User cr3 in \cr3_reg - write it to hardware cr3 */
	movl	\cr3_reg, %cr3

.Lswitched_\@:

412 413
	BUG_IF_WRONG_CR3

414 415 416
	RESTORE_REGS pop=\pop
.endm

417 418
.macro CHECK_AND_APPLY_ESPFIX
#ifdef CONFIG_X86_ESPFIX32
419 420
#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX

	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
	/*
	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
	 * are returning to the kernel.
	 * See comments in process.c:copy_thread() for details.
	 */
	movb	PT_OLDSS(%esp), %ah
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
	jne	.Lend_\@	# returning to user-space with LDT SS

	/*
	 * Setup and switch to ESPFIX stack
	 *
	 * We're returning to userspace with a 16 bit stack. The CPU will not
	 * restore the high word of ESP for us on executing iret... This is an
	 * "official" bug of all the x86-compatible CPUs, which we can work
	 * around to make dosemu and wine happy. We do this by preloading the
	 * high word of ESP with the high word of the userspace ESP while
	 * compensating for the offset by changing to the ESPFIX segment with
	 * a base address that matches for the difference.
	 */
	mov	%esp, %edx			/* load kernel esp */
	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
	mov	%dx, %ax			/* eax: new kernel esp */
	sub	%eax, %edx			/* offset (low word is 0) */
	shr	$16, %edx
	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
	pushl	$__ESPFIX_SS
	pushl	%eax				/* new kernel esp */
	/*
	 * Disable interrupts, but do not irqtrace this section: we
	 * will soon execute iret and the tracer was already set to
	 * the irqstate after the IRET:
	 */
	DISABLE_INTERRUPTS(CLBR_ANY)
	lss	(%esp), %esp			/* switch to espfix segment */
.Lend_\@:
#endif /* CONFIG_X86_ESPFIX32 */
.endm
466 467 468 469 470 471 472 473 474 475 476

/*
 * Called with pt_regs fully populated and kernel segments loaded,
 * so we can access PER_CPU and use the integer registers.
 *
 * We need to be very careful here with the %esp switch, because an NMI
 * can happen everywhere. If the NMI handler finds itself on the
 * entry-stack, it will overwrite the task-stack and everything we
 * copied there. So allocate the stack-frame on the task-stack and
 * switch to it before we do any copying.
 */
477

478 479 480 481
.macro SWITCH_TO_KERNEL_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

482 483
	BUG_IF_WRONG_CR3

484 485 486 487 488 489 490
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax

	/*
	 * %eax now contains the entry cr3 and we carry it forward in
	 * that register for the time this macro runs
	 */

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
	/* Are we on the entry stack? Bail out if not! */
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
	jae	.Lend_\@

	/* Load stack pointer into %esi and %edi */
	movl	%esp, %esi
	movl	%esi, %edi

	/* Move %edi to the top of the entry stack */
	andl	$(MASK_entry_stack), %edi
	addl	$(SIZEOF_entry_stack), %edi

	/* Load top of task-stack into %edi */
	movl	TSS_entry2task_stack(%edi), %edi

509
	/* Special case - entry from kernel mode via entry stack */
510 511 512 513 514 515 516 517 518 519
#ifdef CONFIG_VM86
	movl	PT_EFLAGS(%esp), %ecx		# mix EFLAGS and CS
	movb	PT_CS(%esp), %cl
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
#else
	movl	PT_CS(%esp), %ecx
	andl	$SEGMENT_RPL_MASK, %ecx
#endif
	cmpl	$USER_RPL, %ecx
	jb	.Lentry_from_kernel_\@
520

521 522 523 524 525 526 527 528 529 530 531 532 533 534
	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
	jz	.Lcopy_pt_regs_\@

	/*
	 * Stack-frame contains 4 additional segment registers when
	 * coming from VM86 mode
	 */
	addl	$(4 * 4), %ecx

#endif
535
.Lcopy_pt_regs_\@:
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550

	/* Allocate frame on task-stack */
	subl	%ecx, %edi

	/* Switch to task-stack */
	movl	%edi, %esp

	/*
	 * We are now on the task-stack and can safely copy over the
	 * stack-frame
	 */
	shrl	$2, %ecx
	cld
	rep movsl

551 552 553 554 555 556 557 558 559 560 561
	jmp .Lend_\@

.Lentry_from_kernel_\@:

	/*
	 * This handles the case when we enter the kernel from
	 * kernel-mode and %esp points to the entry-stack. When this
	 * happens we need to switch to the task-stack to run C code,
	 * but switch back to the entry-stack again when we approach
	 * iret and return to the interrupted code-path. This usually
	 * happens when we hit an exception while restoring user-space
562 563
	 * segment registers on the way back to user-space or when the
	 * sysenter handler runs with eflags.tf set.
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	 *
	 * When we switch to the task-stack here, we can't trust the
	 * contents of the entry-stack anymore, as the exception handler
	 * might be scheduled out or moved to another CPU. Therefore we
	 * copy the complete entry-stack to the task-stack and set a
	 * marker in the iret-frame (bit 31 of the CS dword) to detect
	 * what we've done on the iret path.
	 *
	 * On the iret path we copy everything back and switch to the
	 * entry-stack, so that the interrupted kernel code-path
	 * continues on the same stack it was interrupted with.
	 *
	 * Be aware that an NMI can happen anytime in this code.
	 *
	 * %esi: Entry-Stack pointer (same as %esp)
	 * %edi: Top of the task stack
580
	 * %eax: CR3 on kernel entry
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
	 */

