intel_lrc.c 78.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133 134 135 136 137
 */

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
138
#include "intel_mocs.h"
139

140
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
141 142 143
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

#define CTX_LRI_HEADER_0		0x01
#define CTX_CONTEXT_CONTROL		0x02
#define CTX_RING_HEAD			0x04
#define CTX_RING_TAIL			0x06
#define CTX_RING_BUFFER_START		0x08
#define CTX_RING_BUFFER_CONTROL		0x0a
#define CTX_BB_HEAD_U			0x0c
#define CTX_BB_HEAD_L			0x0e
#define CTX_BB_STATE			0x10
#define CTX_SECOND_BB_HEAD_U		0x12
#define CTX_SECOND_BB_HEAD_L		0x14
#define CTX_SECOND_BB_STATE		0x16
#define CTX_BB_PER_CTX_PTR		0x18
#define CTX_RCS_INDIRECT_CTX		0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET	0x1c
#define CTX_LRI_HEADER_1		0x21
#define CTX_CTX_TIMESTAMP		0x22
#define CTX_PDP3_UDW			0x24
#define CTX_PDP3_LDW			0x26
#define CTX_PDP2_UDW			0x28
#define CTX_PDP2_LDW			0x2a
#define CTX_PDP1_UDW			0x2c
#define CTX_PDP1_LDW			0x2e
#define CTX_PDP0_UDW			0x30
#define CTX_PDP0_LDW			0x32
#define CTX_LRI_HEADER_2		0x41
#define CTX_R_PWR_CLK_STATE		0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS	0x44

187 188 189 190 191
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
192

193
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194
	(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195 196 197 198
	(reg_state)[(pos)+1] = (val); \
} while (0)

#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {		\
199
	const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n));	\
200 201
	reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
	reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202
} while (0)
203

204
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205 206
	reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
	reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207
} while (0)
208

209 210
enum {
	ADVANCED_CONTEXT = 0,
211
	LEGACY_32B_CONTEXT,
212 213 214
	ADVANCED_AD_CONTEXT,
	LEGACY_64B_CONTEXT
};
215 216 217 218
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev)  (USES_FULL_48BIT_PPGTT(dev) ?\
		LEGACY_64B_CONTEXT :\
		LEGACY_32B_CONTEXT)
219 220 221 222 223 224 225
enum {
	FAULT_AND_HANG = 0,
	FAULT_AND_HALT, /* Debug only */
	FAULT_AND_STREAM,
	FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
226
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT  0x17
227

228
static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
229 230 231
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
		struct drm_i915_gem_object *default_ctx_obj);

232

233 234 235 236 237 238
/**
 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
 * @dev: DRM device.
 * @enable_execlists: value of i915.enable_execlists module parameter.
 *
 * Only certain platforms support Execlists (the prerequisites being
239
 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 241 242
 *
 * Return: 1 if Execlists is supported and has to be enabled.
 */
243 244
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
245 246
	WARN_ON(i915.enable_ppgtt == -1);

247 248 249 250 251 252
	/* On platforms with execlist available, vGPU will only
	 * support execlist mode, no ring buffer mode.
	 */
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
		return 1;

253 254 255
	if (INTEL_INFO(dev)->gen >= 9)
		return 1;

256 257 258
	if (enable_execlists == 0)
		return 0;

259 260
	if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
	    i915.use_mmio_flip >= 0)
261 262 263 264
		return 1;

	return 0;
}
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static void
logical_ring_init_platform_invariants(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;

	ring->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
					IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
					(ring->id == VCS || ring->id == VCS2);

	ring->ctx_desc_template = GEN8_CTX_VALID;
	ring->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
				   GEN8_CTX_ADDRESSING_MODE_SHIFT;
	if (IS_GEN8(dev))
		ring->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
	ring->ctx_desc_template |= GEN8_CTX_PRIVILEGE;

	/* TODO: WaDisableLiteRestore when we start using semaphore
	 * signalling between Command Streamers */
	/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */

	/* WaEnableForceRestoreInCtxtDescForVCS:skl */
	/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
	if (ring->disable_lite_restore_wa)
		ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
}

292
/**
293 294
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
295
 *
296 297
 * @ctx: Context to work on
 * @ring: Engine the descriptor will be used with
298
 *
299 300 301 302 303 304 305 306 307 308
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
 * This is what a descriptor looks like, from LSB to MSB:
 *    bits 0-11:    flags, GEN8_CTX_* (cached in ctx_desc_template)
 *    bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *    bits 32-51:    ctx ID, a globally unique tag (the LRCA again!)
 *    bits 52-63:    reserved, may encode the engine ID (for GuC)
309
 */
310 311 312
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
				   struct intel_engine_cs *ring)
313
{
314
	uint64_t lrca, desc;
315

316 317
	lrca = ctx->engine[ring->id].lrc_vma->node.start +
	       LRC_PPHWSP_PN * PAGE_SIZE;
318

319 320 321
	desc = ring->ctx_desc_template;			   /* bits  0-11 */
	desc |= lrca;					   /* bits 12-31 */
	desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
322

323
	ctx->engine[ring->id].lrc_desc = desc;
324 325
}

326 327
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
				     struct intel_engine_cs *ring)
328
{
329 330
	return ctx->engine[ring->id].lrc_desc;
}
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * intel_execlists_ctx_id() - get the Execlists Context ID
 * @ctx: Context to get the ID for
 * @ring: Engine to get the ID for
 *
 * Do not confuse with ctx->id! Unfortunately we have a name overload
 * here: the old context ID we pass to userspace as a handler so that
 * they can refer to a context, and the new context ID we pass to the
 * ELSP so that the GPU can inform us of the context status via
 * interrupts.
 *
 * The context ID is a portion of the context descriptor, so we can
 * just extract the required part from the cached descriptor.
 *
 * Return: 20-bits globally unique context ID.
 */
u32 intel_execlists_ctx_id(struct intel_context *ctx,
			   struct intel_engine_cs *ring)
{
	return intel_lr_context_descriptor(ctx, ring) >> GEN8_CTX_ID_SHIFT;
352 353
}

354 355
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
				 struct drm_i915_gem_request *rq1)
356
{
357 358

	struct intel_engine_cs *ring = rq0->ring;
359 360
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
361
	uint64_t desc[2];
362

363
	if (rq1) {
364
		desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
365 366 367 368
		rq1->elsp_submitted++;
	} else {
		desc[1] = 0;
	}
369

370
	desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
371
	rq0->elsp_submitted++;
372

373
	/* You must always write both descriptors in the order below. */
374 375
	spin_lock(&dev_priv->uncore.lock);
	intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
376 377
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
378

379
	I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
380
	/* The context is automatically loaded after the following */
381
	I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
382

383
	/* ELSP is a wo register, use another nearby reg for posting */
384
	POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
385 386
	intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
	spin_unlock(&dev_priv->uncore.lock);
387 388
}

389
static int execlists_update_context(struct drm_i915_gem_request *rq)
390
{
391 392
	struct intel_engine_cs *ring = rq->ring;
	struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
393
	uint32_t *reg_state = rq->ctx->engine[ring->id].lrc_reg_state;
394

395
	reg_state[CTX_RING_TAIL+1] = rq->tail;
396

397 398 399 400 401 402
	if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* True 32b PPGTT with dynamic page allocation: update PDP
		 * registers and point the unallocated PDPs to scratch page.
		 * PML4 is allocated during ppgtt init, so this is not needed
		 * in 48-bit mode.
		 */
403 404 405 406 407 408
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

409 410 411
	return 0;
}

412 413
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
				      struct drm_i915_gem_request *rq1)
414
{
415
	execlists_update_context(rq0);
416

