intel_ringbuffer.c 77.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

30
#include <linux/log2.h>
31
#include <drm/drmP.h>
32
#include "i915_drv.h"
33
#include <drm/i915_drm.h>
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41
/* Rough estimate of the typical request size, performing a flush,
 * set-context and then emitting the batch.
 */
#define LEGACY_REQUEST_SIZE 200

42
int __intel_ring_space(int head, int tail, int size)
43
{
44 45
	int space = head - tail;
	if (space <= 0)
46
		space += size;
47
	return space - I915_RING_FREE_SPACE;
48 49
}

50
void intel_ring_update_space(struct intel_ring *ring)
51
{
52 53 54
	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
55 56
	}

57 58
	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
					 ring->tail, ring->size);
59 60
}

61
static int
62
gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
63
{
64
	struct intel_ring *ring = req->ring;
65 66 67 68 69
	u32 cmd;
	int ret;

	cmd = MI_FLUSH;

70
	if (mode & EMIT_INVALIDATE)
71 72
		cmd |= MI_READ_FLUSH;

73
	ret = intel_ring_begin(req, 2);
74 75 76
	if (ret)
		return ret;

77 78 79
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
80 81 82 83 84

	return 0;
}

static int
85
gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
86
{
87
	struct intel_ring *ring = req->ring;
88
	u32 cmd;
89
	int ret;
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

119
	cmd = MI_FLUSH;
120
	if (mode & EMIT_INVALIDATE) {
121
		cmd |= MI_EXE_FLUSH;
122 123 124
		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
			cmd |= MI_INVALIDATE_ISP;
	}
125

126
	ret = intel_ring_begin(req, 2);
127 128
	if (ret)
		return ret;
129

130 131 132
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
133 134

	return 0;
135 136
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
175
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
176
{
177
	struct intel_ring *ring = req->ring;
178
	u32 scratch_addr =
179
		req->engine->scratch->node.start + 2 * CACHELINE_BYTES;
180 181
	int ret;

182
	ret = intel_ring_begin(req, 6);
183 184 185
	if (ret)
		return ret;

186 187
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
188
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
189 190 191 192 193
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
194

195
	ret = intel_ring_begin(req, 6);
196 197 198
	if (ret)
		return ret;

199 200 201 202 203 204 205
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
206 207 208 209 210

	return 0;
}

static int
211
gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
212
{
213
	struct intel_ring *ring = req->ring;
214
	u32 scratch_addr =
215
		req->engine->scratch->node.start + 2 * CACHELINE_BYTES;
216 217 218
	u32 flags = 0;
	int ret;

219
	/* Force SNB workarounds for PIPE_CONTROL flushes */
220
	ret = intel_emit_post_sync_nonzero_flush(req);
221 222 223
	if (ret)
		return ret;

224 225 226 227
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
228
	if (mode & EMIT_FLUSH) {
229 230 231 232 233 234
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		/*
		 * Ensure that any following seqno writes only happen
		 * when the render cache is indeed flushed.
		 */
235
		flags |= PIPE_CONTROL_CS_STALL;
236
	}
237
	if (mode & EMIT_INVALIDATE) {
238 239 240 241 242 243 244 245 246
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		/*
		 * TLB invalidate requires a post-sync write.
		 */
247
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
248
	}
249

250
	ret = intel_ring_begin(req, 4);
251 252 253
	if (ret)
		return ret;

254 255 256 257 258
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
259 260 261 262

	return 0;
}

263
static int
264
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
265
{
266
	struct intel_ring *ring = req->ring;
267 268
	int ret;

269
	ret = intel_ring_begin(req, 4);
270 271 272
	if (ret)
		return ret;

273 274 275 276 277 278 279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring,
			PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
280 281 282 283

	return 0;
}

284
static int
285
gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
286
{
287
	struct intel_ring *ring = req->ring;
288
	u32 scratch_addr =
289
		req->engine->scratch->node.start + 2 * CACHELINE_BYTES;
290 291 292
	u32 flags = 0;
	int ret;

293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that any following seqno writes only happen when the render
	 * cache is indeed flushed.
	 *
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
	 * don't try to be clever and just set it unconditionally.
	 */
	flags |= PIPE_CONTROL_CS_STALL;

303 304 305 306
	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
307
	if (mode & EMIT_FLUSH) {
308 309
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
310
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
311
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
312
	}
313
	if (mode & EMIT_INVALIDATE) {
314 315 316 317 318 319
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
320
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
321 322 323 324
		/*
		 * TLB invalidate requires a post-sync write.
		 */
		flags |= PIPE_CONTROL_QW_WRITE;
325
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
326

327 328
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;

329 330 331
		/* Workaround: we must issue a pipe_control with CS-stall bit
		 * set before a pipe_control command that has the state cache
		 * invalidate bit set. */
332
		gen7_render_ring_cs_stall_wa(req);
333 334
	}

335
	ret = intel_ring_begin(req, 4);
336 337 338
	if (ret)
		return ret;

339 340 341 342 343
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
344 345 346 347

	return 0;
}

348
static int
349
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
350 351
		       u32 flags, u32 scratch_addr)
{
352
	struct intel_ring *ring = req->ring;
353 354
	int ret;

355
	ret = intel_ring_begin(req, 6);
356 357 358
	if (ret)
		return ret;

359 360 361 362 363 364 365
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);
366 367 368 369

	return 0;
}

B
Ben Widawsky 已提交
370
static int
371
gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
B
Ben Widawsky 已提交
372
{
373 374
	u32 scratch_addr =
		req->engine->scratch->node.start + 2 * CACHELINE_BYTES;
375
	u32 flags = 0;
376
	int ret;
B
Ben Widawsky 已提交
377 378 379

	flags |= PIPE_CONTROL_CS_STALL;

380
	if (mode & EMIT_FLUSH) {
B
Ben Widawsky 已提交
381 382
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
383
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
384
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
B
Ben Widawsky 已提交
385
	}
386
	if (mode & EMIT_INVALIDATE) {
B
Ben Widawsky 已提交
387 388 389 390 391 392 393 394
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
395 396

		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
397
		ret = gen8_emit_pipe_control(req,
398 399 400 401 402
					     PIPE_CONTROL_CS_STALL |
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
					     0);
		if (ret)
			return ret;
B
Ben Widawsky 已提交
403 404
	}

405
	return gen8_emit_pipe_control(req, flags, scratch_addr);
B
Ben Widawsky 已提交
406 407
}

408
u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
409
{
410
	struct drm_i915_private *dev_priv = engine->i915;
411
	u64 acthd;
412

413
	if (INTEL_GEN(dev_priv) >= 8)
414 415
		acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
					 RING_ACTHD_UDW(engine->mmio_base));
416
	else if (INTEL_GEN(dev_priv) >= 4)
417
		acthd = I915_READ(RING_ACTHD(engine->mmio_base));
418 419 420 421
	else
		acthd = I915_READ(ACTHD);

	return acthd;
422 423
}

424
static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
425
{
426
	struct drm_i915_private *dev_priv = engine->i915;
427 428 429
	u32 addr;

	addr = dev_priv->status_page_dmah->busaddr;
430
	if (INTEL_GEN(dev_priv) >= 4)
431 432 433 434
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
	I915_WRITE(HWS_PGA, addr);
}

435
static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
436
{
437
	struct drm_i915_private *dev_priv = engine->i915;
438
	i915_reg_t mmio;
439 440 441 442

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
443
	if (IS_GEN7(dev_priv)) {
444
		switch (engine->id) {
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		case RCS:
			mmio = RENDER_HWS_PGA_GEN7;
			break;
		case BCS:
			mmio = BLT_HWS_PGA_GEN7;
			break;
		/*
		 * VCS2 actually doesn't exist on Gen7. Only shut up
		 * gcc switch check warning
		 */
		case VCS2:
		case VCS:
			mmio = BSD_HWS_PGA_GEN7;
			break;
		case VECS:
			mmio = VEBOX_HWS_PGA_GEN7;
			break;
		}
463
	} else if (IS_GEN6(dev_priv)) {
464
		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
465 466
	} else {
		/* XXX: gen8 returns to sanity */
467
		mmio = RING_HWS_PGA(engine->mmio_base);
468 469
	}

470
	I915_WRITE(mmio, engine->status_page.ggtt_offset);
471 472 473 474 475 476 477 478 479
	POSTING_READ(mmio);

	/*
	 * Flush the TLB for this page
	 *
	 * FIXME: These two bits have disappeared on gen8, so a question
	 * arises: do we still need this and if so how should we go about
	 * invalidating the TLB?
	 */
480
	if (IS_GEN(dev_priv, 6, 7)) {
481
		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
482 483

		/* ring should be idle before issuing a sync flush*/
484
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
485 486 487 488

		I915_WRITE(reg,
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
					      INSTPM_SYNC_FLUSH));
489 490 491
		if (intel_wait_for_register(dev_priv,
					    reg, INSTPM_SYNC_FLUSH, 0,
					    1000))
492
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
493
				  engine->name);
494 495 496
	}
}

497
static bool stop_ring(struct intel_engine_cs *engine)
498
{
499
	struct drm_i915_private *dev_priv = engine->i915;
500

501
	if (!IS_GEN2(dev_priv)) {
502
		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
503 504 505 506 507
		if (intel_wait_for_register(dev_priv,
					    RING_MI_MODE(engine->mmio_base),
					    MODE_IDLE,
					    MODE_IDLE,
					    1000)) {
508 509
			DRM_ERROR("%s : timed out trying to stop ring\n",
				  engine->name);
510 511 512 513
			/* Sometimes we observe that the idle flag is not
			 * set even though the ring is empty. So double
			 * check before giving up.
			 */
514
			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
515
				return false;
516 517
		}
	}
518