	/* Calculate number of bytes on the entry stack in %ecx */
	movl	%esi, %ecx

	/* %ecx to the top of entry-stack */
	andl	$(MASK_entry_stack), %ecx
	addl	$(SIZEOF_entry_stack), %ecx

	/* Number of bytes on the entry stack to %ecx */
	sub	%esi, %ecx

	/* Mark stackframe as coming from entry stack */
	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)

596 597 598 599 600 601 602 603
	/*
	 * Test the cr3 used to enter the kernel and add a marker
	 * so that we can switch back to it before iret.
	 */
	testl	$PTI_SWITCH_MASK, %eax
	jz	.Lcopy_pt_regs_\@
	orl	$CS_FROM_USER_CR3, PT_CS(%esp)

604 605 606 607 608 609 610
	/*
	 * %esi and %edi are unchanged, %ecx contains the number of
	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
	 * the stack-frame on task-stack and copy everything over
	 */
	jmp .Lcopy_pt_regs_\@

611 612 613
.Lend_\@:
.endm

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/*
 * Switch back from the kernel stack to the entry stack.
 *
 * The %esp register must point to pt_regs on the task stack. It will
 * first calculate the size of the stack-frame to copy, depending on
 * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 * to copy the contents of the stack over to the entry stack.
 *
 * We must be very careful here, as we can't trust the contents of the
 * task-stack once we switched to the entry-stack. When an NMI happens
 * while on the entry-stack, the NMI handler will switch back to the top
 * of the task stack, overwriting our stack-frame we are about to copy.
 * Therefore we switch the stack only after everything is copied over.
 */
.macro SWITCH_TO_ENTRY_STACK

	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV

	/* Bytes to copy */
	movl	$PTREGS_SIZE, %ecx

#ifdef CONFIG_VM86
	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
	jz	.Lcopy_pt_regs_\@

	/* Additional 4 registers to copy when returning to VM86 mode */
	addl    $(4 * 4), %ecx

.Lcopy_pt_regs_\@:
#endif

	/* Initialize source and destination for movsl */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
	subl	%ecx, %edi
	movl	%esp, %esi

	/* Save future stack pointer in %ebx */
	movl	%edi, %ebx

	/* Copy over the stack-frame */
	shrl	$2, %ecx
	cld
	rep movsl

	/*
	 * Switch to entry-stack - needs to happen after everything is
	 * copied because the NMI handler will overwrite the task-stack
	 * when on entry-stack
	 */
	movl	%ebx, %esp

.Lend_\@:
.endm

668 669
/*
 * This macro handles the case when we return to kernel-mode on the iret
670
 * path and have to switch back to the entry stack and/or user-cr3
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
 *
 * See the comments below the .Lentry_from_kernel_\@ label in the
 * SWITCH_TO_KERNEL_STACK macro for more details.
 */
.macro PARANOID_EXIT_TO_KERNEL_MODE

	/*
	 * Test if we entered the kernel with the entry-stack. Most
	 * likely we did not, because this code only runs on the
	 * return-to-kernel path.
	 */
	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
	jz	.Lend_\@

	/* Unlikely slow-path */

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)

	/* Copy the remaining task-stack contents to entry-stack */
	movl	%esp, %esi
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi

	/* Bytes on the task-stack to ecx */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
	subl	%esi, %ecx

	/* Allocate stack-frame on entry-stack */
	subl	%ecx, %edi

	/*
	 * Save future stack-pointer, we must not switch until the
	 * copy is done, otherwise the NMI handler could destroy the
	 * contents of the task-stack we are about to copy.
	 */
	movl	%edi, %ebx

	/* Do the copy */
	shrl	$2, %ecx
	cld
	rep movsl

	/* Safe to switch to entry-stack now */
	movl	%ebx, %esp

716 717 718 719 720 721 722 723 724 725 726 727
	/*
	 * We came from entry-stack and need to check if we also need to
	 * switch back to user cr3.
	 */
	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
	jz	.Lend_\@

	/* Clear marker from stack-frame */
	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)

	SWITCH_TO_USER_CR3 scratch_reg=%eax

728 729
.Lend_\@:
.endm
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

/**
 * idtentry - Macro to generate entry stubs for simple IDT entries
 * @vector:		Vector number
 * @asmsym:		ASM symbol for the entry point
 * @cfunc:		C function to be called
 * @has_error_code:	Hardware pushed error code on stack
 * @sane:		Compatibility flag with 64bit
 */
.macro idtentry vector asmsym cfunc has_error_code:req sane=0
SYM_CODE_START(\asmsym)
	ASM_CLAC
	cld

	.if \has_error_code == 0
		pushl	$0		/* Clear the error code */
	.endif

	/* Push the C-function address into the GS slot */
	pushl	$\cfunc
	/* Invoke the common exception entry */
	jmp	handle_exception
SYM_CODE_END(\asmsym)
.endm