417
	if (rq1)
418
		execlists_update_context(rq1);
419

420
	execlists_elsp_write(rq0, rq1);
421 422
}

423 424
static void execlists_context_unqueue(struct intel_engine_cs *ring)
{
425 426
	struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
	struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
427 428

	assert_spin_locked(&ring->execlist_lock);
429

430 431 432 433 434 435
	/*
	 * If irqs are not active generate a warning as batches that finish
	 * without the irqs may get lost and a GPU Hang may occur.
	 */
	WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));

436 437 438 439 440 441 442 443
	if (list_empty(&ring->execlist_queue))
		return;

	/* Try to read in pairs */
	list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
				 execlist_link) {
		if (!req0) {
			req0 = cursor;
444
		} else if (req0->ctx == cursor->ctx) {
445 446
			/* Same ctx: ignore first request, as second request
			 * will update tail past first request's workload */
447
			cursor->elsp_submitted = req0->elsp_submitted;
448 449
			list_move_tail(&req0->execlist_link,
				       &ring->execlist_retired_req_list);
450 451 452 453 454 455 456
			req0 = cursor;
		} else {
			req1 = cursor;
			break;
		}
	}

457 458 459 460 461
	if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
		/*
		 * WaIdleLiteRestore: make sure we never cause a lite
		 * restore with HEAD==TAIL
		 */
462
		if (req0->elsp_submitted) {
463 464 465 466 467 468 469 470 471 472 473 474 475 476
			/*
			 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
			 * as we resubmit the request. See gen8_emit_request()
			 * for where we prepare the padding after the end of the
			 * request.
			 */
			struct intel_ringbuffer *ringbuf;

			ringbuf = req0->ctx->engine[ring->id].ringbuf;
			req0->tail += 8;
			req0->tail &= ringbuf->size - 1;
		}
	}

477 478
	WARN_ON(req1 && req1->elsp_submitted);

479
	execlists_submit_requests(req0, req1);
480 481
}

482 483 484
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
					   u32 request_id)
{
485
	struct drm_i915_gem_request *head_req;
486 487 488 489

	assert_spin_locked(&ring->execlist_lock);

	head_req = list_first_entry_or_null(&ring->execlist_queue,
490
					    struct drm_i915_gem_request,
491 492 493
					    execlist_link);

	if (head_req != NULL) {
494
		if (intel_execlists_ctx_id(head_req->ctx, ring) == request_id) {
495 496 497 498
			WARN(head_req->elsp_submitted == 0,
			     "Never submitted head request\n");

			if (--head_req->elsp_submitted <= 0) {
499 500
				list_move_tail(&head_req->execlist_link,
					       &ring->execlist_retired_req_list);
501 502
				return true;
			}
503 504 505 506 507 508
		}
	}

	return false;
}

B
Ben Widawsky 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521
static void get_context_status(struct intel_engine_cs *ring,
			       u8 read_pointer,
			       u32 *status, u32 *context_id)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;

	if (WARN_ON(read_pointer >= GEN8_CSB_ENTRIES))
		return;

	*status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer));
	*context_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer));
}

522
/**
523
 * intel_lrc_irq_handler() - handle Context Switch interrupts
524 525 526 527 528
 * @ring: Engine Command Streamer to handle.
 *
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
529
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
530 531 532 533 534
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	u32 status_pointer;
	u8 read_pointer;
	u8 write_pointer;
535
	u32 status = 0;
536 537 538 539 540 541
	u32 status_id;
	u32 submit_contexts = 0;

	status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));

	read_pointer = ring->next_context_status_buffer;
542
	write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
543
	if (read_pointer > write_pointer)
544
		write_pointer += GEN8_CSB_ENTRIES;
545 546 547 548

	spin_lock(&ring->execlist_lock);

	while (read_pointer < write_pointer) {
B
Ben Widawsky 已提交
549 550 551

		get_context_status(ring, ++read_pointer % GEN8_CSB_ENTRIES,
				   &status, &status_id);
552

553 554 555
		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
			continue;

556 557 558 559 560 561 562 563
		if (status & GEN8_CTX_STATUS_PREEMPTED) {
			if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
				if (execlists_check_remove_request(ring, status_id))
					WARN(1, "Lite Restored request removed from queue\n");
			} else
				WARN(1, "Preemption without Lite Restore\n");
		}

B
Ben Widawsky 已提交
564 565
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
		    (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
566 567 568 569 570
			if (execlists_check_remove_request(ring, status_id))
				submit_contexts++;
		}
	}

571
	if (ring->disable_lite_restore_wa) {
572 573 574 575 576
		/* Prevent a ctx to preempt itself */
		if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
		    (submit_contexts != 0))
			execlists_context_unqueue(ring);
	} else if (submit_contexts != 0) {
577
		execlists_context_unqueue(ring);
578
	}
579 580 581

	spin_unlock(&ring->execlist_lock);

582 583 584
	if (unlikely(submit_contexts > 2))
		DRM_ERROR("More than two context complete events?\n");

585
	ring->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
586

587 588
	/* Update the read pointer to the old write pointer. Manual ringbuffer
	 * management ftw </sarcasm> */
589
	I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
590 591
		   _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
				 ring->next_context_status_buffer << 8));
592 593
}

594
static int execlists_context_queue(struct drm_i915_gem_request *request)
595
{
596
	struct intel_engine_cs *ring = request->ring;
597
	struct drm_i915_gem_request *cursor;
598
	int num_elements = 0;
599

600
	if (request->ctx != request->i915->kernel_context)
601 602
		intel_lr_context_pin(request);

603 604
	i915_gem_request_reference(request);

605
	spin_lock_irq(&ring->execlist_lock);
606

607 608 609 610 611
	list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
		if (++num_elements > 2)
			break;

	if (num_elements > 2) {
612
		struct drm_i915_gem_request *tail_req;
613 614

		tail_req = list_last_entry(&ring->execlist_queue,
615
					   struct drm_i915_gem_request,
616 617
					   execlist_link);

618
		if (request->ctx == tail_req->ctx) {
619
			WARN(tail_req->elsp_submitted != 0,
620
				"More than 2 already-submitted reqs queued\n");
621 622
			list_move_tail(&tail_req->execlist_link,
				       &ring->execlist_retired_req_list);
623 624 625
		}
	}

626
	list_add_tail(&request->execlist_link, &ring->execlist_queue);
627
	if (num_elements == 0)
628 629
		execlists_context_unqueue(ring);

630
	spin_unlock_irq(&ring->execlist_lock);
631 632 633 634

	return 0;
}

635
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
636
{
637
	struct intel_engine_cs *ring = req->ring;
638 639 640 641 642 643 644
	uint32_t flush_domains;
	int ret;

	flush_domains = 0;
	if (ring->gpu_caches_dirty)
		flush_domains = I915_GEM_GPU_DOMAINS;

645
	ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
646 647 648 649 650 651 652
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

653
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
654 655
				 struct list_head *vmas)
{
656
	const unsigned other_rings = ~intel_ring_flag(req->ring);
657 658 659 660 661 662 663 664
	struct i915_vma *vma;
	uint32_t flush_domains = 0;
	bool flush_chipset = false;
	int ret;

	list_for_each_entry(vma, vmas, exec_list) {
		struct drm_i915_gem_object *obj = vma->obj;

665
		if (obj->active & other_rings) {
666
			ret = i915_gem_object_sync(obj, req->ring, &req);
667 668 669
			if (ret)
				return ret;
		}
670 671 672 673 674 675 676 677 678 679 680 681 682

		if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
			flush_chipset |= i915_gem_clflush_object(obj, false);

		flush_domains |= obj->base.write_domain;
	}

	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

	/* Unconditionally invalidate gpu caches and ensure that we do flush
	 * any residual writes from the previous batch.
	 */
683
	return logical_ring_invalidate_all_caches(req);
684 685
}

686
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
687
{
D
Dave Gordon 已提交
688
	int ret = 0;
689

690 691
	request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;