519 520
	I915_WRITE_CTL(engine, 0);
	I915_WRITE_HEAD(engine, 0);
521
	I915_WRITE_TAIL(engine, 0);
522

523
	if (!IS_GEN2(dev_priv)) {
524 525
		(void)I915_READ_CTL(engine);
		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
526
	}
527

528
	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
529
}
530

531
static int init_ring_common(struct intel_engine_cs *engine)
532
{
533
	struct drm_i915_private *dev_priv = engine->i915;
534
	struct intel_ring *ring = engine->buffer;
535 536
	int ret = 0;

537
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
538

539
	if (!stop_ring(engine)) {
540
		/* G45 ring initialization often fails to reset head to zero */
541 542
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
543 544 545 546 547
			      engine->name,
			      I915_READ_CTL(engine),
			      I915_READ_HEAD(engine),
			      I915_READ_TAIL(engine),
			      I915_READ_START(engine));
548

549
		if (!stop_ring(engine)) {
550 551
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
552 553 554 555 556
				  engine->name,
				  I915_READ_CTL(engine),
				  I915_READ_HEAD(engine),
				  I915_READ_TAIL(engine),
				  I915_READ_START(engine));
557 558
			ret = -EIO;
			goto out;
559
		}
560 561
	}

562
	if (I915_NEED_GFX_HWS(dev_priv))
563
		intel_ring_setup_status_page(engine);
564
	else
565
		ring_setup_phys_status_page(engine);
566

567
	/* Enforce ordering by reading HEAD register back */
568
	I915_READ_HEAD(engine);
569

570 571 572 573
	/* Initialize the ring. This must happen _after_ we've cleared the ring
	 * registers with the above sequence (the readback of the HEAD registers
	 * also enforces ordering), otherwise the hw might lose the new ring
	 * register values. */
574
	I915_WRITE_START(engine, ring->vma->node.start);
575 576

	/* WaClearRingBufHeadRegAtInit:ctg,elk */
577
	if (I915_READ_HEAD(engine))
578
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
579 580 581
			  engine->name, I915_READ_HEAD(engine));
	I915_WRITE_HEAD(engine, 0);
	(void)I915_READ_HEAD(engine);
582

583
	I915_WRITE_CTL(engine,
584
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
585
			| RING_VALID);
586 587

	/* If the head is still not zero, the ring is dead */
588
	if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
589
		     I915_READ_START(engine) == ring->vma->node.start &&
590
		     (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
591
		DRM_ERROR("%s initialization failed "
592
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08llx]\n",
593 594 595 596 597
			  engine->name,
			  I915_READ_CTL(engine),
			  I915_READ_CTL(engine) & RING_VALID,
			  I915_READ_HEAD(engine), I915_READ_TAIL(engine),
			  I915_READ_START(engine),
598
			  ring->vma->node.start);
599 600
		ret = -EIO;
		goto out;
601 602
	}

603 604 605 606
	ring->last_retired_head = -1;
	ring->head = I915_READ_HEAD(engine);
	ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
	intel_ring_update_space(ring);
607

608
	intel_engine_init_hangcheck(engine);
609

610
out:
611
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
612 613

	return ret;
614 615
}

616
void intel_engine_cleanup_scratch(struct intel_engine_cs *engine)
617
{
618 619 620 621
	struct i915_vma *vma;

	vma = fetch_and_zero(&engine->scratch);
	if (!vma)
622 623
		return;

624 625
	i915_vma_unpin(vma);
	i915_vma_put(vma);
626 627
}

628
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size)
629
{
630
	struct drm_i915_gem_object *obj;
631
	struct i915_vma *vma;
632 633
	int ret;

634
	WARN_ON(engine->scratch);
635

636
	obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
637
	if (!obj)
638
		obj = i915_gem_object_create(&engine->i915->drm, size);
639 640
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate scratch page\n");
641
		return PTR_ERR(obj);
642
	}
643

644 645 646 647 648 649 650
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_unref;
	}

	ret = i915_vma_pin(vma, 0, 4096, PIN_GLOBAL | PIN_HIGH);
651 652
	if (ret)
		goto err_unref;
653

654 655 656
	engine->scratch = vma;
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08llx\n",
			 engine->name, vma->node.start);
657 658 659
	return 0;

err_unref:
660
	i915_gem_object_put(obj);
661 662 663
	return ret;
}

664
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
665
{
666
	struct intel_ring *ring = req->ring;
667 668
	struct i915_workarounds *w = &req->i915->workarounds;
	int ret, i;
669

670
	if (w->count == 0)
671
		return 0;
672

673
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
674 675
	if (ret)
		return ret;
676

677
	ret = intel_ring_begin(req, (w->count * 2 + 2));
678 679 680
	if (ret)
		return ret;

681
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
682
	for (i = 0; i < w->count; i++) {
683 684
		intel_ring_emit_reg(ring, w->reg[i].addr);
		intel_ring_emit(ring, w->reg[i].value);
685
	}
686
	intel_ring_emit(ring, MI_NOOP);
687

688
	intel_ring_advance(ring);
689

690
	ret = req->engine->emit_flush(req, EMIT_BARRIER);
691 692
	if (ret)
		return ret;
693

694
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
695

696
	return 0;
697 698
}

699
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
700 701 702
{
	int ret;

703
	ret = intel_ring_workarounds_emit(req);
704 705 706
	if (ret != 0)
		return ret;

707
	ret = i915_gem_render_state_init(req);
708
	if (ret)
709
		return ret;
710

711
	return 0;
712 713
}

714
static int wa_add(struct drm_i915_private *dev_priv,
715 716
		  i915_reg_t addr,
		  const u32 mask, const u32 val)
717 718 719 720 721 722 723 724 725 726 727 728 729
{
	const u32 idx = dev_priv->workarounds.count;

	if (WARN_ON(idx >= I915_MAX_WA_REGS))
		return -ENOSPC;

	dev_priv->workarounds.reg[idx].addr = addr;
	dev_priv->workarounds.reg[idx].value = val;
	dev_priv->workarounds.reg[idx].mask = mask;

	dev_priv->workarounds.count++;

	return 0;
730 731
}

732
#define WA_REG(addr, mask, val) do { \
733
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
734 735
		if (r) \
			return r; \
736
	} while (0)
737 738

#define WA_SET_BIT_MASKED(addr, mask) \
739
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
740 741

#define WA_CLR_BIT_MASKED(addr, mask) \
742
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
743

744
#define WA_SET_FIELD_MASKED(addr, mask, value) \
745
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
746

747 748
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
749

750
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
751

752 753
static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
				 i915_reg_t reg)
754
{
755
	struct drm_i915_private *dev_priv = engine->i915;
756
	struct i915_workarounds *wa = &dev_priv->workarounds;
757
	const uint32_t index = wa->hw_whitelist_count[engine->id];
758 759 760 761

	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
		return -EINVAL;

762
	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
763
		 i915_mmio_reg_offset(reg));
764
	wa->hw_whitelist_count[engine->id]++;
765 766 767 768

	return 0;
}

769
static int gen8_init_workarounds(struct intel_engine_cs *engine)
770
{
771
	struct drm_i915_private *dev_priv = engine->i915;
772 773

	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
774

775 776 777
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);

778 779 780 781
	/* WaDisablePartialInstShootdown:bdw,chv */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

782 783 784 785 786
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
	 * workaround for for a possible hang in the unlikely event a TLB
	 * invalidation occurs during a PSD flush.
	 */
	/* WaForceEnableNonCoherent:bdw,chv */
787
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
788
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
789
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
790 791
			  HDC_FORCE_NON_COHERENT);

792 793 794 795 796 797 798 799 800 801
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
	 *  polygons in the same 8x4 pixel/sample area to be processed without
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
	 *  buffer."
	 *
	 * This optimization is off by default for BDW and CHV; turn it on.
	 */
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);

802 803 804
	/* Wa4x4STCOptimizationDisable:bdw,chv */
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);

805 806 807 808 809 810 811 812 813 814 815 816
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN6_WIZ_HASHING_MASK,
			    GEN6_WIZ_HASHING_16x4);

817 818 819
	return 0;
}

820
static int bdw_init_workarounds(struct intel_engine_cs *engine)
821
{
822
	struct drm_i915_private *dev_priv = engine->i915;
823
	int ret;
824

825
	ret = gen8_init_workarounds(engine);
826 827 828
	if (ret)
		return ret;

829
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
830
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
831

832
	/* WaDisableDopClockGating:bdw */
833 834
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
			  DOP_CLOCK_GATING_DISABLE);
835

836 837
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
838

839
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
840 841 842
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
843
			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
844 845 846 847

	return 0;
}

848
static int chv_init_workarounds(struct intel_engine_cs *engine)
849
{
850
	struct drm_i915_private *dev_priv = engine->i915;
851
	int ret;
852

853
	ret = gen8_init_workarounds(engine);
854 855 856
	if (ret)
		return ret;

857
	/* WaDisableThreadStallDopClockGating:chv */
858
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
859

860 861 862
	/* Improve HiZ throughput on CHV. */
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);

863 864 865
	return 0;
}

866
static int gen9_init_workarounds(struct intel_engine_cs *engine)
867
{
868
	struct drm_i915_private *dev_priv = engine->i915;
869
	int ret;
870

871 872 873
	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));

874
	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
875 876 877
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);