755 756 757 758 759 760
/*
 * Include the defines which emit the idt entries which are shared
 * shared between 32 and 64 bit.
 */
#include <asm/idtentry.h>

761 762 763 764
/*
 * %eax: prev task
 * %edx: next task
 */
765
.pushsection .text, "ax"
766
SYM_CODE_START(__switch_to_asm)
767 768 769 770 771 772 773 774
	/*
	 * Save callee-saved registers
	 * This must match the order in struct inactive_task_frame
	 */
	pushl	%ebp
	pushl	%ebx
	pushl	%edi
	pushl	%esi
775 776 777 778 779
	/*
	 * Flags are saved to prevent AC leakage. This could go
	 * away if objtool would have 32bit support to verify
	 * the STAC/CLAC correctness.
	 */
780
	pushfl
781 782 783 784 785

	/* switch stack */
	movl	%esp, TASK_threadsp(%eax)
	movl	TASK_threadsp(%edx), %esp

786
#ifdef CONFIG_STACKPROTECTOR
787 788 789 790
	movl	TASK_stack_canary(%edx), %ebx
	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
#endif

791 792 793 794 795 796 797 798
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
799
	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
800 801
#endif

802
	/* Restore flags or the incoming task to restore AC state. */
803
	popfl
804
	/* restore callee-saved registers */
805 806 807 808 809 810
	popl	%esi
	popl	%edi
	popl	%ebx
	popl	%ebp

	jmp	__switch_to
811
SYM_CODE_END(__switch_to_asm)
812
.popsection
813

814 815 816 817 818 819 820
/*
 * The unwinder expects the last frame on the stack to always be at the same
 * offset from the end of the page, which allows it to validate the stack.
 * Calling schedule_tail() directly would break that convention because its an
 * asmlinkage function so its argument has to be pushed on the stack.  This
 * wrapper creates a proper "end of stack" frame header before the call.
 */
821
.pushsection .text, "ax"
822
SYM_FUNC_START(schedule_tail_wrapper)
823 824 825 826 827 828 829 830
	FRAME_BEGIN

	pushl	%eax
	call	schedule_tail
	popl	%eax

	FRAME_END
	ret
831
SYM_FUNC_END(schedule_tail_wrapper)
832 833
.popsection

834 835 836 837
/*
 * A newly forked process directly context switches into this address.
 *
 * eax: prev task we switched from
838 839
 * ebx: kernel thread func (NULL for user thread)
 * edi: kernel thread arg
840
 */
841
.pushsection .text, "ax"
842
SYM_CODE_START(ret_from_fork)
843
	call	schedule_tail_wrapper
844

845 846 847 848
	testl	%ebx, %ebx
	jnz	1f		/* kernel threads are uncommon */

2:
849
	/* When we fork, we trace the syscall return in the child, too. */
850
	movl    %esp, %eax
851
	call    syscall_return_slowpath
852
	jmp     .Lsyscall_32_done
853

854 855
	/* kernel thread */
1:	movl	%edi, %eax
856
	CALL_NOSPEC ebx
857
	/*
858 859 860
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
861
	 */
862 863
	movl	$0, PT_EAX(%esp)
	jmp	2b
864
SYM_CODE_END(ret_from_fork)
865
.popsection
866

L
Linus Torvalds 已提交
867 868 869 870 871 872 873 874
/*
 * Return to user mode is not as complex as all this looks,
 * but we want the default path for a system call return to
 * go as quickly as possible which is why some of this is
 * less clear than it otherwise should be.
 */

	# userspace resumption stub bypassing syscall exit tracing
875
SYM_CODE_START_LOCAL(ret_from_exception)
876
	preempt_stop(CLBR_ANY)
L
Linus Torvalds 已提交
877
ret_from_intr:
878
#ifdef CONFIG_VM86
879 880 881
	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
882 883
#else
	/*
884
	 * We can be coming here from child spawned by kernel_thread().
885
	 */
886 887
	movl	PT_CS(%esp), %eax
	andl	$SEGMENT_RPL_MASK, %eax
888
#endif
889
	cmpl	$USER_RPL, %eax
890
	jb	restore_all_kernel		# not returning to v8086 or userspace
891

892
	DISABLE_INTERRUPTS(CLBR_ANY)
893
	TRACE_IRQS_OFF
894 895
	movl	%esp, %eax
	call	prepare_exit_to_usermode
896
	jmp	restore_all_switch_stack
897
SYM_CODE_END(ret_from_exception)
L
Linus Torvalds 已提交
898

899
SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
900 901 902 903 904 905 906 907 908
/*
 * All code from here through __end_SYSENTER_singlestep_region is subject
 * to being single-stepped if a user program sets TF and executes SYSENTER.
 * There is absolutely nothing that we can do to prevent this from happening
 * (thanks Intel!).  To keep our handling of this situation as simple as
 * possible, we handle TF just like AC and NT, except that our #DB handler
 * will ignore all of the single-step traps generated in this range.
 */

909
#ifdef CONFIG_XEN_PV
910 911 912 913
/*
 * Xen doesn't set %esp to be precisely what the normal SYSENTER
 * entry point expects, so fix it up before using the normal path.
 */
914
SYM_CODE_START(xen_sysenter_target)
915
	addl	$5*4, %esp			/* remove xen-provided frame */
916
	jmp	.Lsysenter_past_esp
917
SYM_CODE_END(xen_sysenter_target)
918 919
#endif