692 693 694 695 696 697 698 699 700 701 702 703 704
	if (i915.enable_guc_submission) {
		/*
		 * Check that the GuC has space for the request before
		 * going any further, as the i915_add_request() call
		 * later on mustn't fail ...
		 */
		struct intel_guc *guc = &request->i915->guc;

		ret = i915_guc_wq_check_space(guc->execbuf_client);
		if (ret)
			return ret;
	}

D
Dave Gordon 已提交
705 706 707 708
	if (request->ctx != request->i915->kernel_context)
		ret = intel_lr_context_pin(request);

	return ret;
709 710
}

711
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
712
				       int bytes)
713
{
714 715 716
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	struct intel_engine_cs *ring = req->ring;
	struct drm_i915_gem_request *target;
717 718
	unsigned space;
	int ret;
719 720 721 722

	if (intel_ring_space(ringbuf) >= bytes)
		return 0;

723 724 725
	/* The whole point of reserving space is to not wait! */
	WARN_ON(ringbuf->reserved_in_use);

726
	list_for_each_entry(target, &ring->request_list, list) {
727 728 729 730 731
		/*
		 * The request queue is per-engine, so can contain requests
		 * from multiple ringbuffers. Here, we must ignore any that
		 * aren't from the ringbuffer we're considering.
		 */
732
		if (target->ringbuf != ringbuf)
733 734 735
			continue;

		/* Would completion of this request free enough space? */
736
		space = __intel_ring_space(target->postfix, ringbuf->tail,
737 738
					   ringbuf->size);
		if (space >= bytes)
739 740 741
			break;
	}

742
	if (WARN_ON(&target->list == &ring->request_list))
743 744
		return -ENOSPC;

745
	ret = i915_wait_request(target);
746 747 748
	if (ret)
		return ret;

749 750
	ringbuf->space = space;
	return 0;
751 752 753 754
}

/*
 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
755
 * @request: Request to advance the logical ringbuffer of.
756 757 758 759 760 761
 *
 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
 * really happens during submission is that the context and current tail will be placed
 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
 * point, the tail *inside* the context is updated and the ELSP written to.
 */
762
static int
763
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
764
{
765
	struct intel_ringbuffer *ringbuf = request->ringbuf;
766
	struct drm_i915_private *dev_priv = request->i915;
767

768 769
	intel_logical_ring_advance(ringbuf);
	request->tail = ringbuf->tail;
770

771 772 773 774 775 776 777 778 779
	/*
	 * Here we add two extra NOOPs as padding to avoid
	 * lite restore of a context with HEAD==TAIL.
	 *
	 * Caller must reserve WA_TAIL_DWORDS for us!
	 */
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);
780

781 782
	if (intel_ring_stopped(request->ring))
		return 0;
783

784 785 786 787
	if (dev_priv->guc.execbuf_client)
		i915_guc_submit(dev_priv->guc.execbuf_client, request);
	else
		execlists_context_queue(request);
788 789

	return 0;
790 791
}

792
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
793 794 795 796 797 798 799 800 801 802 803 804 805
{
	uint32_t __iomem *virt;
	int rem = ringbuf->size - ringbuf->tail;

	virt = ringbuf->virtual_start + ringbuf->tail;
	rem /= 4;
	while (rem--)
		iowrite32(MI_NOOP, virt++);

	ringbuf->tail = 0;
	intel_ring_update_space(ringbuf);
}

806
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
807
{
808
	struct intel_ringbuffer *ringbuf = req->ringbuf;
809 810 811 812
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
	int remain_actual = ringbuf->size - ringbuf->tail;
	int ret, total_bytes, wait_bytes = 0;
	bool need_wrap = false;
813

814 815 816 817
	if (ringbuf->reserved_in_use)
		total_bytes = bytes;
	else
		total_bytes = bytes + ringbuf->reserved_size;
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
	} else {
		if (unlikely(total_bytes > remain_usable)) {
			/*
			 * The base request will fit but the reserved space
			 * falls off the end. So only need to to wait for the
			 * reserved size after flushing out the remainder.
			 */
			wait_bytes = remain_actual + ringbuf->reserved_size;
			need_wrap = true;
		} else if (total_bytes > ringbuf->space) {
			/* No wrapping required, just waiting. */
			wait_bytes = total_bytes;
838
		}
839 840
	}

841 842
	if (wait_bytes) {
		ret = logical_ring_wait_for_space(req, wait_bytes);
843 844
		if (unlikely(ret))
			return ret;
845 846 847

		if (need_wrap)
			__wrap_ring_buffer(ringbuf);
848 849 850 851 852 853 854 855
	}

	return 0;
}

/**
 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
 *
856
 * @req: The request to start some new work for
857 858 859 860 861 862 863 864 865
 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
 *
 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
 * and also preallocates a request (every workload submission is still mediated through
 * requests, same as it did with legacy ringbuffer submission).
 *
 * Return: non-zero if the ringbuffer is not ready to be written to.
 */
866
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
867
{
868
	struct drm_i915_private *dev_priv;
869 870
	int ret;

871 872 873
	WARN_ON(req == NULL);
	dev_priv = req->ring->dev->dev_private;

874 875 876 877 878
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
				   dev_priv->mm.interruptible);
	if (ret)
		return ret;

879
	ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
880 881 882
	if (ret)
		return ret;

883
	req->ringbuf->space -= num_dwords * sizeof(uint32_t);
884 885 886
	return 0;
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
{
	/*
	 * The first call merely notes the reserve request and is common for
	 * all back ends. The subsequent localised _begin() call actually
	 * ensures that the reservation is available. Without the begin, if
	 * the request creator immediately submitted the request without
	 * adding any commands to it then there might not actually be
	 * sufficient room for the submission commands.
	 */
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);

	return intel_logical_ring_begin(request, 0);
}

902 903 904 905 906 907 908 909 910 911
/**
 * execlists_submission() - submit a batchbuffer for execution, Execlists style
 * @dev: DRM device.
 * @file: DRM file.
 * @ring: Engine Command Streamer to submit to.
 * @ctx: Context to employ for this submission.
 * @args: execbuffer call arguments.
 * @vmas: list of vmas.
 * @batch_obj: the batchbuffer to submit.
 * @exec_start: batchbuffer start virtual address pointer.
912
 * @dispatch_flags: translated execbuffer call flags.
913 914 915 916 917 918
 *
 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
 * away the submission details of the execbuffer ioctl call.
 *
 * Return: non-zero if the submission fails.
 */
919
int intel_execlists_submission(struct i915_execbuffer_params *params,
920
			       struct drm_i915_gem_execbuffer2 *args,
921
			       struct list_head *vmas)
922
{
923 924
	struct drm_device       *dev = params->dev;
	struct intel_engine_cs  *ring = params->ring;
925
	struct drm_i915_private *dev_priv = dev->dev_private;
926 927
	struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
	u64 exec_start;
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
	int instp_mode;
	u32 instp_mask;
	int ret;

	instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	instp_mask = I915_EXEC_CONSTANTS_MASK;
	switch (instp_mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
			DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
			return -EINVAL;
		}

		if (instp_mode != dev_priv->relative_constants_mode) {
			if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
				DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
				return -EINVAL;
			}

			/* The HW changed the meaning on this bit on gen6 */
			instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
		}
		break;
	default:
		DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
		return -EINVAL;
	}

	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		DRM_DEBUG("sol reset is gen7 only\n");
		return -EINVAL;
	}

963
	ret = execlists_move_to_gpu(params->request, vmas);
964 965 966 967 968
	if (ret)
		return ret;

	if (ring == &dev_priv->ring[RCS] &&
	    instp_mode != dev_priv->relative_constants_mode) {
969
		ret = intel_logical_ring_begin(params->request, 4);
970 971 972 973 974
		if (ret)
			return ret;

		intel_logical_ring_emit(ringbuf, MI_NOOP);
		intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
975
		intel_logical_ring_emit_reg(ringbuf, INSTPM);
976 977 978 979 980 981
		intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
		intel_logical_ring_advance(ringbuf);

		dev_priv->relative_constants_mode = instp_mode;
	}

982 983 984
	exec_start = params->batch_obj_vm_offset +
		     args->batch_start_offset;