878
	/* WaDisableKillLogic:bxt,skl,kbl */
879 880 881
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   ECOCHK_DIS_TLB);

882 883
	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
884
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
885
			  FLOW_CONTROL_ENABLE |
886 887
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);

888
	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
889 890 891
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);

892
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
893 894
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
895 896
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
				  GEN9_DG_MIRROR_FIX_ENABLE);
897

898
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
899 900
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
901 902
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
903 904 905 906 907
		/*
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
		 * but we do that in per ctx batchbuffer as there is an issue
		 * with this register not getting restored on ctx restore
		 */
908 909
	}

910 911
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
912 913 914
	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
			  GEN9_ENABLE_YV12_BUGFIX |
			  GEN9_ENABLE_GPGPU_PREEMPTION);
915

916 917
	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
918 919
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
920

921
	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
922 923 924
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
			  GEN9_CCS_TLB_PREFETCH_ENABLE);

925
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
926 927
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
928 929 930
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
				  PIXEL_MASK_CAMMING_DISABLE);

931 932 933 934
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
935

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
	 * both tied to WaForceContextSaveRestoreNonCoherent
	 * in some hsds for skl. We keep the tie for all gen9. The
	 * documentation is a bit hazy and so we want to get common behaviour,
	 * even though there is no clear evidence we would need both on kbl/bxt.
	 * This area has been source of system hangs so we play it safe
	 * and mimic the skl regardless of what bspec says.
	 *
	 * Use Force Non-Coherent whenever executing a 3D context. This
	 * is a workaround for a possible hang in the unlikely event
	 * a TLB invalidation occurs during a PSD flush.
	 */

	/* WaForceEnableNonCoherent:skl,bxt,kbl */
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
			  HDC_FORCE_NON_COHERENT);

	/* WaDisableHDCInvalidation:skl,bxt,kbl */
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
		   BDW_DISABLE_HDC_INVALIDATION);

957 958 959 960
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
	if (IS_SKYLAKE(dev_priv) ||
	    IS_KABYLAKE(dev_priv) ||
	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
961 962 963
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
				  GEN8_SAMPLER_POWER_BYPASS_DIS);

964
	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
965 966
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);

967
	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
968 969 970
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
				    GEN8_LQSC_FLUSH_COHERENT_LINES));

971 972 973 974 975
	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
	if (ret)
		return ret;

976
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
977
	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
978 979 980
	if (ret)
		return ret;

981
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
982
	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
983 984 985
	if (ret)
		return ret;

986 987 988
	return 0;
}

989
static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
990
{
991
	struct drm_i915_private *dev_priv = engine->i915;
992 993 994 995 996 997 998 999 1000 1001
	u8 vals[3] = { 0, 0, 0 };
	unsigned int i;

	for (i = 0; i < 3; i++) {
		u8 ss;

		/*
		 * Only consider slices where one, and only one, subslice has 7
		 * EUs
		 */
1002
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			continue;

		/*
		 * subslice_7eu[i] != 0 (because of the check above) and
		 * ss_max == 4 (maximum number of subslices possible per slice)
		 *
		 * ->    0 <= ss <= 3;
		 */
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
		vals[i] = 3 - ss;
	}

	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
		return 0;

	/* Tune IZ hashing. See intel_device_info_runtime_init() */
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
			    GEN9_IZ_HASHING_MASK(2) |
			    GEN9_IZ_HASHING_MASK(1) |
			    GEN9_IZ_HASHING_MASK(0),
			    GEN9_IZ_HASHING(2, vals[2]) |
			    GEN9_IZ_HASHING(1, vals[1]) |
			    GEN9_IZ_HASHING(0, vals[0]));

	return 0;
}

1030
static int skl_init_workarounds(struct intel_engine_cs *engine)
1031
{
1032
	struct drm_i915_private *dev_priv = engine->i915;
1033
	int ret;
1034

1035
	ret = gen9_init_workarounds(engine);
1036 1037
	if (ret)
		return ret;
1038

1039 1040 1041 1042 1043
	/*
	 * Actual WA is to disable percontext preemption granularity control
	 * until D0 which is the default case so this is equivalent to
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
	 */
1044
	if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
1045 1046 1047 1048
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
	}

1049
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
1050 1051 1052 1053 1054 1055 1056 1057
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
	}

	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
1058
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
1059 1060 1061 1062 1063
		/* WaDisableLSQCROPERFforOCL:skl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

	/* WaEnableGapsTsvCreditFix:skl */
1064
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
1065 1066 1067 1068
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
	}

1069
	/* WaDisablePowerCompilerClockGating:skl */
1070
	if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
1071 1072 1073
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);

1074
	/* WaBarrierPerformanceFixDisable:skl */
1075
	if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
1076 1077 1078 1079
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE |
				  HDC_BARRIER_PERFORMANCE_DISABLE);

1080
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1081
	if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
1082 1083 1084 1085
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1086 1087 1088
	/* WaDisableGafsUnitClkGating:skl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1089 1090 1091 1092 1093
	/* WaInPlaceDecompressionHang:skl */
	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1094
	/* WaDisableLSQCROPERFforOCL:skl */
1095
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1096 1097 1098
	if (ret)
		return ret;

1099
	return skl_tune_iz_hashing(engine);
1100 1101
}

1102
static int bxt_init_workarounds(struct intel_engine_cs *engine)
1103
{
1104
	struct drm_i915_private *dev_priv = engine->i915;
1105
	int ret;
1106

1107
	ret = gen9_init_workarounds(engine);
1108 1109
	if (ret)
		return ret;
1110

1111 1112
	/* WaStoreMultiplePTEenable:bxt */
	/* This is a requirement according to Hardware specification */
1113
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1114 1115 1116
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);

	/* WaSetClckGatingDisableMedia:bxt */
1117
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1118 1119 1120 1121
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
	}

1122 1123 1124 1125
	/* WaDisableThreadStallDopClockGating:bxt */
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
			  STALL_DOP_GATING_DISABLE);

1126 1127 1128 1129 1130 1131
	/* WaDisablePooledEuLoadBalancingFix:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
	}

1132
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1133
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1134 1135 1136 1137 1138
		WA_SET_BIT_MASKED(
			GEN7_HALF_SLICE_CHICKEN1,
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
	}

1139 1140 1141
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1142
	/* WaDisableLSQCROPERFforOCL:bxt */
1143
	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1144
		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1145 1146
		if (ret)
			return ret;
1147

1148
		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1149 1150
		if (ret)
			return ret;
1151 1152
	}

1153
	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1154
	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1155 1156
		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
					   L3_HIGH_PRIO_CREDITS(2));
1157

1158 1159
	/* WaToEnableHwFixForPushConstHWBug:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1160 1161 1162
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1163 1164 1165 1166 1167
	/* WaInPlaceDecompressionHang:bxt */
	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1168 1169 1170
	return 0;
}

1171 1172
static int kbl_init_workarounds(struct intel_engine_cs *engine)
{
1173
	struct drm_i915_private *dev_priv = engine->i915;
1174 1175 1176 1177 1178 1179
	int ret;

	ret = gen9_init_workarounds(engine);
	if (ret)
		return ret;

1180 1181 1182 1183
	/* WaEnableGapsTsvCreditFix:kbl */
	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
				   GEN9_GAPS_TSV_CREDIT_DISABLE));

1184 1185 1186 1187 1188
	/* WaDisableDynamicCreditSharing:kbl */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
		WA_SET_BIT(GAMT_CHKN_BIT_REG,
			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);

1189 1190 1191 1192 1193
	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
				  HDC_FENCE_DEST_SLM_DISABLE);

1194 1195 1196 1197 1198 1199 1200 1201
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
	 * involving this register should also be added to WA batch as required.
	 */
	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
		/* WaDisableLSQCROPERFforOCL:kbl */
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
			   GEN8_LQSC_RO_PERF_DIS);

1202 1203
	/* WaToEnableHwFixForPushConstHWBug:kbl */
	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1204 1205 1206
		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);

1207 1208 1209
	/* WaDisableGafsUnitClkGating:kbl */
	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);

1210 1211 1212 1213 1214
	/* WaDisableSbeCacheDispatchPortSharing:kbl */
	WA_SET_BIT_MASKED(
		GEN7_HALF_SLICE_CHICKEN1,
		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);

1215 1216 1217 1218
	/* WaInPlaceDecompressionHang:kbl */
	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);

1219 1220 1221 1222 1223
	/* WaDisableLSQCROPERFforOCL:kbl */
	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
	if (ret)
		return ret;

1224 1225 1226
	return 0;
}

1227
int init_workarounds_ring(struct intel_engine_cs *engine)
1228
{
1229
	struct drm_i915_private *dev_priv = engine->i915;
1230

1231
	WARN_ON(engine->id != RCS);
1232 1233

	dev_priv->workarounds.count = 0;
1234
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1235

1236
	if (IS_BROADWELL(dev_priv))
1237
		return bdw_init_workarounds(engine);
1238

1239
	if (IS_CHERRYVIEW(dev_priv))
1240
		return chv_init_workarounds(engine);
1241

1242
	if (IS_SKYLAKE(dev_priv))
1243
		return skl_init_workarounds(engine);
1244

1245
	if (IS_BROXTON(dev_priv))
1246
		return bxt_init_workarounds(engine);
1247

1248 1249 1250
	if (IS_KABYLAKE(dev_priv))
		return kbl_init_workarounds(engine);

1251 1252 1253
	return 0;
}

1254
static int init_render_ring(struct intel_engine_cs *engine)
1255
{
1256
	struct drm_i915_private *dev_priv = engine->i915;
1257
	int ret = init_ring_common(engine);
1258 1259
	if (ret)
		return ret;
1260