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
/*
 * 32-bit SYSENTER entry.
 *
 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 * if X86_FEATURE_SEP is available.  This is the preferred system call
 * entry on 32-bit systems.
 *
 * The SYSENTER instruction, in principle, should *only* occur in the
 * vDSO.  In practice, a small number of Android devices were shipped
 * with a copy of Bionic that inlined a SYSENTER instruction.  This
 * never happened in any of Google's Bionic versions -- it only happened
 * in a narrow range of Intel-provided versions.
 *
 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 * SYSENTER does not save anything on the stack,
 * and does not save old EIP (!!!), ESP, or EFLAGS.
 *
 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 * user and/or vm86 state), we explicitly disable the SYSENTER
 * instruction in vm86 mode by reprogramming the MSRs.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  user stack
 * 0(%ebp) arg6
 */
952
SYM_FUNC_START(entry_SYSENTER_32)
953 954 955 956 957 958 959
	/*
	 * On entry-stack with all userspace-regs live - save and
	 * restore eflags and %eax to use it as scratch-reg for the cr3
	 * switch.
	 */
	pushfl
	pushl	%eax
960
	BUG_IF_WRONG_CR3 no_user_check=1
961 962 963 964 965
	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
	popl	%eax
	popfl

	/* Stack empty again, switch to task stack */
966
	movl	TSS_entry2task_stack(%esp), %esp
967

968
.Lsysenter_past_esp:
969
	pushl	$__USER_DS		/* pt_regs->ss */
970
	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
971 972 973 974 975
	pushfl				/* pt_regs->flags (except IF = 0) */
	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
	pushl	$__USER_CS		/* pt_regs->cs */
	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
	pushl	%eax			/* pt_regs->orig_ax */
976
	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
977

978
	/*
979 980
	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
	 * and TF ourselves.  To save a few cycles, we can check whether
981 982 983 984
	 * either was set instead of doing an unconditional popfq.
	 * This needs to happen before enabling interrupts so that
	 * we don't get preempted with NT set.
	 *
985 986 987 988 989 990
	 * If TF is set, we will single-step all the way to here -- do_debug
	 * will ignore all the traps.  (Yes, this is slow, but so is
	 * single-stepping in general.  This allows us to avoid having
	 * a more complicated code to handle the case where a user program
	 * forces us to single-step through the SYSENTER entry code.)
	 *
991 992 993 994 995 996
	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
	 * out-of-line as an optimization: NT is unlikely to be set in the
	 * majority of the cases and instead of polluting the I$ unnecessarily,
	 * we're keeping that code behind a branch which will predict as
	 * not-taken and therefore its instructions won't be fetched.
	 */
997
	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
998 999 1000
	jnz	.Lsysenter_fix_flags
.Lsysenter_flags_fixed:

1001 1002
	movl	%esp, %eax
	call	do_fast_syscall_32
1003 1004 1005
	/* XEN PV guests always use IRET path */
	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
1006

1007 1008
	STACKLEAK_ERASE

1009
	/* Opportunistic SYSEXIT */
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

	/*
	 * Setup entry stack - we keep the pointer in %eax and do the
	 * switch after almost all user-state is restored.
	 */

	/* Load entry stack pointer and allocate frame for eflags/eax */
	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
	subl	$(2*4), %eax

	/* Copy eflags and eax to entry stack */
	movl	PT_EFLAGS(%esp), %edi
	movl	PT_EAX(%esp), %esi
	movl	%edi, (%eax)
	movl	%esi, 4(%eax)

	/* Restore user registers and segments */
1027 1028
	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
1029 1030
1:	mov	PT_FS(%esp), %fs
	PTGS_TO_GS
1031

1032 1033 1034 1035 1036
	popl	%ebx			/* pt_regs->bx */
	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
	popl	%esi			/* pt_regs->si */
	popl	%edi			/* pt_regs->di */
	popl	%ebp			/* pt_regs->bp */
1037 1038 1039

	/* Switch to entry stack */
	movl	%eax, %esp
1040

1041 1042 1043
	/* Now ready to switch the cr3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1044 1045 1046 1047 1048
	/*
	 * Restore all flags except IF. (We restore IF separately because
	 * STI gives a one-instruction window in which we won't be interrupted,
	 * whereas POPF does not.)
	 */
1049
	btrl	$X86_EFLAGS_IF_BIT, (%esp)
1050
	BUG_IF_WRONG_CR3 no_user_check=1
1051
	popfl
1052
	popl	%eax
1053

1054 1055 1056 1057
	/*
	 * Return back to the vDSO, which will pop ecx and edx.
	 * Don't bother with DS and ES (they already contain __USER_DS).
	 */
1058 1059
	sti
	sysexit
R
Roland McGrath 已提交
1060

1061 1062 1063
.pushsection .fixup, "ax"
2:	movl	$0, PT_FS(%esp)
	jmp	1b
1064
.popsection
1065
	_ASM_EXTABLE(1b, 2b)
1066
	PTGS_TO_GS_EX
1067 1068 1069 1070 1071