985
	ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
986 987 988
	if (ret)
		return ret;

989
	trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
990

991
	i915_gem_execbuffer_move_to_active(vmas, params->request);
992
	i915_gem_execbuffer_retire_commands(params);
993

994 995 996
	return 0;
}

997 998
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
{
999
	struct drm_i915_gem_request *req, *tmp;
1000 1001 1002 1003 1004 1005 1006
	struct list_head retired_list;

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
	if (list_empty(&ring->execlist_retired_req_list))
		return;

	INIT_LIST_HEAD(&retired_list);
1007
	spin_lock_irq(&ring->execlist_lock);
1008
	list_replace_init(&ring->execlist_retired_req_list, &retired_list);
1009
	spin_unlock_irq(&ring->execlist_lock);
1010 1011

	list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1012 1013 1014 1015
		struct intel_context *ctx = req->ctx;
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;

1016
		if (ctx_obj && (ctx != req->i915->kernel_context))
1017
			intel_lr_context_unpin(req);
1018
		list_del(&req->execlist_link);
1019
		i915_gem_request_unreference(req);
1020 1021 1022
	}
}

1023 1024
void intel_logical_ring_stop(struct intel_engine_cs *ring)
{
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	int ret;

	if (!intel_ring_initialized(ring))
		return;

	ret = intel_ring_idle(ring);
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

	/* TODO: Is this correct with Execlists enabled? */
	I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
	if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
		DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
		return;
	}
	I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
1043 1044
}

1045
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1046
{
1047
	struct intel_engine_cs *ring = req->ring;
1048 1049 1050 1051 1052
	int ret;

	if (!ring->gpu_caches_dirty)
		return 0;

1053
	ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1054 1055 1056 1057 1058 1059 1060
	if (ret)
		return ret;

	ring->gpu_caches_dirty = false;
	return 0;
}

1061
static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1062
				   struct intel_context *ctx)
1063
{
1064 1065
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1066 1067
	struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1068
	struct page *lrc_state_page;
1069
	uint32_t *lrc_reg_state;
1070
	int ret;
1071 1072

	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1073

1074 1075 1076 1077
	ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
			PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret)
		return ret;
1078

1079 1080 1081 1082 1083 1084
	lrc_state_page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
	if (WARN_ON(!lrc_state_page)) {
		ret = -ENODEV;
		goto unpin_ctx_obj;
	}

1085 1086 1087
	ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
	if (ret)
		goto unpin_ctx_obj;
1088

1089 1090
	ctx->engine[ring->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
	intel_lr_context_descriptor_update(ctx, ring);
1091 1092 1093
	lrc_reg_state = kmap(lrc_state_page);
	lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
	ctx->engine[ring->id].lrc_reg_state = lrc_reg_state;
1094
	ctx_obj->dirty = true;
1095

1096 1097 1098
	/* Invalidate GuC TLB. */
	if (i915.enable_guc_submission)
		I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1099

1100 1101 1102 1103
	return ret;

unpin_ctx_obj:
	i915_gem_object_ggtt_unpin(ctx_obj);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	return ret;
}

static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
{
	int ret = 0;
	struct intel_engine_cs *ring = rq->ring;

	if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1114
		ret = intel_lr_context_do_pin(ring, rq->ctx);
1115 1116 1117 1118 1119
		if (ret)
			goto reset_pin_count;
	}
	return ret;

1120
reset_pin_count:
1121
	rq->ctx->engine[ring->id].pin_count = 0;
1122 1123 1124
	return ret;
}

1125
void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
1126
{
1127 1128 1129 1130
	struct intel_engine_cs *ring = rq->ring;
	struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
	struct intel_ringbuffer *ringbuf = rq->ringbuf;

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));

	if (!ctx_obj)
		return;

	if (--rq->ctx->engine[ring->id].pin_count == 0) {
		kunmap(kmap_to_page(rq->ctx->engine[ring->id].lrc_reg_state));
		intel_unpin_ringbuffer_obj(ringbuf);
		i915_gem_object_ggtt_unpin(ctx_obj);
		rq->ctx->engine[ring->id].lrc_vma = NULL;
		rq->ctx->engine[ring->id].lrc_desc = 0;
		rq->ctx->engine[ring->id].lrc_reg_state = NULL;
1143 1144 1145
	}
}

1146
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1147 1148
{
	int ret, i;
1149 1150
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1151 1152 1153 1154
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct i915_workarounds *w = &dev_priv->workarounds;

1155
	if (w->count == 0)
1156 1157 1158
		return 0;

	ring->gpu_caches_dirty = true;
1159
	ret = logical_ring_flush_all_caches(req);
1160 1161 1162
	if (ret)
		return ret;

1163
	ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1164 1165 1166 1167 1168
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
	for (i = 0; i < w->count; i++) {
1169
		intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1170 1171 1172 1173 1174 1175 1176
		intel_logical_ring_emit(ringbuf, w->reg[i].value);
	}
	intel_logical_ring_emit(ringbuf, MI_NOOP);

	intel_logical_ring_advance(ringbuf);

	ring->gpu_caches_dirty = true;
1177
	ret = logical_ring_flush_all_caches(req);
1178 1179 1180 1181 1182 1183
	if (ret)
		return ret;

	return 0;
}

1184
#define wa_ctx_emit(batch, index, cmd)					\
1185
	do {								\
1186 1187
		int __index = (index)++;				\
		if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1188 1189
			return -ENOSPC;					\
		}							\
1190
		batch[__index] = (cmd);					\
1191 1192
	} while (0)

V
Ville Syrjälä 已提交
1193
#define wa_ctx_emit_reg(batch, index, reg) \
1194
	wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
						uint32_t *const batch,
						uint32_t index)
{
	uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);

1218 1219 1220 1221 1222 1223
	/*
	 * WaDisableLSQCROPERFforOCL:skl
	 * This WA is implemented in skl_init_clock_gating() but since
	 * this batch updates GEN8_L3SQCREG4 with default value we need to
	 * set this bit here to retain the WA during flush.
	 */
1224
	if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
1225 1226
		l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;

1227
	wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1228
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1229
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1230 1231 1232 1233
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);

	wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1234
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	wa_ctx_emit(batch, index, l3sqc4_flush);

	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_DC_FLUSH_ENABLE));
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);

1245
	wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1246
				   MI_SRM_LRM_GLOBAL_GTT));
V
Ville Syrjälä 已提交
1247
	wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1248 1249
	wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
	wa_ctx_emit(batch, index, 0);
1250 1251 1252 1253

	return index;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t offset,
				    uint32_t start_alignment)
{
	return wa_ctx->offset = ALIGN(offset, start_alignment);
}

static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
			     uint32_t offset,
			     uint32_t size_alignment)
{
	wa_ctx->size = offset - wa_ctx->offset;

	WARN(wa_ctx->size % size_alignment,
	     "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
	     wa_ctx->size, size_alignment);
	return 0;
}

/**
 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned. This is updated
 *    with the offset value received as input.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
 * @batch: page in which WA are loaded
 * @offset: This field specifies the start of the batch, it should be
 *  cache-aligned otherwise it is adjusted accordingly.
 *  Typically we only have one indirect_ctx and per_ctx batch buffer which are
 *  initialized at the beginning and shared across all contexts but this field
 *  helps us to have multiple batches at different offsets and select them based
 *  on a criteria. At the moment this batch always start at the beginning of the page
 *  and at this point we don't have multiple wa_ctx batch buffers.
 *
 *  The number of WA applied are not known at the beginning; we use this field
 *  to return the no of DWORDS written.
1292
 *
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
 *  It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 *  so it adds NOOPs as padding to make it cacheline aligned.
 *  MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 *  makes a complete batch buffer.
 *
 * Return: non-zero if we exceed the PAGE_SIZE limit.
 */

static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1306
	uint32_t scratch_addr;
1307 1308
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1309
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1310
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1311