1261
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1262
	if (IS_GEN(dev_priv, 4, 6))
1263
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1264 1265 1266 1267

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
1268
	 *
1269
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1270
	 */
1271
	if (IS_GEN(dev_priv, 6, 7))
1272 1273
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

1274
	/* Required for the hardware to program scanline values for waiting */
1275
	/* WaEnableFlushTlbInvalidationMode:snb */
1276
	if (IS_GEN6(dev_priv))
1277
		I915_WRITE(GFX_MODE,
1278
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1279

1280
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1281
	if (IS_GEN7(dev_priv))
1282
		I915_WRITE(GFX_MODE_GEN7,
1283
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1284
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1285

1286
	if (IS_GEN6(dev_priv)) {
1287 1288 1289 1290 1291 1292
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
1293
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1294 1295
	}

1296
	if (IS_GEN(dev_priv, 6, 7))
1297
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1298

1299 1300
	if (INTEL_INFO(dev_priv)->gen >= 6)
		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1301

1302
	return init_workarounds_ring(engine);
1303 1304
}

1305
static void render_ring_cleanup(struct intel_engine_cs *engine)
1306
{
1307
	struct drm_i915_private *dev_priv = engine->i915;
1308 1309 1310

	if (dev_priv->semaphore_obj) {
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1311
		i915_gem_object_put(dev_priv->semaphore_obj);
1312 1313
		dev_priv->semaphore_obj = NULL;
	}
1314

1315
	intel_engine_cleanup_scratch(engine);
1316 1317
}

1318
static int gen8_rcs_signal(struct drm_i915_gem_request *req)
1319
{
1320 1321
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1322
	struct intel_engine_cs *waiter;
1323 1324
	enum intel_engine_id id;
	int ret, num_rings;
1325

1326
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1327
	ret = intel_ring_begin(req, (num_rings-1) * 8);
1328 1329 1330
	if (ret)
		return ret;

1331
	for_each_engine_id(waiter, dev_priv, id) {
1332
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1333 1334 1335
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1336 1337
		intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
		intel_ring_emit(ring,
1338 1339 1340
				PIPE_CONTROL_GLOBAL_GTT_IVB |
				PIPE_CONTROL_QW_WRITE |
				PIPE_CONTROL_CS_STALL);
1341 1342 1343 1344 1345
		intel_ring_emit(ring, lower_32_bits(gtt_offset));
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring,
1346 1347
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1348
		intel_ring_emit(ring, 0);
1349
	}
1350
	intel_ring_advance(ring);
1351 1352 1353 1354

	return 0;
}

1355
static int gen8_xcs_signal(struct drm_i915_gem_request *req)
1356
{
1357 1358
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1359
	struct intel_engine_cs *waiter;
1360 1361
	enum intel_engine_id id;
	int ret, num_rings;
1362

1363
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1364
	ret = intel_ring_begin(req, (num_rings-1) * 6);
1365 1366 1367
	if (ret)
		return ret;

1368
	for_each_engine_id(waiter, dev_priv, id) {
1369
		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
1370 1371 1372
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
			continue;

1373
		intel_ring_emit(ring,
1374
				(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1375
		intel_ring_emit(ring,
1376 1377
				lower_32_bits(gtt_offset) |
				MI_FLUSH_DW_USE_GTT);
1378 1379 1380
		intel_ring_emit(ring, upper_32_bits(gtt_offset));
		intel_ring_emit(ring, req->fence.seqno);
		intel_ring_emit(ring,
1381 1382
				MI_SEMAPHORE_SIGNAL |
				MI_SEMAPHORE_TARGET(waiter->hw_id));
1383
		intel_ring_emit(ring, 0);
1384
	}
1385
	intel_ring_advance(ring);
1386 1387 1388 1389

	return 0;
}

1390
static int gen6_signal(struct drm_i915_gem_request *req)
1391
{
1392 1393
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
1394
	struct intel_engine_cs *useless;
1395 1396
	enum intel_engine_id id;
	int ret, num_rings;
1397

1398
	num_rings = INTEL_INFO(dev_priv)->num_rings;
1399
	ret = intel_ring_begin(req, round_up((num_rings-1) * 3, 2));
1400 1401 1402
	if (ret)
		return ret;

1403
	for_each_engine_id(useless, dev_priv, id) {
1404
		i915_reg_t mbox_reg = req->engine->semaphore.mbox.signal[id];
1405 1406

		if (i915_mmio_reg_valid(mbox_reg)) {
1407 1408 1409
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit_reg(ring, mbox_reg);
			intel_ring_emit(ring, req->fence.seqno);
1410 1411
		}
	}
1412

1413 1414
	/* If num_dwords was rounded, make sure the tail pointer is correct */
	if (num_rings % 2 == 0)
1415 1416
		intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1417

1418
	return 0;
1419 1420
}

1421 1422 1423 1424 1425 1426 1427 1428 1429
static void i9xx_submit_request(struct drm_i915_gem_request *request)
{
	struct drm_i915_private *dev_priv = request->i915;

	I915_WRITE_TAIL(request->engine,
			intel_ring_offset(request->ring, request->tail));
}

static int i9xx_emit_request(struct drm_i915_gem_request *req)
1430
{
1431
	struct intel_ring *ring = req->ring;
1432
	int ret;
1433

1434
	ret = intel_ring_begin(req, 4);
1435 1436 1437
	if (ret)
		return ret;

1438 1439 1440 1441
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, req->fence.seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1442 1443 1444
	intel_ring_advance(ring);

	req->tail = ring->tail;
1445 1446 1447 1448

	return 0;
}

1449
/**
1450
 * gen6_sema_emit_request - Update the semaphore mailbox registers
1451 1452 1453 1454 1455 1456
 *
 * @request - request to write to the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
1457
static int gen6_sema_emit_request(struct drm_i915_gem_request *req)
1458
{
1459
	int ret;
1460

1461 1462 1463
	ret = req->engine->semaphore.signal(req);
	if (ret)
		return ret;
1464 1465 1466 1467

	return i9xx_emit_request(req);
}

1468
static int gen8_render_emit_request(struct drm_i915_gem_request *req)
1469 1470
{
	struct intel_engine_cs *engine = req->engine;
1471
	struct intel_ring *ring = req->ring;
1472 1473
	int ret;

1474 1475 1476 1477 1478 1479 1480
	if (engine->semaphore.signal) {
		ret = engine->semaphore.signal(req);
		if (ret)
			return ret;
	}

	ret = intel_ring_begin(req, 8);
1481 1482 1483
	if (ret)
		return ret;

1484 1485 1486 1487 1488 1489 1490
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
	intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
			       PIPE_CONTROL_CS_STALL |
			       PIPE_CONTROL_QW_WRITE));
	intel_ring_emit(ring, intel_hws_seqno_address(engine));
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1491
	/* We're thrashing one dword of HWS. */
1492 1493 1494
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_emit(ring, MI_NOOP);
1495
	intel_ring_advance(ring);
1496 1497

	req->tail = ring->tail;
1498 1499 1500 1501

	return 0;
}

1502 1503 1504 1505 1506 1507 1508
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
1509 1510

static int
1511 1512
gen8_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1513
{
1514 1515 1516
	struct intel_ring *ring = req->ring;
	struct drm_i915_private *dev_priv = req->i915;
	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1517
	struct i915_hw_ppgtt *ppgtt;
1518 1519
	int ret;

1520
	ret = intel_ring_begin(req, 4);
1521 1522 1523
	if (ret)
		return ret;

1524 1525 1526 1527 1528 1529 1530 1531
	intel_ring_emit(ring,
			MI_SEMAPHORE_WAIT |
			MI_SEMAPHORE_GLOBAL_GTT |
			MI_SEMAPHORE_SAD_GTE_SDD);
	intel_ring_emit(ring, signal->fence.seqno);
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_advance(ring);
1532 1533 1534 1535 1536 1537

	/* When the !RCS engines idle waiting upon a semaphore, they lose their
	 * pagetables and we must reload them before executing the batch.
	 * We do this on the i915_switch_context() following the wait and
	 * before the dispatch.
	 */
1538 1539 1540
	ppgtt = req->ctx->ppgtt;
	if (ppgtt && req->engine->id != RCS)
		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1541 1542 1543
	return 0;
}

1544
static int
1545 1546
gen6_ring_sync_to(struct drm_i915_gem_request *req,
		  struct drm_i915_gem_request *signal)
1547
{
1548
	struct intel_ring *ring = req->ring;
1549 1550 1551
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
1552
	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->id];
1553
	int ret;
1554

1555
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1556

1557
	ret = intel_ring_begin(req, 4);
1558 1559 1560
	if (ret)
		return ret;

1561
	intel_ring_emit(ring, dw1 | wait_mbox);
1562 1563 1564 1565
	/* Throughout all of the GEM code, seqno passed implies our current
	 * seqno is >= the last seqno executed. However for hardware the
	 * comparison is strictly greater than.
	 */
1566 1567 1568 1569
	intel_ring_emit(ring, signal->fence.seqno - 1);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1570 1571 1572 1573

	return 0;
}

1574
static void
1575
gen5_seqno_barrier(struct intel_engine_cs *engine)
1576
{
1577 1578 1579
	/* MI_STORE are internally buffered by the GPU and not flushed
	 * either by MI_FLUSH or SyncFlush or any other combination of
	 * MI commands.
1580
	 *
1581 1582 1583 1584 1585 1586 1587
	 * "Only the submission of the store operation is guaranteed.
	 * The write result will be complete (coherent) some time later
	 * (this is practically a finite period but there is no guaranteed
	 * latency)."
	 *
	 * Empirically, we observe that we need a delay of at least 75us to
	 * be sure that the seqno write is visible by the CPU.
1588
	 */
1589
	usleep_range(125, 250);
1590 1591
}