.Lsysenter_fix_flags:
	pushl	$X86_EFLAGS_FIXED
	popfl
	jmp	.Lsysenter_flags_fixed
1072
SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
1073
SYM_FUNC_END(entry_SYSENTER_32)
L
Linus Torvalds 已提交
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * 32-bit legacy system call entry.
 *
 * 32-bit x86 Linux system calls traditionally used the INT $0x80
 * instruction.  INT $0x80 lands here.
 *
 * This entry point can be used by any 32-bit perform system calls.
 * Instances of INT $0x80 can be found inline in various programs and
 * libraries.  It is also used by the vDSO's __kernel_vsyscall
 * fallback for hardware that doesn't support a faster entry method.
 * Restarted 32-bit system calls also fall back to INT $0x80
 * regardless of what instruction was originally used to do the system
 * call.  (64-bit programs can use INT $0x80 as well, but they can
 * only run on 64-bit kernels and therefore land in
 * entry_INT80_compat.)
 *
 * This is considered a slow path.  It is not used by most libc
 * implementations on modern hardware except during process startup.
 *
 * Arguments:
 * eax  system call number
 * ebx  arg1
 * ecx  arg2
 * edx  arg3
 * esi  arg4
 * edi  arg5
 * ebp  arg6
 */
1103
SYM_FUNC_START(entry_INT80_32)
1104
	ASM_CLAC
1105
	pushl	%eax			/* pt_regs->orig_ax */
1106 1107

	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
1108 1109

	movl	%esp, %eax
1110
	call	do_int80_syscall_32
1111
.Lsyscall_32_done:
1112 1113
	STACKLEAK_ERASE

1114
restore_all_switch_stack:
1115
	SWITCH_TO_ENTRY_STACK
1116
	CHECK_AND_APPLY_ESPFIX
1117

1118 1119 1120
	/* Switch back to user CR3 */
	SWITCH_TO_USER_CR3 scratch_reg=%eax

1121 1122
	BUG_IF_WRONG_CR3

1123 1124
	/* Restore user state */
	RESTORE_REGS pop=4			# skip orig_eax/error_code
1125
.Lirq_return:
1126 1127 1128 1129 1130
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler and when returning from
	 * scheduler to user-space.
	 */
I
Ingo Molnar 已提交
1131
	INTERRUPT_RETURN
1132

1133
restore_all_kernel:
T
Thomas Gleixner 已提交
1134
#ifdef CONFIG_PREEMPTION
1135 1136 1137 1138 1139 1140 1141 1142
	DISABLE_INTERRUPTS(CLBR_ANY)
	cmpl	$0, PER_CPU_VAR(__preempt_count)
	jnz	.Lno_preempt
	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
	jz	.Lno_preempt
	call	preempt_schedule_irq
.Lno_preempt:
#endif
1143
	TRACE_IRQS_IRET
1144
	PARANOID_EXIT_TO_KERNEL_MODE
1145
	BUG_IF_WRONG_CR3
1146 1147 1148
	RESTORE_REGS 4
	jmp	.Lirq_return

1149
.section .fixup, "ax"
1150
SYM_CODE_START(asm_iret_error)
1151
	pushl	$0				# no error code
1152
	pushl	$iret_error
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * The stack-frame here is the one that iret faulted on, so its a
	 * return-to-user frame. We are on kernel-cr3 because we come here from
	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
	 * as the checker expects it.
	 */
	pushl	%eax
	SWITCH_TO_USER_CR3 scratch_reg=%eax
	popl	%eax
#endif

1166 1167
	jmp	handle_exception
SYM_CODE_END(asm_iret_error)
L
Linus Torvalds 已提交
1168
.previous
1169
	_ASM_EXTABLE(.Lirq_return, asm_iret_error)
1170
SYM_FUNC_END(entry_INT80_32)
L
Linus Torvalds 已提交
1171

1172
.macro FIXUP_ESPFIX_STACK
1173 1174 1175 1176 1177 1178
/*
 * Switch back for ESPFIX stack to the normal zerobased stack
 *
 * We can't call C functions using the ESPFIX stack. This code reads
 * the high word of the segment base from the GDT and swiches to the
 * normal stack and adjusts ESP with the matching offset.
1179 1180 1181 1182
 *
 * We might be on user CR3 here, so percpu data is not mapped and we can't
 * access the GDT through the percpu segment.  Instead, use SGDT to find
 * the cpu_entry_area alias of the GDT.
1183
 */
1184
#ifdef CONFIG_X86_ESPFIX32
1185
	/* fixup the stack */
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	pushl	%ecx
	subl	$2*4, %esp
	sgdt	(%esp)
	movl	2(%esp), %ecx				/* GDT address */
	/*
	 * Careful: ECX is a linear pointer, so we need to force base
	 * zero.  %cs is the only known-linear segment we have right now.
	 */
	mov	%cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al	/* bits 16..23 */
	mov	%cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah	/* bits 24..31 */
1196
	shl	$16, %eax
1197 1198
	addl	$2*4, %esp
	popl	%ecx
1199 1200 1201 1202
	addl	%esp, %eax			/* the adjusted stack pointer */
	pushl	$__KERNEL_DS
	pushl	%eax
	lss	(%esp), %esp			/* switch to the normal stack segment */
1203
#endif
1204
.endm
1205