1312 1313
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
	if (IS_BROADWELL(ring->dev)) {
1314 1315 1316 1317
		int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
		if (rc < 0)
			return rc;
		index = rc;
1318 1319
	}

1320 1321 1322 1323
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
	scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;

1324 1325 1326 1327 1328 1329 1330 1331 1332
	wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
	wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
				   PIPE_CONTROL_GLOBAL_GTT_IVB |
				   PIPE_CONTROL_CS_STALL |
				   PIPE_CONTROL_QW_WRITE));
	wa_ctx_emit(batch, index, scratch_addr);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
	wa_ctx_emit(batch, index, 0);
1333

1334 1335
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
1336
		wa_ctx_emit(batch, index, MI_NOOP);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

/**
 * gen8_init_perctx_bb() - initialize per ctx batch with WA
 *
 * @ring: only applicable for RCS
 * @wa_ctx: structure representing wa_ctx
 *  offset: specifies start of the batch, should be cache-aligned.
 *  size: size of the batch in DWORDS but HW expects in terms of cachelines
1354
 * @batch: page in which WA are loaded
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
 * @offset: This field specifies the start of this batch.
 *   This batch is started immediately after indirect_ctx batch. Since we ensure
 *   that indirect_ctx ends on a cacheline this batch is aligned automatically.
 *
 *   The number of DWORDS written are returned using this field.
 *
 *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
 *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
 */
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1371
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1372
	wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1373

1374
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1375 1376 1377 1378

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1379 1380 1381 1382 1383
static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
				    struct i915_wa_ctx_bb *wa_ctx,
				    uint32_t *const batch,
				    uint32_t *offset)
{
1384
	int ret;
1385
	struct drm_device *dev = ring->dev;
1386 1387
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1388
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1389
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1390
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1391
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1392

1393 1394 1395 1396 1397 1398
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
	ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
	if (ret < 0)
		return ret;
	index = ret;

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
	/* Pad to end of cacheline */
	while (index % CACHELINE_DWORDS)
		wa_ctx_emit(batch, index, MI_NOOP);

	return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}

static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
			       struct i915_wa_ctx_bb *wa_ctx,
			       uint32_t *const batch,
			       uint32_t *offset)
{
1411
	struct drm_device *dev = ring->dev;
1412 1413
	uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);

1414
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1415
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
T
Tim Gore 已提交
1416
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1417
		wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
V
Ville Syrjälä 已提交
1418
		wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1419 1420 1421 1422 1423
		wa_ctx_emit(batch, index,
			    _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
		wa_ctx_emit(batch, index, MI_NOOP);
	}

1424
	/* WaDisableCtxRestoreArbitration:skl,bxt */
1425
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
T
Tim Gore 已提交
1426
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1427 1428
		wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);

1429 1430 1431 1432 1433
	wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);

	return wa_ctx_end(wa_ctx, *offset = index, 1);
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
{
	int ret;

	ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
	if (!ring->wa_ctx.obj) {
		DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
		return -ENOMEM;
	}

	ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
	if (ret) {
		DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
				 ret);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		return ret;
	}

	return 0;
}

static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
{
	if (ring->wa_ctx.obj) {
		i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
		drm_gem_object_unreference(&ring->wa_ctx.obj->base);
		ring->wa_ctx.obj = NULL;
	}
}

static int intel_init_workaround_bb(struct intel_engine_cs *ring)
{
	int ret;
	uint32_t *batch;
	uint32_t offset;
	struct page *page;
	struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;

	WARN_ON(ring->id != RCS);

1474
	/* update this when WA for higher Gen are added */
1475 1476 1477
	if (INTEL_INFO(ring->dev)->gen > 9) {
		DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
			  INTEL_INFO(ring->dev)->gen);
1478
		return 0;
1479
	}
1480

1481 1482 1483 1484 1485 1486
	/* some WA perform writes to scratch page, ensure it is valid */
	if (ring->scratch.obj == NULL) {
		DRM_ERROR("scratch page not allocated for %s\n", ring->name);
		return -EINVAL;
	}

1487 1488 1489 1490 1491 1492
	ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1493
	page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	batch = kmap_atomic(page);
	offset = 0;

	if (INTEL_INFO(ring->dev)->gen == 8) {
		ret = gen8_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen8_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	} else if (INTEL_INFO(ring->dev)->gen == 9) {
		ret = gen9_init_indirectctx_bb(ring,
					       &wa_ctx->indirect_ctx,
					       batch,
					       &offset);
		if (ret)
			goto out;

		ret = gen9_init_perctx_bb(ring,
					  &wa_ctx->per_ctx,
					  batch,
					  &offset);
		if (ret)
			goto out;
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	}

out:
	kunmap_atomic(batch);
	if (ret)
		lrc_destroy_wa_ctx_obj(ring);

	return ret;
}

1535 1536 1537 1538
static int gen8_init_common_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1539
	u8 next_context_status_buffer_hw;
1540

1541
	lrc_setup_hardware_status_page(ring,
1542
				dev_priv->kernel_context->engine[ring->id].state);
1543

1544 1545 1546
	I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
	I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);

1547 1548 1549 1550
	I915_WRITE(RING_MODE_GEN7(ring),
		   _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
		   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
	POSTING_READ(RING_MODE_GEN7(ring));
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

	/*
	 * Instead of resetting the Context Status Buffer (CSB) read pointer to
	 * zero, we need to read the write pointer from hardware and use its
	 * value because "this register is power context save restored".
	 * Effectively, these states have been observed:
	 *
	 *      | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
	 * BDW  | CSB regs not reset       | CSB regs reset       |
	 * CHT  | CSB regs not reset       | CSB regs not reset   |
1561 1562
	 * SKL  |         ?                |         ?            |
	 * BXT  |         ?                |         ?            |
1563
	 */
1564 1565
	next_context_status_buffer_hw =
		GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(ring)));
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575

	/*
	 * When the CSB registers are reset (also after power-up / gpu reset),
	 * CSB write pointer is set to all 1's, which is not valid, use '5' in
	 * this special case, so the first element read is CSB[0].
	 */
	if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
		next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);

	ring->next_context_status_buffer = next_context_status_buffer_hw;
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);

	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));

	return 0;
}

static int gen8_init_render_ring(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1603
	return init_workarounds_ring(ring);
1604 1605
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
static int gen9_init_render_ring(struct intel_engine_cs *ring)
{
	int ret;

	ret = gen8_init_common_ring(ring);
	if (ret)
		return ret;

	return init_workarounds_ring(ring);
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
	struct intel_engine_cs *ring = req->ring;
	struct intel_ringbuffer *ringbuf = req->ringbuf;
	const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
	int i, ret;

	ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
	if (ret)
		return ret;

	intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1633
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1634
		intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1635
		intel_logical_ring_emit_reg(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1636 1637 1638 1639 1640 1641 1642 1643 1644
		intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
	}

	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1645
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1646
			      u64 offset, unsigned dispatch_flags)
1647
{
1648
	struct intel_ringbuffer *ringbuf = req->ringbuf;
1649
	bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1650 1651
	int ret;

1652 1653 1654 1655
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1656 1657
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1658 1659
	if (req->ctx->ppgtt &&
	    (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
1660 1661
		if (!USES_FULL_48BIT_PPGTT(req->i915) &&
		    !intel_vgpu_active(req->i915->dev)) {
1662 1663 1664 1665
			ret = intel_logical_ring_emit_pdps(req);
			if (ret)
				return ret;
		}
1666 1667 1668 1669

		req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
	}

1670
	ret = intel_logical_ring_begin(req, 4);
1671 1672 1673 1674
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
1675 1676 1677 1678
	intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
				(ppgtt<<8) |
				(dispatch_flags & I915_DISPATCH_RS ?
				 MI_BATCH_RESOURCE_STREAMER : 0));
1679 1680 1681 1682 1683 1684 1685 1686
	intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
	intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
	intel_logical_ring_emit(ringbuf, MI_NOOP);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1687 1688 1689 1690 1691 1692
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