1592 1593
static void
gen6_seqno_barrier(struct intel_engine_cs *engine)
1594
{
1595
	struct drm_i915_private *dev_priv = engine->i915;
1596

1597 1598
	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
1599 1600 1601 1602 1603 1604 1605 1606 1607
	 * ACTHD) before reading the status page.
	 *
	 * Note that this effectively stalls the read by the time it takes to
	 * do a memory transaction, which more or less ensures that the write
	 * from the GPU has sufficient time to invalidate the CPU cacheline.
	 * Alternatively we could delay the interrupt from the CS ring to give
	 * the write time to land, but that would incur a delay after every
	 * batch i.e. much more frequent than a delay when waiting for the
	 * interrupt (with the same net latency).
1608 1609 1610
	 *
	 * Also note that to prevent whole machine hangs on gen7, we have to
	 * take the spinlock to guard against concurrent cacheline access.
1611
	 */
1612
	spin_lock_irq(&dev_priv->uncore.lock);
1613
	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1614
	spin_unlock_irq(&dev_priv->uncore.lock);
1615 1616
}

1617 1618
static void
gen5_irq_enable(struct intel_engine_cs *engine)
1619
{
1620
	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1621 1622 1623
}

static void
1624
gen5_irq_disable(struct intel_engine_cs *engine)
1625
{
1626
	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
1627 1628
}

1629 1630
static void
i9xx_irq_enable(struct intel_engine_cs *engine)
1631
{
1632
	struct drm_i915_private *dev_priv = engine->i915;
1633

1634 1635 1636
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1637 1638
}

1639
static void
1640
i9xx_irq_disable(struct intel_engine_cs *engine)
1641
{
1642
	struct drm_i915_private *dev_priv = engine->i915;
1643

1644 1645
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
1646 1647
}

1648 1649
static void
i8xx_irq_enable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1650
{
1651
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1652

1653 1654 1655
	dev_priv->irq_mask &= ~engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
	POSTING_READ16(RING_IMR(engine->mmio_base));
C
Chris Wilson 已提交
1656 1657 1658
}

static void
1659
i8xx_irq_disable(struct intel_engine_cs *engine)
C
Chris Wilson 已提交
1660
{
1661
	struct drm_i915_private *dev_priv = engine->i915;
C
Chris Wilson 已提交
1662

1663 1664
	dev_priv->irq_mask |= engine->irq_enable_mask;
	I915_WRITE16(IMR, dev_priv->irq_mask);
C
Chris Wilson 已提交
1665 1666
}

1667
static int
1668
bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
1669
{
1670
	struct intel_ring *ring = req->ring;
1671 1672
	int ret;

1673
	ret = intel_ring_begin(req, 2);
1674 1675 1676
	if (ret)
		return ret;

1677 1678 1679
	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1680
	return 0;
1681 1682
}

1683 1684
static void
gen6_irq_enable(struct intel_engine_cs *engine)
1685
{
1686
	struct drm_i915_private *dev_priv = engine->i915;
1687

1688 1689 1690
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1691
	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
1692 1693 1694
}

static void
1695
gen6_irq_disable(struct intel_engine_cs *engine)
1696
{
1697
	struct drm_i915_private *dev_priv = engine->i915;
1698

1699
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1700
	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1701 1702
}

1703 1704
static void
hsw_vebox_irq_enable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1705
{
1706
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1707

1708 1709
	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
	gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1710 1711 1712
}

static void
1713
hsw_vebox_irq_disable(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
1714
{
1715
	struct drm_i915_private *dev_priv = engine->i915;
B
Ben Widawsky 已提交
1716

1717 1718
	I915_WRITE_IMR(engine, ~0);
	gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
B
Ben Widawsky 已提交
1719 1720
}

1721 1722
static void
gen8_irq_enable(struct intel_engine_cs *engine)
1723
{
1724
	struct drm_i915_private *dev_priv = engine->i915;
1725

1726 1727 1728
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask |
			 engine->irq_keep_mask));
1729
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1730 1731 1732
}

static void
1733
gen8_irq_disable(struct intel_engine_cs *engine)
1734
{
1735
	struct drm_i915_private *dev_priv = engine->i915;
1736

1737
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1738 1739
}

1740
static int
1741 1742 1743
i965_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 length,
		   unsigned int dispatch_flags)
1744
{
1745
	struct intel_ring *ring = req->ring;
1746
	int ret;
1747

1748
	ret = intel_ring_begin(req, 2);
1749 1750 1751
	if (ret)
		return ret;

1752
	intel_ring_emit(ring,
1753 1754
			MI_BATCH_BUFFER_START |
			MI_BATCH_GTT |
1755 1756
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
1757 1758
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1759

1760 1761 1762
	return 0;
}

1763 1764
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
#define I830_BATCH_LIMIT (256*1024)
1765 1766
#define I830_TLB_ENTRIES (2)
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1767
static int
1768 1769 1770
i830_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1771
{
1772
	struct intel_ring *ring = req->ring;
1773
	u32 cs_offset = req->engine->scratch->node.start;
1774
	int ret;
1775

1776
	ret = intel_ring_begin(req, 6);
1777 1778
	if (ret)
		return ret;
1779

1780
	/* Evict the invalid PTE TLBs */
1781 1782 1783 1784 1785 1786 1787
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
	intel_ring_emit(ring, cs_offset);
	intel_ring_emit(ring, 0xdeadbeef);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
1788

1789
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1790 1791 1792
		if (len > I830_BATCH_LIMIT)
			return -ENOSPC;

1793
		ret = intel_ring_begin(req, 6 + 2);
1794 1795
		if (ret)
			return ret;
1796 1797 1798 1799 1800

		/* Blit the batch (which has now all relocs applied) to the
		 * stable batch scratch bo area (so that the CS never
		 * stumbles over its tlb invalidation bug) ...
		 */
1801 1802
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
		intel_ring_emit(ring,
1803
				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1804 1805 1806 1807
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
		intel_ring_emit(ring, cs_offset);
		intel_ring_emit(ring, 4096);
		intel_ring_emit(ring, offset);
1808

1809 1810 1811
		intel_ring_emit(ring, MI_FLUSH);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
1812 1813

		/* ... and execute it. */
1814
		offset = cs_offset;
1815
	}
1816

1817
	ret = intel_ring_begin(req, 2);
1818 1819 1820
	if (ret)
		return ret;

1821 1822 1823 1824
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1825

1826 1827 1828 1829
	return 0;
}

static int
1830 1831 1832
i915_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
1833
{
1834
	struct intel_ring *ring = req->ring;
1835 1836
	int ret;

1837
	ret = intel_ring_begin(req, 2);
1838 1839 1840
	if (ret)
		return ret;

1841 1842 1843 1844
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
					0 : MI_BATCH_NON_SECURE));
	intel_ring_advance(ring);
1845 1846 1847 1848

	return 0;
}

1849
static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1850
{
1851
	struct drm_i915_private *dev_priv = engine->i915;
1852 1853 1854 1855

	if (!dev_priv->status_page_dmah)
		return;

1856
	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1857
	engine->status_page.page_addr = NULL;
1858 1859
}

1860
static void cleanup_status_page(struct intel_engine_cs *engine)
1861
{
1862
	struct i915_vma *vma;
1863

1864 1865
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
1866 1867
		return;

1868 1869 1870
	i915_vma_unpin(vma);
	i915_gem_object_unpin_map(vma->obj);
	i915_vma_put(vma);
1871 1872
}

1873
static int init_status_page(struct intel_engine_cs *engine)
1874
{
1875 1876 1877 1878
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	unsigned int flags;
	int ret;
1879

1880 1881 1882 1883 1884
	obj = i915_gem_object_create(&engine->i915->drm, 4096);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}
1885

1886 1887 1888
	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
	if (ret)
		goto err;
1889

1890 1891 1892 1893
	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
1894
	}
1895

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/* On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actualy map it).
		 */
		flags |= PIN_MAPPABLE;
	ret = i915_vma_pin(vma, 0, 4096, flags);
	if (ret)
		goto err;
1912

1913 1914 1915 1916
	engine->status_page.vma = vma;
	engine->status_page.ggtt_offset = vma->node.start;
	engine->status_page.page_addr =
		i915_gem_object_pin_map(obj, I915_MAP_WB);
1917

1918 1919
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08llx\n",
			 engine->name, vma->node.start);
1920
	return 0;
1921 1922 1923 1924

err:
	i915_gem_object_put(obj);
	return ret;
1925 1926
}

1927
static int init_phys_status_page(struct intel_engine_cs *engine)
1928
{
1929
	struct drm_i915_private *dev_priv = engine->i915;
1930

1931 1932 1933 1934
	dev_priv->status_page_dmah =
		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
	if (!dev_priv->status_page_dmah)
		return -ENOMEM;
1935

1936 1937
	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1938 1939 1940 1941

	return 0;
}

1942
int intel_ring_pin(struct intel_ring *ring)
1943
{
1944
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1945 1946
	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
	struct i915_vma *vma = ring->vma;
1947
	void *addr;
1948 1949
	int ret;