1206
.macro UNWIND_ESPFIX_STACK
1207
	/* It's safe to clobber %eax, all other regs need to be preserved */
1208
#ifdef CONFIG_X86_ESPFIX32
1209
	movl	%ss, %eax
1210
	/* see if on espfix stack */
1211
	cmpw	$__ESPFIX_SS, %ax
1212
	jne	.Lno_fixup_\@
1213 1214
	/* switch to normal stack */
	FIXUP_ESPFIX_STACK
1215
.Lno_fixup_\@:
1216
#endif
1217
.endm
L
Linus Torvalds 已提交
1218 1219

/*
1220 1221
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
L
Linus Torvalds 已提交
1222
 */
1223
	.align 8
1224
SYM_CODE_START(irq_entries_start)
1225 1226
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
1227
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
1228 1229 1230 1231
    vector=vector+1
	jmp	common_interrupt
	.align	8
    .endr
1232
SYM_CODE_END(irq_entries_start)
1233

1234 1235
#ifdef CONFIG_X86_LOCAL_APIC
	.align 8
1236
SYM_CODE_START(spurious_entries_start)
1237 1238 1239 1240 1241 1242 1243
    vector=FIRST_SYSTEM_VECTOR
    .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
    vector=vector+1
	jmp	common_spurious
	.align	8
    .endr
1244
SYM_CODE_END(spurious_entries_start)
1245

1246
SYM_CODE_START_LOCAL(common_spurious)
1247 1248 1249 1250 1251 1252 1253 1254
	ASM_CLAC
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
	SAVE_ALL switch_stacks=1
	ENCODE_FRAME_POINTER
	TRACE_IRQS_OFF
	movl	%esp, %eax
	call	smp_spurious_interrupt
	jmp	ret_from_intr
1255
SYM_CODE_END(common_spurious)
1256 1257
#endif

1258 1259 1260 1261
/*
 * the CPU automatically disables interrupts when executing an IRQ vector,
 * so IRQ-flags tracing has to follow that:
 */
1262
	.p2align CONFIG_X86_L1_CACHE_SHIFT
1263
SYM_CODE_START_LOCAL(common_interrupt)
1264
	ASM_CLAC
1265
	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
1266 1267

	SAVE_ALL switch_stacks=1
1268
	ENCODE_FRAME_POINTER
1269
	TRACE_IRQS_OFF
1270 1271 1272
	movl	%esp, %eax
	call	do_IRQ
	jmp	ret_from_intr
1273
SYM_CODE_END(common_interrupt)
L
Linus Torvalds 已提交
1274

1275
#define BUILD_INTERRUPT3(name, nr, fn)			\
1276
SYM_FUNC_START(name)					\
1277 1278 1279 1280 1281 1282 1283 1284
	ASM_CLAC;					\
	pushl	$~(nr);					\
	SAVE_ALL switch_stacks=1;			\
	ENCODE_FRAME_POINTER;				\
	TRACE_IRQS_OFF					\
	movl	%esp, %eax;				\
	call	fn;					\
	jmp	ret_from_intr;				\
1285
SYM_FUNC_END(name)
L
Linus Torvalds 已提交
1286

1287 1288
#define BUILD_INTERRUPT(name, nr)		\
	BUILD_INTERRUPT3(name, nr, smp_##name);	\
T
Tejun Heo 已提交
1289

L
Linus Torvalds 已提交
1290
/* The include is where all of the SMP etc. interrupts come from */
1291
#include <asm/entry_arch.h>
L
Linus Torvalds 已提交
1292

1293
#ifdef CONFIG_PARAVIRT
1294
SYM_CODE_START(native_iret)
I
Ingo Molnar 已提交
1295
	iret
1296
	_ASM_EXTABLE(native_iret, asm_iret_error)
1297
SYM_CODE_END(native_iret)
1298
#endif
L
Linus Torvalds 已提交
1299

1300
#ifdef CONFIG_XEN_PV
1301
SYM_FUNC_START(xen_hypervisor_callback)
1302 1303 1304 1305 1306 1307 1308
	/*
	 * Check to see if we got the event in the critical
	 * region in xen_iret_direct, after we've reenabled
	 * events and checked for pending events.  This simulates
	 * iret instruction's behaviour where it delivers a
	 * pending interrupt when enabling interrupts:
	 */
1309
	cmpl	$xen_iret_start_crit, (%esp)
1310
	jb	1f
1311
	cmpl	$xen_iret_end_crit, (%esp)
1312
	jae	1f
1313 1314 1315 1316 1317 1318 1319
	call	xen_iret_crit_fixup
1:
	pushl	$-1				/* orig_ax = -1 => not a system call */
	SAVE_ALL
	ENCODE_FRAME_POINTER
	TRACE_IRQS_OFF
	mov	%esp, %eax
1320
	call	xen_evtchn_do_upcall
T
Thomas Gleixner 已提交
1321
#ifndef CONFIG_PREEMPTION
1322
	call	xen_maybe_preempt_hcall
1323
#endif
1324
	jmp	ret_from_intr
1325
SYM_FUNC_END(xen_hypervisor_callback)
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/*
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we fix up by reattempting the load, and zeroing the segment
 * register if the load fails.
 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by maintaining a status value in EAX.
 */
1339
SYM_FUNC_START(xen_failsafe_callback)
1340 1341 1342 1343 1344 1345
	pushl	%eax
	movl	$1, %eax
1:	mov	4(%esp), %ds
2:	mov	8(%esp), %es
3:	mov	12(%esp), %fs
4:	mov	16(%esp), %gs
1346 1347
	/* EAX == 0 => Category 1 (Bad segment)
	   EAX != 0 => Category 2 (Bad IRET) */
1348 1349 1350 1351
	testl	%eax, %eax
	popl	%eax
	lea	16(%esp), %esp
	jz	5f
1352
	jmp	asm_iret_error
1353
5:	pushl	$-1				/* orig_ax = -1 => not a system call */
1354
	SAVE_ALL
1355
	ENCODE_FRAME_POINTER
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
	jmp	ret_from_exception