1693
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		return false;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (ring->irq_refcount++ == 0) {
		I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);

	return true;
}

static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
{
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long flags;

	spin_lock_irqsave(&dev_priv->irq_lock, flags);
	if (--ring->irq_refcount == 0) {
		I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
		POSTING_READ(RING_IMR(ring->mmio_base));
	}
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}

1720
static int gen8_emit_flush(struct drm_i915_gem_request *request,
1721 1722 1723
			   u32 invalidate_domains,
			   u32 unused)
{
1724
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1725 1726 1727 1728 1729 1730
	struct intel_engine_cs *ring = ringbuf->ring;
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t cmd;
	int ret;

1731
	ret = intel_logical_ring_begin(request, 4);
1732 1733 1734 1735 1736
	if (ret)
		return ret;

	cmd = MI_FLUSH_DW + 1;

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

	if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
		cmd |= MI_INVALIDATE_TLB;
		if (ring == &dev_priv->ring[VCS])
			cmd |= MI_INVALIDATE_BSD;
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	}

	intel_logical_ring_emit(ringbuf, cmd);
	intel_logical_ring_emit(ringbuf,
				I915_GEM_HWS_SCRATCH_ADDR |
				MI_FLUSH_DW_USE_GTT);
	intel_logical_ring_emit(ringbuf, 0); /* upper addr */
	intel_logical_ring_emit(ringbuf, 0); /* value */
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1761
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1762 1763 1764
				  u32 invalidate_domains,
				  u32 flush_domains)
{
1765
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1766 1767
	struct intel_engine_cs *ring = ringbuf->ring;
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1768
	bool vf_flush_wa = false;
1769 1770 1771 1772 1773 1774 1775 1776
	u32 flags = 0;
	int ret;

	flags |= PIPE_CONTROL_CS_STALL;

	if (flush_domains) {
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1777
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1778
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	}

	if (invalidate_domains) {
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1791 1792 1793 1794 1795 1796 1797
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
		if (IS_GEN9(ring->dev))
			vf_flush_wa = true;
	}
1798

1799
	ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1800 1801 1802
	if (ret)
		return ret;

1803 1804 1805 1806 1807 1808 1809 1810 1811
	if (vf_flush_wa) {
		intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
		intel_logical_ring_emit(ringbuf, 0);
	}

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
	intel_logical_ring_emit(ringbuf, flags);
	intel_logical_ring_emit(ringbuf, scratch_addr);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_advance(ringbuf);

	return 0;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
{

	/*
	 * On BXT A steppings there is a HW coherency issue whereby the
	 * MI_STORE_DATA_IMM storing the completed request's seqno
	 * occasionally doesn't invalidate the CPU cache. Work around this by
	 * clflushing the corresponding cacheline whenever the caller wants
	 * the coherency to be guaranteed. Note that this cacheline is known
	 * to be clean at this point, since we only write it in
	 * bxt_a_set_seqno(), where we also do a clflush after the write. So
	 * this clflush in practice becomes an invalidate operation.
	 */

	if (!lazy_coherency)
		intel_flush_status_page(ring, I915_GEM_HWS_INDEX);

	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
{
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);

	/* See bxt_a_get_seqno() explaining the reason for the clflush. */
	intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
}

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
#define WA_TAIL_DWORDS 2

static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
}

1873
static int gen8_emit_request(struct drm_i915_gem_request *request)
1874
{
1875
	struct intel_ringbuffer *ringbuf = request->ringbuf;
1876 1877
	int ret;

1878
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1879 1880 1881
	if (ret)
		return ret;

1882 1883
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1884 1885

	intel_logical_ring_emit(ringbuf,
1886 1887 1888 1889
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
	intel_logical_ring_emit(ringbuf,
				hws_seqno_address(request->ring) |
				MI_FLUSH_DW_USE_GTT);
1890
	intel_logical_ring_emit(ringbuf, 0);
1891
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1892 1893
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	intel_logical_ring_emit(ringbuf, MI_NOOP);
1894 1895
	return intel_logical_ring_advance_and_submit(request);
}
1896

1897 1898 1899 1900
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
	struct intel_ringbuffer *ringbuf = request->ringbuf;
	int ret;
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
	if (ret)
		return ret;

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(5));
	intel_logical_ring_emit(ringbuf,
				(PIPE_CONTROL_GLOBAL_GTT_IVB |
				 PIPE_CONTROL_CS_STALL |
				 PIPE_CONTROL_QW_WRITE));
	intel_logical_ring_emit(ringbuf, hws_seqno_address(request->ring));
	intel_logical_ring_emit(ringbuf, 0);
	intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
	intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
	return intel_logical_ring_advance_and_submit(request);
1920 1921
}

1922
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1923 1924 1925 1926
{
	struct render_state so;
	int ret;

1927
	ret = i915_gem_render_state_prepare(req->ring, &so);
1928 1929 1930 1931 1932 1933
	if (ret)
		return ret;

	if (so.rodata == NULL)
		return 0;

1934
	ret = req->ring->emit_bb_start(req, so.ggtt_offset,
1935
				       I915_DISPATCH_SECURE);
1936 1937 1938
	if (ret)
		goto out;

1939 1940 1941 1942 1943 1944
	ret = req->ring->emit_bb_start(req,
				       (so.ggtt_offset + so.aux_batch_offset),
				       I915_DISPATCH_SECURE);
	if (ret)
		goto out;

1945
	i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
1946 1947 1948 1949 1950 1951

out:
	i915_gem_render_state_fini(&so);
	return ret;
}

1952
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1953 1954 1955
{
	int ret;

1956
	ret = intel_logical_ring_workarounds_emit(req);
1957 1958 1959
	if (ret)
		return ret;

1960 1961 1962 1963 1964 1965 1966 1967
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1968
	return intel_lr_context_render_state_init(req);
1969 1970
}

1971 1972 1973 1974 1975 1976
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
 *
 * @ring: Engine Command Streamer.
 *
 */
1977 1978
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
{
1979
	struct drm_i915_private *dev_priv;
1980

1981 1982 1983
	if (!intel_ring_initialized(ring))
		return;

1984 1985
	dev_priv = ring->dev->dev_private;

1986 1987 1988 1989
	if (ring->buffer) {
		intel_logical_ring_stop(ring);
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
	}
1990 1991 1992 1993 1994

	if (ring->cleanup)
		ring->cleanup(ring);

	i915_cmd_parser_fini_ring(ring);
1995
	i915_gem_batch_pool_fini(&ring->batch_pool);
1996 1997 1998 1999 2000

	if (ring->status_page.obj) {
		kunmap(sg_page(ring->status_page.obj->pages->sgl));
		ring->status_page.obj = NULL;
	}
2001

2002 2003 2004
	ring->disable_lite_restore_wa = false;
	ring->ctx_desc_template = 0;

2005
	lrc_destroy_wa_ctx_obj(ring);
2006
	ring->dev = NULL;
2007 2008
}

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
static void
logical_ring_default_vfuncs(struct drm_device *dev,
			    struct intel_engine_cs *ring)
{
	/* Default vfuncs which can be overriden by each engine. */
	ring->init_hw = gen8_init_common_ring;
	ring->emit_request = gen8_emit_request;
	ring->emit_flush = gen8_emit_flush;
	ring->irq_get = gen8_logical_ring_get_irq;
	ring->irq_put = gen8_logical_ring_put_irq;
	ring->emit_bb_start = gen8_emit_bb_start;
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
		ring->get_seqno = bxt_a_get_seqno;
		ring->set_seqno = bxt_a_set_seqno;
	} else {
		ring->get_seqno = gen8_get_seqno;
		ring->set_seqno = gen8_set_seqno;
	}
}

2029 2030 2031 2032 2033 2034 2035
static inline void
logical_ring_default_irqs(struct intel_engine_cs *ring, unsigned shift)
{
	ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	ring->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
}