1950
	GEM_BUG_ON(ring->vaddr);
1951

1952 1953
	if (ring->needs_iomap)
		flags |= PIN_MAPPABLE;
1954

1955 1956 1957 1958 1959 1960
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		if (flags & PIN_MAPPABLE)
			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		else
			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
		if (unlikely(ret))
1961
			return ret;
1962
	}
1963

1964 1965 1966
	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
	if (unlikely(ret))
		return ret;
1967

1968 1969 1970 1971 1972 1973
	if (flags & PIN_MAPPABLE)
		addr = (void __force *)i915_vma_pin_iomap(vma);
	else
		addr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
	if (IS_ERR(addr))
		goto err;
1974

1975
	ring->vaddr = addr;
1976
	return 0;
1977

1978 1979 1980
err:
	i915_vma_unpin(vma);
	return PTR_ERR(addr);
1981 1982
}

1983 1984 1985 1986 1987
void intel_ring_unpin(struct intel_ring *ring)
{
	GEM_BUG_ON(!ring->vma);
	GEM_BUG_ON(!ring->vaddr);

1988
	if (ring->needs_iomap)
1989
		i915_vma_unpin_iomap(ring->vma);
1990 1991
	else
		i915_gem_object_unpin_map(ring->vma->obj);
1992 1993
	ring->vaddr = NULL;

1994
	i915_vma_unpin(ring->vma);
1995 1996
}

1997 1998
static struct i915_vma *
intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1999
{
2000
	struct drm_i915_gem_object *obj;
2001
	struct i915_vma *vma;
2002

2003 2004 2005
	obj = ERR_PTR(-ENODEV);
	if (!HAS_LLC(dev_priv))
		obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
2006
	if (IS_ERR(obj))
2007 2008 2009
		obj = i915_gem_object_create(&dev_priv->drm, size);
	if (IS_ERR(obj))
		return ERR_CAST(obj);
2010

2011 2012 2013
	/* mark ring buffers as read-only from GPU side by default */
	obj->gt_ro = 1;

2014 2015 2016 2017 2018
	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
	if (IS_ERR(vma))
		goto err;

	return vma;
2019

2020 2021 2022
err:
	i915_gem_object_put(obj);
	return vma;
2023 2024
}

2025 2026
struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size)
2027
{
2028
	struct intel_ring *ring;
2029
	struct i915_vma *vma;
2030

2031 2032
	GEM_BUG_ON(!is_power_of_2(size));

2033
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2034
	if (!ring)
2035 2036
		return ERR_PTR(-ENOMEM);

2037
	ring->engine = engine;
2038

2039 2040
	INIT_LIST_HEAD(&ring->request_list);

2041 2042 2043 2044 2045 2046
	ring->size = size;
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = size;
2047
	if (IS_I830(engine->i915) || IS_845G(engine->i915))
2048 2049 2050 2051 2052
		ring->effective_size -= 2 * CACHELINE_BYTES;

	ring->last_retired_head = -1;
	intel_ring_update_space(ring);

2053 2054
	vma = intel_ring_create_vma(engine->i915, size);
	if (IS_ERR(vma)) {
2055
		kfree(ring);
2056
		return ERR_CAST(vma);
2057
	}
2058 2059 2060
	ring->vma = vma;
	if (!HAS_LLC(engine->i915) || vma->obj->stolen)
		ring->needs_iomap = true;
2061

2062
	list_add(&ring->link, &engine->buffers);
2063 2064 2065 2066
	return ring;
}

void
2067
intel_ring_free(struct intel_ring *ring)
2068
{
2069
	i915_vma_put(ring->vma);
2070
	list_del(&ring->link);
2071 2072 2073
	kfree(ring);
}

2074 2075 2076 2077 2078 2079
static int intel_ring_context_pin(struct i915_gem_context *ctx,
				  struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];
	int ret;

2080
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2081 2082 2083 2084 2085

	if (ce->pin_count++)
		return 0;

	if (ce->state) {
2086 2087 2088 2089
		ret = i915_gem_object_set_to_gtt_domain(ce->state->obj, false);
		if (ret)
			goto error;

2090 2091
		ret = i915_vma_pin(ce->state, 0, ctx->ggtt_alignment,
				   PIN_GLOBAL | PIN_HIGH);
2092 2093 2094 2095
		if (ret)
			goto error;
	}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	/* The kernel context is only used as a placeholder for flushing the
	 * active context. It is never used for submitting user rendering and
	 * as such never requires the golden render context, and so we can skip
	 * emitting it when we switch to the kernel context. This is required
	 * as during eviction we cannot allocate and pin the renderstate in
	 * order to initialise the context.
	 */
	if (ctx == ctx->i915->kernel_context)
		ce->initialised = true;

2106
	i915_gem_context_get(ctx);
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	return 0;

error:
	ce->pin_count = 0;
	return ret;
}

static void intel_ring_context_unpin(struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine)
{
	struct intel_context *ce = &ctx->engine[engine->id];

2119
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
2120 2121 2122 2123 2124

	if (--ce->pin_count)
		return;

	if (ce->state)
2125
		i915_vma_unpin(ce->state);
2126

2127
	i915_gem_context_put(ctx);
2128 2129
}

2130
static int intel_init_ring_buffer(struct intel_engine_cs *engine)
2131
{
2132
	struct drm_i915_private *dev_priv = engine->i915;
2133
	struct intel_ring *ring;
2134 2135
	int ret;

2136
	WARN_ON(engine->buffer);
2137

2138 2139
	intel_engine_setup_common(engine);

2140 2141
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2142

2143
	ret = intel_engine_init_common(engine);
2144 2145
	if (ret)
		goto error;
2146

2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
	if (ret)
		goto error;

2158 2159 2160
	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2161 2162
		goto error;
	}
2163

2164
	if (I915_NEED_GFX_HWS(dev_priv)) {
2165
		ret = init_status_page(engine);
2166
		if (ret)
2167
			goto error;
2168
	} else {
2169 2170
		WARN_ON(engine->id != RCS);
		ret = init_phys_status_page(engine);
2171
		if (ret)
2172
			goto error;
2173 2174
	}

2175
	ret = intel_ring_pin(ring);
2176
	if (ret) {
2177
		intel_ring_free(ring);
2178
		goto error;
2179
	}
2180
	engine->buffer = ring;
2181

2182
	return 0;
2183

2184
error:
2185
	intel_engine_cleanup(engine);
2186
	return ret;
2187 2188
}

2189
void intel_engine_cleanup(struct intel_engine_cs *engine)
2190
{
2191
	struct drm_i915_private *dev_priv;
2192

2193
	if (!intel_engine_initialized(engine))
2194 2195
		return;

2196
	dev_priv = engine->i915;
2197

2198
	if (engine->buffer) {
2199
		WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
2200

2201
		intel_ring_unpin(engine->buffer);
2202
		intel_ring_free(engine->buffer);
2203
		engine->buffer = NULL;
2204
	}
2205

2206 2207
	if (engine->cleanup)
		engine->cleanup(engine);
Z
Zou Nan hai 已提交
2208

2209
	if (I915_NEED_GFX_HWS(dev_priv)) {
2210
		cleanup_status_page(engine);
2211
	} else {
2212 2213
		WARN_ON(engine->id != RCS);
		cleanup_phys_status_page(engine);
2214
	}
2215

2216
	intel_engine_cleanup_common(engine);
2217 2218 2219

	intel_ring_context_unpin(dev_priv->kernel_context, engine);

2220
	engine->i915 = NULL;
2221 2222
}

2223
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2224
{
2225 2226 2227 2228 2229 2230
	int ret;

	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
2231
	request->reserved_space += LEGACY_REQUEST_SIZE;
2232

2233
	request->ring = request->engine->buffer;
2234 2235 2236 2237 2238

	ret = intel_ring_begin(request, 0);
	if (ret)
		return ret;

2239
	request->reserved_space -= LEGACY_REQUEST_SIZE;
2240
	return 0;
2241 2242
}

2243 2244
static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
{
2245
	struct intel_ring *ring = req->ring;
2246
	struct drm_i915_gem_request *target;
2247
	int ret;
2248

2249 2250
	intel_ring_update_space(ring);
	if (ring->space >= bytes)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
		return 0;

	/*
	 * Space is reserved in the ringbuffer for finalising the request,
	 * as that cannot be allowed to fail. During request finalisation,
	 * reserved_space is set to 0 to stop the overallocation and the
	 * assumption is that then we never need to wait (which has the
	 * risk of failing with EINTR).
	 *
	 * See also i915_gem_request_alloc() and i915_add_request().
	 */
2262
	GEM_BUG_ON(!req->reserved_space);
2263

2264
	list_for_each_entry(target, &ring->request_list, ring_link) {
2265 2266 2267
		unsigned space;

		/* Would completion of this request free enough space? */
2268 2269
		space = __intel_ring_space(target->postfix, ring->tail,
					   ring->size);
2270 2271
		if (space >= bytes)
			break;
2272
	}
2273

2274
	if (WARN_ON(&target->ring_link == &ring->request_list))
2275 2276
		return -ENOSPC;

2277
	ret = i915_wait_request(target, true, NULL, NO_WAITBOOST);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
	if (ret)
		return ret;

	if (i915_reset_in_progress(&target->i915->gpu_error))
		return -EAGAIN;

	i915_gem_request_retire_upto(target);

	intel_ring_update_space(ring);
	GEM_BUG_ON(ring->space < bytes);
	return 0;
2289 2290
}