.section .fixup, "ax"
6:	xorl	%eax, %eax
	movl	%eax, 4(%esp)
	jmp	1b
7:	xorl	%eax, %eax
	movl	%eax, 8(%esp)
	jmp	2b
8:	xorl	%eax, %eax
	movl	%eax, 12(%esp)
	jmp	3b
9:	xorl	%eax, %eax
	movl	%eax, 16(%esp)
	jmp	4b
1371
.previous
1372 1373 1374 1375
	_ASM_EXTABLE(1b, 6b)
	_ASM_EXTABLE(2b, 7b)
	_ASM_EXTABLE(3b, 8b)
	_ASM_EXTABLE(4b, 9b)
1376
SYM_FUNC_END(xen_failsafe_callback)
1377
#endif /* CONFIG_XEN_PV */
1378

1379
#ifdef CONFIG_XEN_PVHVM
1380
BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1381
		 xen_evtchn_do_upcall)
1382
#endif
1383

1384 1385 1386 1387

#if IS_ENABLED(CONFIG_HYPERV)

BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
1388
		 hyperv_vector_handler)
1389

1390 1391 1392
BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
		 hyperv_reenlightenment_intr)

1393 1394 1395
BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
		 hv_stimer0_vector_handler)

1396
#endif /* CONFIG_HYPERV */
1397

1398
SYM_CODE_START(page_fault)
1399
	ASM_CLAC
1400 1401
	pushl	$do_page_fault
	jmp	common_exception_read_cr2
1402
SYM_CODE_END(page_fault)
1403

1404
SYM_CODE_START_LOCAL_NOALIGN(common_exception_read_cr2)
1405
	/* the function address is in %gs's slot on the stack */
1406
	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1407 1408 1409 1410 1411

	ENCODE_FRAME_POINTER

	/* fixup %gs */
	GS_TO_REG %ecx
1412
	movl	PT_GS(%esp), %edi
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx

	GET_CR2_INTO(%ecx)			# might clobber %eax

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

	TRACE_IRQS_OFF
	movl	%esp, %eax			# pt_regs pointer
1424
	CALL_NOSPEC edi
1425
	jmp	ret_from_exception
1426
SYM_CODE_END(common_exception_read_cr2)
1427

1428
SYM_CODE_START_LOCAL_NOALIGN(common_exception)
1429
	/* the function address is in %gs's slot on the stack */
1430
	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
1431
	ENCODE_FRAME_POINTER
1432 1433

	/* fixup %gs */
1434
	GS_TO_REG %ecx
1435
	movl	PT_GS(%esp), %edi		# get the function address
1436 1437
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx
1438 1439 1440 1441 1442

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

1443
	TRACE_IRQS_OFF
1444
	movl	%esp, %eax			# pt_regs pointer
1445
	CALL_NOSPEC edi
1446
	jmp	ret_from_exception
1447
SYM_CODE_END(common_exception)
1448

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
	/* the function address is in %gs's slot on the stack */
	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
	ENCODE_FRAME_POINTER

	/* fixup %gs */
	GS_TO_REG %ecx
	movl	PT_GS(%esp), %edi		# get the function address
	REG_TO_PTGS %ecx
	SET_KERNEL_GS %ecx

	/* fixup orig %eax */
	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart

	movl	%esp, %eax			# pt_regs pointer
	CALL_NOSPEC edi

#ifdef CONFIG_VM86
	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
	movb	PT_CS(%esp), %al
	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
#else
	/*
	 * We can be coming here from child spawned by kernel_thread().
	 */
	movl	PT_CS(%esp), %eax
	andl	$SEGMENT_RPL_MASK, %eax
#endif
	cmpl	$USER_RPL, %eax			# returning to v8086 or userspace ?
	jnb	ret_to_user

	PARANOID_EXIT_TO_KERNEL_MODE
	BUG_IF_WRONG_CR3
	RESTORE_REGS 4
	jmp	.Lirq_return

ret_to_user:
	movl	%esp, %eax
	jmp	restore_all_switch_stack
SYM_CODE_END(handle_exception)