2036 2037
static int
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
2038
{
2039
	struct intel_context *dctx = to_i915(dev)->kernel_context;
2040 2041 2042 2043 2044 2045 2046 2047
	int ret;

	/* Intentionally left blank. */
	ring->buffer = NULL;

	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
2048
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2049 2050
	init_waitqueue_head(&ring->irq_queue);

2051
	INIT_LIST_HEAD(&ring->buffers);
2052
	INIT_LIST_HEAD(&ring->execlist_queue);
2053
	INIT_LIST_HEAD(&ring->execlist_retired_req_list);
2054 2055
	spin_lock_init(&ring->execlist_lock);

2056 2057
	logical_ring_init_platform_invariants(ring);

2058 2059
	ret = i915_cmd_parser_init_ring(ring);
	if (ret)
2060
		goto error;
2061

2062
	ret = intel_lr_context_deferred_alloc(dctx, ring);
2063
	if (ret)
2064
		goto error;
2065 2066

	/* As this is the default context, always pin it */
2067
	ret = intel_lr_context_do_pin(ring, dctx);
2068 2069 2070 2071
	if (ret) {
		DRM_ERROR(
			"Failed to pin and map ringbuffer %s: %d\n",
			ring->name, ret);
2072
		goto error;
2073
	}
2074

2075 2076 2077 2078
	return 0;

error:
	intel_logical_ring_cleanup(ring);
2079
	return ret;
2080 2081 2082 2083 2084 2085
}

static int logical_render_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2086
	int ret;
2087 2088 2089

	ring->name = "render ring";
	ring->id = RCS;
2090
	ring->exec_id = I915_EXEC_RENDER;
2091
	ring->mmio_base = RENDER_RING_BASE;
2092 2093

	logical_ring_default_irqs(ring, GEN8_RCS_IRQ_SHIFT);
2094 2095
	if (HAS_L3_DPF(dev))
		ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2096

2097 2098 2099
	logical_ring_default_vfuncs(dev, ring);

	/* Override some for render ring. */
2100 2101 2102 2103
	if (INTEL_INFO(dev)->gen >= 9)
		ring->init_hw = gen9_init_render_ring;
	else
		ring->init_hw = gen8_init_render_ring;
2104
	ring->init_context = gen8_init_rcs_context;
2105
	ring->cleanup = intel_fini_pipe_control;
2106
	ring->emit_flush = gen8_emit_flush_render;
2107
	ring->emit_request = gen8_emit_request_render;
2108

2109
	ring->dev = dev;
2110 2111

	ret = intel_init_pipe_control(ring);
2112 2113 2114
	if (ret)
		return ret;

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	ret = intel_init_workaround_bb(ring);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2126 2127
	ret = logical_ring_init(dev, ring);
	if (ret) {
2128
		lrc_destroy_wa_ctx_obj(ring);
2129
	}
2130 2131

	return ret;
2132 2133 2134 2135 2136 2137 2138 2139 2140
}

static int logical_bsd_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];

	ring->name = "bsd ring";
	ring->id = VCS;
2141
	ring->exec_id = I915_EXEC_BSD;
2142 2143
	ring->mmio_base = GEN6_BSD_RING_BASE;

2144
	logical_ring_default_irqs(ring, GEN8_VCS1_IRQ_SHIFT);
2145
	logical_ring_default_vfuncs(dev, ring);
2146

2147 2148 2149 2150 2151 2152 2153 2154
	return logical_ring_init(dev, ring);
}

static int logical_bsd2_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];

T
Tvrtko Ursulin 已提交
2155
	ring->name = "bsd2 ring";
2156
	ring->id = VCS2;
2157
	ring->exec_id = I915_EXEC_BSD;
2158 2159
	ring->mmio_base = GEN8_BSD2_RING_BASE;

2160
	logical_ring_default_irqs(ring, GEN8_VCS2_IRQ_SHIFT);
2161
	logical_ring_default_vfuncs(dev, ring);
2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	return logical_ring_init(dev, ring);
}

static int logical_blt_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];

	ring->name = "blitter ring";
	ring->id = BCS;
2173
	ring->exec_id = I915_EXEC_BLT;
2174 2175
	ring->mmio_base = BLT_RING_BASE;

2176
	logical_ring_default_irqs(ring, GEN8_BCS_IRQ_SHIFT);
2177
	logical_ring_default_vfuncs(dev, ring);
2178

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	return logical_ring_init(dev, ring);
}

static int logical_vebox_ring_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];

	ring->name = "video enhancement ring";
	ring->id = VECS;
2189
	ring->exec_id = I915_EXEC_VEBOX;
2190 2191
	ring->mmio_base = VEBOX_RING_BASE;

2192
	logical_ring_default_irqs(ring, GEN8_VECS_IRQ_SHIFT);
2193
	logical_ring_default_vfuncs(dev, ring);
2194

2195 2196 2197
	return logical_ring_init(dev, ring);
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
/**
 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
 * @dev: DRM device.
 *
 * This function inits the engines for an Execlists submission style (the equivalent in the
 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
 * those engines that are present in the hardware.
 *
 * Return: non-zero if the initialization failed.
 */
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
int intel_logical_rings_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = logical_render_ring_init(dev);
	if (ret)
		return ret;

	if (HAS_BSD(dev)) {
		ret = logical_bsd_ring_init(dev);
		if (ret)
			goto cleanup_render_ring;
	}

	if (HAS_BLT(dev)) {
		ret = logical_blt_ring_init(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

	if (HAS_VEBOX(dev)) {
		ret = logical_vebox_ring_init(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

	if (HAS_BSD2(dev)) {
		ret = logical_bsd2_ring_init(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}

	return 0;

cleanup_vebox_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
cleanup_blt_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_logical_ring_cleanup(&dev_priv->ring[RCS]);

	return ret;
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
static u32
make_rpcs(struct drm_device *dev)
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
	if (INTEL_INFO(dev)->gen < 9)
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
	if (INTEL_INFO(dev)->has_slice_pg) {
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->slice_total <<
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_subslice_pg) {
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
		rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	if (INTEL_INFO(dev)->has_eu_pg) {
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MIN_SHIFT;
		rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2298 2299 2300 2301
static int
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
{
2302 2303
	struct drm_device *dev = ring->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2304
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2305 2306 2307 2308
	struct page *page;
	uint32_t *reg_state;
	int ret;

2309 2310 2311
	if (!ppgtt)
		ppgtt = dev_priv->mm.aliasing_ppgtt;

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	ret = i915_gem_object_get_pages(ctx_obj);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not get object pages\n");
		return ret;
	}

	i915_gem_object_pin_pages(ctx_obj);

	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2328
	page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2329 2330 2331 2332 2333 2334 2335
	reg_state = kmap_atomic(page);

	/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
	 * commands followed by (reg, value) pairs. The values we are setting here are
	 * only for the first context restore: on a subsequent save, the GPU will
	 * recreate this batchbuffer with new values (including all the missing
	 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2336 2337 2338 2339 2340 2341 2342 2343
	reg_state[CTX_LRI_HEADER_0] =
		MI_LOAD_REGISTER_IMM(ring->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(ring),
		       _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
					  CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					  CTX_CTRL_RS_CTX_ENABLE));
	ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(ring->mmio_base), 0);
2344 2345 2346
	/* Ring buffer start address is not known until the buffer is pinned.
	 * It is written to the context image in execlists_update_context()
	 */
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START, RING_START(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL, RING_CTL(ring->mmio_base),
		       ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U, RING_BBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L, RING_BBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_BB_STATE, RING_BBSTATE(ring->mmio_base),
		       RING_BB_PPGTT);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(ring->mmio_base), 0);
	ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE, RING_SBBSTATE(ring->mmio_base), 0);
2357
	if (ring->id == RCS) {
2358 2359 2360
		ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(ring->mmio_base), 0);
		ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET, RING_INDIRECT_CTX_OFFSET(ring->mmio_base), 0);
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
		if (ring->wa_ctx.obj) {
			struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
			uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);

			reg_state[CTX_RCS_INDIRECT_CTX+1] =
				(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
				(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);

			reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
				CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;

			reg_state[CTX_BB_PER_CTX_PTR+1] =
				(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
				0x01;
		}
2376
	}
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
	reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
	ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(ring->mmio_base), 0);
	/* PDP values well be assigned later if needed */
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(ring, 3), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(ring, 2), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(ring, 1), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(ring, 0), 0);
	ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(ring, 0), 0);
2388