2291
int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
M
Mika Kuoppala 已提交
2292
{
2293
	struct intel_ring *ring = req->ring;
2294 2295
	int remain_actual = ring->size - ring->tail;
	int remain_usable = ring->effective_size - ring->tail;
2296 2297
	int bytes = num_dwords * sizeof(u32);
	int total_bytes, wait_bytes;
2298
	bool need_wrap = false;
2299

2300
	total_bytes = bytes + req->reserved_space;
2301

2302 2303 2304 2305 2306 2307 2308
	if (unlikely(bytes > remain_usable)) {
		/*
		 * Not enough space for the basic request. So need to flush
		 * out the remainder and then wait for base + reserved.
		 */
		wait_bytes = remain_actual + total_bytes;
		need_wrap = true;
2309 2310 2311 2312 2313 2314 2315
	} else if (unlikely(total_bytes > remain_usable)) {
		/*
		 * The base request will fit but the reserved space
		 * falls off the end. So we don't need an immediate wrap
		 * and only need to effectively wait for the reserved
		 * size space from the start of ringbuffer.
		 */
2316
		wait_bytes = remain_actual + req->reserved_space;
2317
	} else {
2318 2319
		/* No wrapping required, just waiting. */
		wait_bytes = total_bytes;
M
Mika Kuoppala 已提交
2320 2321
	}

2322
	if (wait_bytes > ring->space) {
2323
		int ret = wait_for_space(req, wait_bytes);
M
Mika Kuoppala 已提交
2324 2325 2326 2327
		if (unlikely(ret))
			return ret;
	}

2328
	if (unlikely(need_wrap)) {
2329 2330
		GEM_BUG_ON(remain_actual > ring->space);
		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2331

2332
		/* Fill the tail with MI_NOOP */
2333 2334 2335
		memset(ring->vaddr + ring->tail, 0, remain_actual);
		ring->tail = 0;
		ring->space -= remain_actual;
2336
	}
2337

2338 2339
	ring->space -= bytes;
	GEM_BUG_ON(ring->space < 0);
2340
	return 0;
2341
}
2342

2343
/* Align the ring tail to a cacheline boundary */
2344
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2345
{
2346
	struct intel_ring *ring = req->ring;
2347 2348
	int num_dwords =
		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2349 2350 2351 2352 2353
	int ret;

	if (num_dwords == 0)
		return 0;

2354
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2355
	ret = intel_ring_begin(req, num_dwords);
2356 2357 2358 2359
	if (ret)
		return ret;

	while (num_dwords--)
2360
		intel_ring_emit(ring, MI_NOOP);
2361

2362
	intel_ring_advance(ring);
2363 2364 2365 2366

	return 0;
}

2367
void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
2368
{
2369
	struct drm_i915_private *dev_priv = engine->i915;
2370

2371 2372 2373 2374 2375 2376 2377 2378
	/* Our semaphore implementation is strictly monotonic (i.e. we proceed
	 * so long as the semaphore value in the register/page is greater
	 * than the sync value), so whenever we reset the seqno,
	 * so long as we reset the tracking semaphore value to 0, it will
	 * always be before the next request's seqno. If we don't reset
	 * the semaphore value, then when the seqno moves backwards all
	 * future waits will complete instantly (causing rendering corruption).
	 */
2379
	if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
2380 2381
		I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
		I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
2382
		if (HAS_VEBOX(dev_priv))
2383
			I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
2384
	}
2385 2386 2387 2388 2389 2390 2391 2392
	if (dev_priv->semaphore_obj) {
		struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
		struct page *page = i915_gem_object_get_dirty_page(obj, 0);
		void *semaphores = kmap(page);
		memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
		       0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
		kunmap(page);
	}
2393 2394
	memset(engine->semaphore.sync_seqno, 0,
	       sizeof(engine->semaphore.sync_seqno));
2395

2396 2397 2398
	intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);
2399
	engine->last_submitted_seqno = seqno;
2400

2401
	engine->hangcheck.seqno = seqno;
2402 2403 2404 2405 2406

	/* After manually advancing the seqno, fake the interrupt in case
	 * there are any waiters for that seqno.
	 */
	intel_engine_wakeup(engine);
2407
}
2408

2409
static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2410
{
2411
	struct drm_i915_private *dev_priv = request->i915;
2412

2413 2414
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

2415
       /* Every tail move must follow the sequence below */
2416 2417 2418 2419

	/* Disable notification that the ring is IDLE. The GT
	 * will then assume that it is busy and bring it out of rc6.
	 */
2420 2421
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2422 2423

	/* Clear the context id. Here be magic! */
2424
	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2425

2426
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2427 2428 2429 2430 2431
	if (intel_wait_for_register_fw(dev_priv,
				       GEN6_BSD_SLEEP_PSMI_CONTROL,
				       GEN6_BSD_SLEEP_INDICATOR,
				       0,
				       50))
2432
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2433

2434
	/* Now that the ring is fully powered up, update the tail */
2435
	i9xx_submit_request(request);
2436 2437 2438 2439

	/* Let the ring send IDLE messages to the GT again,
	 * and so let it sleep to conserve power when idle.
	 */
2440 2441 2442 2443
	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2444 2445
}

2446
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
2447
{
2448
	struct intel_ring *ring = req->ring;
2449
	uint32_t cmd;
2450 2451
	int ret;

2452
	ret = intel_ring_begin(req, 4);
2453 2454 2455
	if (ret)
		return ret;

2456
	cmd = MI_FLUSH_DW;
2457
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2458
		cmd += 1;
2459 2460 2461 2462 2463 2464 2465 2466

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2467 2468 2469 2470 2471 2472
	/*
	 * Bspec vol 1c.5 - video engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2473
	if (mode & EMIT_INVALIDATE)
2474 2475
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;

2476 2477
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2478
	if (INTEL_GEN(req->i915) >= 8) {
2479 2480
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2481
	} else  {
2482 2483
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2484
	}
2485
	intel_ring_advance(ring);
2486
	return 0;
2487 2488
}

2489
static int
2490 2491 2492
gen8_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2493
{
2494
	struct intel_ring *ring = req->ring;
2495
	bool ppgtt = USES_PPGTT(req->i915) &&
2496
			!(dispatch_flags & I915_DISPATCH_SECURE);
2497 2498
	int ret;

2499
	ret = intel_ring_begin(req, 4);
2500 2501 2502 2503
	if (ret)
		return ret;

	/* FIXME(BDW): Address space and security selectors. */
2504
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2505 2506
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2507 2508 2509 2510
	intel_ring_emit(ring, lower_32_bits(offset));
	intel_ring_emit(ring, upper_32_bits(offset));
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
2511 2512 2513 2514

	return 0;
}

2515
static int
2516 2517 2518
hsw_emit_bb_start(struct drm_i915_gem_request *req,
		  u64 offset, u32 len,
		  unsigned int dispatch_flags)
2519
{
2520
	struct intel_ring *ring = req->ring;
2521 2522
	int ret;

2523
	ret = intel_ring_begin(req, 2);
2524 2525 2526
	if (ret)
		return ret;

2527
	intel_ring_emit(ring,
2528
			MI_BATCH_BUFFER_START |
2529
			(dispatch_flags & I915_DISPATCH_SECURE ?
2530 2531 2532
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
			(dispatch_flags & I915_DISPATCH_RS ?
			 MI_BATCH_RESOURCE_STREAMER : 0));
2533
	/* bit0-7 is the length on GEN6+ */
2534 2535
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2536 2537 2538 2539

	return 0;
}

2540
static int
2541 2542 2543
gen6_emit_bb_start(struct drm_i915_gem_request *req,
		   u64 offset, u32 len,
		   unsigned int dispatch_flags)
2544
{
2545
	struct intel_ring *ring = req->ring;
2546
	int ret;
2547

2548
	ret = intel_ring_begin(req, 2);
2549 2550
	if (ret)
		return ret;
2551

2552
	intel_ring_emit(ring,
2553
			MI_BATCH_BUFFER_START |
2554 2555
			(dispatch_flags & I915_DISPATCH_SECURE ?
			 0 : MI_BATCH_NON_SECURE_I965));
2556
	/* bit0-7 is the length on GEN6+ */
2557 2558
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
2559

2560
	return 0;
2561 2562
}

2563 2564
/* Blitter support (SandyBridge+) */

2565
static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
Z
Zou Nan hai 已提交
2566
{
2567
	struct intel_ring *ring = req->ring;
2568
	uint32_t cmd;
2569 2570
	int ret;

2571
	ret = intel_ring_begin(req, 4);
2572 2573 2574
	if (ret)
		return ret;

2575
	cmd = MI_FLUSH_DW;
2576
	if (INTEL_GEN(req->i915) >= 8)
B
Ben Widawsky 已提交
2577
		cmd += 1;
2578 2579 2580 2581 2582 2583 2584 2585

	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2586 2587 2588 2589 2590 2591
	/*
	 * Bspec vol 1c.3 - blitter engine command streamer:
	 * "If ENABLED, all TLBs will be invalidated once the flush
	 * operation is complete. This bit is only valid when the
	 * Post-Sync Operation field is a value of 1h or 3h."
	 */
2592
	if (mode & EMIT_INVALIDATE)
2593
		cmd |= MI_INVALIDATE_TLB;
2594 2595
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring,
2596
			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2597
	if (INTEL_GEN(req->i915) >= 8) {
2598 2599
		intel_ring_emit(ring, 0); /* upper addr */
		intel_ring_emit(ring, 0); /* value */
B
Ben Widawsky 已提交
2600
	} else  {
2601 2602
		intel_ring_emit(ring, 0);
		intel_ring_emit(ring, MI_NOOP);
B
Ben Widawsky 已提交
2603
	}
2604
	intel_ring_advance(ring);
R
Rodrigo Vivi 已提交
2605