1491
SYM_CODE_START(asm_exc_double_fault)
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
1:
	/*
	 * This is a task gate handler, not an interrupt gate handler.
	 * The error code is on the stack, but the stack is otherwise
	 * empty.  Interrupts are off.  Our state is sane with the following
	 * exceptions:
	 *
	 *  - CR0.TS is set.  "TS" literally means "task switched".
	 *  - EFLAGS.NT is set because we're a "nested task".
	 *  - The doublefault TSS has back_link set and has been marked busy.
	 *  - TR points to the doublefault TSS and the normal TSS is busy.
	 *  - CR3 is the normal kernel PGD.  This would be delightful, except
	 *    that the CPU didn't bother to save the old CR3 anywhere.  This
	 *    would make it very awkward to return back to the context we came
	 *    from.
	 *
	 * The rest of EFLAGS is sanitized for us, so we don't need to
	 * worry about AC or DF.
	 *
	 * Don't even bother popping the error code.  It's always zero,
	 * and ignoring it makes us a bit more robust against buggy
	 * hypervisor task gate implementations.
	 *
	 * We will manually undo the task switch instead of doing a
	 * task-switching IRET.
	 */

	clts				/* clear CR0.TS */
	pushl	$X86_EFLAGS_FIXED
	popfl				/* clear EFLAGS.NT */

	call	doublefault_shim

	/* We don't support returning, so we have no IRET here. */
1:
	hlt
	jmp 1b
1529
SYM_CODE_END(asm_exc_double_fault)
1530

1531
/*
1532 1533 1534 1535 1536
 * NMI is doubly nasty.  It can happen on the first instruction of
 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
 * switched stacks.  We handle both conditions by simply checking whether we
 * interrupted kernel code running on the SYSENTER stack.
1537
 */
1538
SYM_CODE_START(asm_exc_nmi)
1539
	ASM_CLAC
1540

1541
#ifdef CONFIG_X86_ESPFIX32
P
Peter Zijlstra 已提交
1542 1543 1544 1545
	/*
	 * ESPFIX_SS is only ever set on the return to user path
	 * after we've switched to the entry stack.
	 */
1546 1547 1548 1549
	pushl	%eax
	movl	%ss, %eax
	cmpw	$__ESPFIX_SS, %ax
	popl	%eax
1550
	je	.Lnmi_espfix_stack
1551
#endif
1552 1553

	pushl	%eax				# pt_regs->orig_ax
1554
	SAVE_ALL_NMI cr3_reg=%edi
1555
	ENCODE_FRAME_POINTER
1556 1557
	xorl	%edx, %edx			# zero error code
	movl	%esp, %eax			# pt_regs pointer
1558 1559

	/* Are we currently on the SYSENTER stack? */
1560
	movl	PER_CPU_VAR(cpu_entry_area), %ecx
1561 1562 1563
	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
	cmpl	$SIZEOF_entry_stack, %ecx
1564 1565 1566
	jb	.Lnmi_from_sysenter_stack

	/* Not on SYSENTER stack. */
1567
	call	exc_nmi
1568
	jmp	.Lnmi_return
1569

1570 1571 1572 1573 1574
.Lnmi_from_sysenter_stack:
	/*
	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
	 * is using the thread stack right now, so it's safe for us to use it.
	 */
1575
	movl	%esp, %ebx
1576
	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
1577
	call	exc_nmi
1578
	movl	%ebx, %esp
1579 1580

.Lnmi_return:
P
Peter Zijlstra 已提交
1581 1582 1583 1584 1585
#ifdef CONFIG_X86_ESPFIX32
	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
	jnz	.Lnmi_from_espfix
#endif

1586
	CHECK_AND_APPLY_ESPFIX
1587
	RESTORE_ALL_NMI cr3_reg=%edi pop=4
1588
	jmp	.Lirq_return
1589

1590
#ifdef CONFIG_X86_ESPFIX32
1591
.Lnmi_espfix_stack:
1592
	/*
P
Peter Zijlstra 已提交
1593
	 * Create the pointer to LSS back
1594
	 */
1595 1596 1597
	pushl	%ss
	pushl	%esp
	addl	$4, (%esp)
P
Peter Zijlstra 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606

	/* Copy the (short) IRET frame */
	pushl	4*4(%esp)	# flags
	pushl	4*4(%esp)	# cs
	pushl	4*4(%esp)	# ip

	pushl	%eax		# orig_ax

	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
1607
	ENCODE_FRAME_POINTER
P
Peter Zijlstra 已提交
1608 1609 1610 1611

	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)

1612
	xorl	%edx, %edx			# zero error code
P
Peter Zijlstra 已提交
1613 1614 1615 1616
	movl	%esp, %eax			# pt_regs pointer
	jmp	.Lnmi_from_sysenter_stack

.Lnmi_from_espfix:
1617
	RESTORE_ALL_NMI cr3_reg=%edi
P
Peter Zijlstra 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	/*
	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
	 * fix up the gap and long frame:
	 *
	 *  3 - original frame	(exception)
	 *  2 - ESPFIX block	(above)
	 *  6 - gap		(FIXUP_FRAME)
	 *  5 - long frame	(FIXUP_FRAME)
	 *  1 - orig_ax
	 */
	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
1629
	jmp	.Lirq_return
1630
#endif
1631
SYM_CODE_END(asm_exc_nmi)
1632

1633
.pushsection .text, "ax"
1634
SYM_CODE_START(rewind_stack_do_exit)
1635 1636 1637 1638 1639 1640 1641 1642
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp

	call	do_exit
1:	jmp 1b
1643
SYM_CODE_END(rewind_stack_do_exit)
1644
.popsection