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
		ASSIGN_CTX_PML4(ppgtt, reg_state);
	} else {
		/* 32b PPGTT
		 * PDP*_DESCRIPTOR contains the base address of space supported.
		 * With dynamic page allocation, PDPs may not be allocated at
		 * this point. Point the unallocated PDPs to the scratch page
		 */
		ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
		ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
	}

2407 2408
	if (ring->id == RCS) {
		reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2409 2410
		ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			       make_rpcs(dev));
2411 2412 2413 2414 2415 2416 2417 2418
	}

	kunmap_atomic(reg_state);
	i915_gem_object_unpin_pages(ctx_obj);

	return 0;
}

2419 2420 2421 2422 2423 2424 2425 2426
/**
 * intel_lr_context_free() - free the LRC specific bits of a context
 * @ctx: the LR context to free.
 *
 * The real context freeing is done in i915_gem_context_free: this only
 * takes care of the bits that are LRC related: the per-engine backing
 * objects and the logical ringbuffer.
 */
2427 2428
void intel_lr_context_free(struct intel_context *ctx)
{
2429 2430
	int i;

D
Dave Gordon 已提交
2431 2432
	for (i = I915_NUM_RINGS; --i >= 0; ) {
		struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2433
		struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2434

D
Dave Gordon 已提交
2435 2436
		if (!ctx_obj)
			continue;
2437

D
Dave Gordon 已提交
2438 2439 2440
		if (ctx == ctx->i915->kernel_context) {
			intel_unpin_ringbuffer_obj(ringbuf);
			i915_gem_object_ggtt_unpin(ctx_obj);
2441
		}
D
Dave Gordon 已提交
2442 2443 2444 2445

		WARN_ON(ctx->engine[i].pin_count);
		intel_ringbuffer_free(ringbuf);
		drm_gem_object_unreference(&ctx_obj->base);
2446 2447 2448
	}
}

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
/**
 * intel_lr_context_size() - return the size of the context for an engine
 * @ring: which engine to find the context size for
 *
 * Each engine may require a different amount of space for a context image,
 * so when allocating (or copying) an image, this function can be used to
 * find the right size for the specific engine.
 *
 * Return: size (in bytes) of an engine-specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
2463
uint32_t intel_lr_context_size(struct intel_engine_cs *ring)
2464 2465 2466
{
	int ret = 0;

2467
	WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
2468 2469 2470

	switch (ring->id) {
	case RCS:
2471 2472 2473 2474
		if (INTEL_INFO(ring->dev)->gen >= 9)
			ret = GEN9_LR_CONTEXT_RENDER_SIZE;
		else
			ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
		break;
	case VCS:
	case BCS:
	case VECS:
	case VCS2:
		ret = GEN8_LR_CONTEXT_OTHER_SIZE;
		break;
	}

	return ret;
2485 2486
}

2487
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
2488 2489 2490
		struct drm_i915_gem_object *default_ctx_obj)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2491
	struct page *page;
2492

2493 2494 2495 2496 2497
	/* The HWSP is part of the default context object in LRC mode. */
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
			+ LRC_PPHWSP_PN * PAGE_SIZE;
	page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
	ring->status_page.page_addr = kmap(page);
2498 2499 2500 2501 2502 2503 2504
	ring->status_page.obj = default_ctx_obj;

	I915_WRITE(RING_HWS_PGA(ring->mmio_base),
			(u32)ring->status_page.gfx_addr);
	POSTING_READ(RING_HWS_PGA(ring->mmio_base));
}

2505
/**
2506
 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2507 2508 2509 2510 2511 2512 2513 2514 2515
 * @ctx: LR context to create.
 * @ring: engine to be used with the context.
 *
 * This function can be called more than once, with different engines, if we plan
 * to use the context with them. The context backing objects and the ringbuffers
 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
 * the creation is a deferred call: it's better to make sure first that we need to use
 * a given ring with the context.
 *
2516
 * Return: non-zero on error.
2517
 */
2518 2519

int intel_lr_context_deferred_alloc(struct intel_context *ctx,
D
Dave Gordon 已提交
2520
				    struct intel_engine_cs *ring)
2521
{
2522 2523 2524
	struct drm_device *dev = ring->dev;
	struct drm_i915_gem_object *ctx_obj;
	uint32_t context_size;
2525
	struct intel_ringbuffer *ringbuf;
2526 2527
	int ret;

2528
	WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2529
	WARN_ON(ctx->engine[ring->id].state);
2530

2531
	context_size = round_up(intel_lr_context_size(ring), 4096);
2532

2533 2534 2535
	/* One extra page as the sharing data between driver and GuC */
	context_size += PAGE_SIZE * LRC_PPHWSP_PN;

2536
	ctx_obj = i915_gem_alloc_object(dev, context_size);
2537 2538 2539
	if (!ctx_obj) {
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
		return -ENOMEM;
2540 2541
	}

2542 2543 2544
	ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
	if (IS_ERR(ringbuf)) {
		ret = PTR_ERR(ringbuf);
2545
		goto error_deref_obj;
2546 2547 2548 2549 2550
	}

	ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2551
		goto error_ringbuf;
2552 2553 2554
	}

	ctx->engine[ring->id].ringbuf = ringbuf;
2555
	ctx->engine[ring->id].state = ctx_obj;
2556

2557
	if (ctx != ctx->i915->kernel_context && ring->init_context) {
2558
		struct drm_i915_gem_request *req;
2559

2560 2561 2562 2563
		req = i915_gem_request_alloc(ring, ctx);
		if (IS_ERR(req)) {
			ret = PTR_ERR(req);
			DRM_ERROR("ring create req: %d\n", ret);
2564
			goto error_ringbuf;
2565 2566
		}

2567 2568 2569 2570 2571 2572 2573 2574
		ret = ring->init_context(req);
		if (ret) {
			DRM_ERROR("ring init context: %d\n",
				ret);
			i915_gem_request_cancel(req);
			goto error_ringbuf;
		}
		i915_add_request_no_flush(req);
2575
	}
2576
	return 0;
2577

2578 2579
error_ringbuf:
	intel_ringbuffer_free(ringbuf);
2580
error_deref_obj:
2581
	drm_gem_object_unreference(&ctx_obj->base);
2582 2583
	ctx->engine[ring->id].ringbuf = NULL;
	ctx->engine[ring->id].state = NULL;
2584
	return ret;
2585
}
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608

void intel_lr_context_reset(struct drm_device *dev,
			struct intel_context *ctx)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	int i;

	for_each_ring(ring, dev_priv, i) {
		struct drm_i915_gem_object *ctx_obj =
				ctx->engine[ring->id].state;
		struct intel_ringbuffer *ringbuf =
				ctx->engine[ring->id].ringbuf;
		uint32_t *reg_state;
		struct page *page;

		if (!ctx_obj)
			continue;

		if (i915_gem_object_get_pages(ctx_obj)) {
			WARN(1, "Failed get_pages for context obj\n");
			continue;
		}
2609
		page = i915_gem_object_get_dirty_page(ctx_obj, LRC_STATE_PN);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
		reg_state = kmap_atomic(page);

		reg_state[CTX_RING_HEAD+1] = 0;
		reg_state[CTX_RING_TAIL+1] = 0;

		kunmap_atomic(reg_state);

		ringbuf->head = 0;
		ringbuf->tail = 0;
	}
}