2606
	return 0;
Z
Zou Nan hai 已提交
2607 2608
}

2609 2610 2611
static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
				       struct intel_engine_cs *engine)
{
2612
	struct drm_i915_gem_object *obj;
2613
	int ret, i;
2614

2615
	if (!i915.semaphores)
2616 2617 2618
		return;

	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
2619
		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2620 2621 2622 2623 2624
		if (IS_ERR(obj)) {
			DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
			i915.semaphores = 0;
		} else {
			i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2625 2626
			ret = i915_gem_object_ggtt_pin(obj, NULL,
						       0, 0, PIN_HIGH);
2627
			if (ret != 0) {
2628
				i915_gem_object_put(obj);
2629 2630 2631 2632 2633 2634 2635 2636
				DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
				i915.semaphores = 0;
			} else {
				dev_priv->semaphore_obj = obj;
			}
		}
	}

2637
	if (!i915.semaphores)
2638 2639 2640
		return;

	if (INTEL_GEN(dev_priv) >= 8) {
2641 2642
		u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);

2643
		engine->semaphore.sync_to = gen8_ring_sync_to;
2644
		engine->semaphore.signal = gen8_xcs_signal;
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

		for (i = 0; i < I915_NUM_ENGINES; i++) {
			u64 ring_offset;

			if (i != engine->id)
				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
			else
				ring_offset = MI_SEMAPHORE_SYNC_INVALID;

			engine->semaphore.signal_ggtt[i] = ring_offset;
		}
2656
	} else if (INTEL_GEN(dev_priv) >= 6) {
2657
		engine->semaphore.sync_to = gen6_ring_sync_to;
2658
		engine->semaphore.signal = gen6_signal;
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

		/*
		 * The current semaphore is only applied on pre-gen8
		 * platform.  And there is no VCS2 ring on the pre-gen8
		 * platform. So the semaphore between RCS and VCS2 is
		 * initialized as INVALID.  Gen8 will initialize the
		 * sema between VCS2 and RCS later.
		 */
		for (i = 0; i < I915_NUM_ENGINES; i++) {
			static const struct {
				u32 wait_mbox;
				i915_reg_t mbox_reg;
			} sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
				[RCS] = {
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
				},
				[VCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
				},
				[BCS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
					[VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
				},
				[VECS] = {
					[RCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
					[VCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
					[BCS] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
				},
			};
			u32 wait_mbox;
			i915_reg_t mbox_reg;

			if (i == engine->id || i == VCS2) {
				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
				mbox_reg = GEN6_NOSYNC;
			} else {
				wait_mbox = sem_data[engine->id][i].wait_mbox;
				mbox_reg = sem_data[engine->id][i].mbox_reg;
			}

			engine->semaphore.mbox.wait[i] = wait_mbox;
			engine->semaphore.mbox.signal[i] = mbox_reg;
		}
2707 2708 2709
	}
}

2710 2711 2712
static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
				struct intel_engine_cs *engine)
{
2713 2714
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;

2715
	if (INTEL_GEN(dev_priv) >= 8) {
2716 2717
		engine->irq_enable = gen8_irq_enable;
		engine->irq_disable = gen8_irq_disable;
2718 2719
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 6) {
2720 2721
		engine->irq_enable = gen6_irq_enable;
		engine->irq_disable = gen6_irq_disable;
2722 2723
		engine->irq_seqno_barrier = gen6_seqno_barrier;
	} else if (INTEL_GEN(dev_priv) >= 5) {
2724 2725
		engine->irq_enable = gen5_irq_enable;
		engine->irq_disable = gen5_irq_disable;
2726
		engine->irq_seqno_barrier = gen5_seqno_barrier;
2727
	} else if (INTEL_GEN(dev_priv) >= 3) {
2728 2729
		engine->irq_enable = i9xx_irq_enable;
		engine->irq_disable = i9xx_irq_disable;
2730
	} else {
2731 2732
		engine->irq_enable = i8xx_irq_enable;
		engine->irq_disable = i8xx_irq_disable;
2733 2734 2735
	}
}

2736 2737 2738
static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
				      struct intel_engine_cs *engine)
{
2739 2740 2741
	intel_ring_init_irq(dev_priv, engine);
	intel_ring_init_semaphores(dev_priv, engine);

2742
	engine->init_hw = init_ring_common;
2743

2744
	engine->emit_request = i9xx_emit_request;
2745 2746
	if (i915.semaphores)
		engine->emit_request = gen6_sema_emit_request;
2747
	engine->submit_request = i9xx_submit_request;
2748 2749

	if (INTEL_GEN(dev_priv) >= 8)
2750
		engine->emit_bb_start = gen8_emit_bb_start;
2751
	else if (INTEL_GEN(dev_priv) >= 6)
2752
		engine->emit_bb_start = gen6_emit_bb_start;
2753
	else if (INTEL_GEN(dev_priv) >= 4)
2754
		engine->emit_bb_start = i965_emit_bb_start;
2755
	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2756
		engine->emit_bb_start = i830_emit_bb_start;
2757
	else
2758
		engine->emit_bb_start = i915_emit_bb_start;
2759 2760
}

2761
int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2762
{
2763
	struct drm_i915_private *dev_priv = engine->i915;
2764
	int ret;
2765

2766 2767
	intel_ring_default_vfuncs(dev_priv, engine);

2768 2769
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2770

2771
	if (INTEL_GEN(dev_priv) >= 8) {
2772
		engine->init_context = intel_rcs_ctx_init;
2773
		engine->emit_request = gen8_render_emit_request;
2774
		engine->emit_flush = gen8_render_ring_flush;
2775
		if (i915.semaphores)
2776
			engine->semaphore.signal = gen8_rcs_signal;
2777
	} else if (INTEL_GEN(dev_priv) >= 6) {
2778
		engine->init_context = intel_rcs_ctx_init;
2779
		engine->emit_flush = gen7_render_ring_flush;
2780
		if (IS_GEN6(dev_priv))
2781
			engine->emit_flush = gen6_render_ring_flush;
2782
	} else if (IS_GEN5(dev_priv)) {
2783
		engine->emit_flush = gen4_render_ring_flush;
2784
	} else {
2785
		if (INTEL_GEN(dev_priv) < 4)
2786
			engine->emit_flush = gen2_render_ring_flush;
2787
		else
2788
			engine->emit_flush = gen4_render_ring_flush;
2789
		engine->irq_enable_mask = I915_USER_INTERRUPT;
2790
	}
B
Ben Widawsky 已提交
2791

2792
	if (IS_HASWELL(dev_priv))
2793
		engine->emit_bb_start = hsw_emit_bb_start;
2794

2795 2796
	engine->init_hw = init_render_ring;
	engine->cleanup = render_ring_cleanup;
2797

2798
	ret = intel_init_ring_buffer(engine);
2799 2800 2801
	if (ret)
		return ret;

2802
	if (INTEL_GEN(dev_priv) >= 6) {
2803
		ret = intel_engine_create_scratch(engine, 4096);
2804 2805 2806
		if (ret)
			return ret;
	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2807
		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2808 2809 2810 2811 2812
		if (ret)
			return ret;
	}

	return 0;
2813 2814
}

2815
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2816
{
2817
	struct drm_i915_private *dev_priv = engine->i915;
2818

2819 2820
	intel_ring_default_vfuncs(dev_priv, engine);

2821
	if (INTEL_GEN(dev_priv) >= 6) {
2822
		/* gen6 bsd needs a special wa for tail updates */
2823
		if (IS_GEN6(dev_priv))
2824
			engine->submit_request = gen6_bsd_submit_request;
2825
		engine->emit_flush = gen6_bsd_ring_flush;
2826
		if (INTEL_GEN(dev_priv) < 8)
2827
			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2828
	} else {
2829
		engine->mmio_base = BSD_RING_BASE;
2830
		engine->emit_flush = bsd_ring_flush;
2831
		if (IS_GEN5(dev_priv))
2832
			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2833
		else
2834
			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2835 2836
	}

2837
	return intel_init_ring_buffer(engine);
2838
}
2839

2840
/**
2841
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2842
 */
2843
int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2844
{
2845
	struct drm_i915_private *dev_priv = engine->i915;
2846 2847 2848

	intel_ring_default_vfuncs(dev_priv, engine);

2849
	engine->emit_flush = gen6_bsd_ring_flush;
2850

2851
	return intel_init_ring_buffer(engine);
2852 2853
}

2854
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
2855
{
2856
	struct drm_i915_private *dev_priv = engine->i915;
2857 2858 2859

	intel_ring_default_vfuncs(dev_priv, engine);

2860
	engine->emit_flush = gen6_ring_flush;
2861
	if (INTEL_GEN(dev_priv) < 8)
2862
		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2863

2864
	return intel_init_ring_buffer(engine);
2865
}
2866

2867
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
B
Ben Widawsky 已提交
2868
{
2869
	struct drm_i915_private *dev_priv = engine->i915;
2870 2871 2872

	intel_ring_default_vfuncs(dev_priv, engine);

2873
	engine->emit_flush = gen6_ring_flush;
2874

2875
	if (INTEL_GEN(dev_priv) < 8) {
2876
		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2877 2878
		engine->irq_enable = hsw_vebox_irq_enable;
		engine->irq_disable = hsw_vebox_irq_disable;
2879
	}
B
Ben Widawsky 已提交
2880

2881
	return intel_init_ring_buffer(engine);
B
Ben Widawsky 已提交
2882
}