smu_v11_0.c 47.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2019 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include "pp_debug.h"
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
27
#include "atomfirmware.h"
28
#include "amdgpu_atomfirmware.h"
29
#include "smu_v11_0.h"
30
#include "smu_11_0_driver_if.h"
31
#include "soc15_common.h"
32
#include "atom.h"
33
#include "vega20_ppt.h"
34
#include "navi10_ppt.h"
35
#include "pp_thermal.h"
36 37 38

#include "asic_reg/thm/thm_11_0_2_offset.h"
#include "asic_reg/thm/thm_11_0_2_sh_mask.h"
39 40
#include "asic_reg/mp/mp_11_0_offset.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
41
#include "asic_reg/nbio/nbio_7_4_offset.h"
42 43
#include "asic_reg/smuio/smuio_11_0_0_offset.h"
#include "asic_reg/smuio/smuio_11_0_0_sh_mask.h"
44

45
MODULE_FIRMWARE("amdgpu/vega20_smc.bin");
46
MODULE_FIRMWARE("amdgpu/navi10_smc.bin");
47

48 49
#define SMU11_THERMAL_MINIMUM_ALERT_TEMP      0
#define SMU11_THERMAL_MAXIMUM_ALERT_TEMP      255
50

51
#define SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES 1000
52
#define SMU11_VOLTAGE_SCALE 4
53

54 55 56 57 58 59 60 61
static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu,
					      uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg);
	return 0;
}

62 63 64 65 66 67 68 69
static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg)
{
	struct amdgpu_device *adev = smu->adev;

	*arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82);
	return 0;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static int smu_v11_0_wait_for_response(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t cur_value, i;

	for (i = 0; i < adev->usec_timeout; i++) {
		cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90);
		if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0)
			break;
		udelay(1);
	}

	/* timeout means wrong logic */
	if (i == adev->usec_timeout)
		return -ETIME;

86
	return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO;
87 88 89 90 91
}

static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg)
{
	struct amdgpu_device *adev = smu->adev;
92 93 94 95 96
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
97 98 99 100 101

	smu_v11_0_wait_for_response(smu);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

102
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
103 104 105 106

	ret = smu_v11_0_wait_for_response(smu);

	if (ret)
107
		pr_err("Failed to send message 0x%x, response 0x%x\n", index,
108 109 110 111 112 113 114 115 116 117 118 119
		       ret);

	return ret;

}

static int
smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg,
			      uint32_t param)
{

	struct amdgpu_device *adev = smu->adev;
120 121 122 123 124
	int ret = 0, index = 0;

	index = smu_msg_get_index(smu, msg);
	if (index < 0)
		return index;
125 126 127

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
128 129
		pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n",
		       index, ret, param);
130 131 132 133 134

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0);

	WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param);

135
	smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index);
136 137 138

	ret = smu_v11_0_wait_for_response(smu);
	if (ret)
139 140
		pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n",
		       index, ret, param);
141 142 143 144

	return ret;
}

145 146 147
static int smu_v11_0_init_microcode(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
148 149 150 151 152 153
	const char *chip_name;
	char fw_name[30];
	int err = 0;
	const struct smc_firmware_header_v1_0 *hdr;
	const struct common_firmware_header *header;
	struct amdgpu_firmware_info *ucode = NULL;
154

155 156 157 158
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		chip_name = "vega20";
		break;
159 160 161
	case CHIP_NAVI10:
		chip_name = "navi10";
		break;
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	default:
		BUG();
	}

	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);

	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
	if (err)
		goto out;
	err = amdgpu_ucode_validate(adev->pm.fw);
	if (err)
		goto out;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	amdgpu_ucode_print_smc_hdr(&hdr->header);
	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);

	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
		ucode->fw = adev->pm.fw;
		header = (const struct common_firmware_header *)ucode->fw->data;
		adev->firmware.fw_size +=
			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
	}

out:
	if (err) {
		DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n",
			  fw_name);
		release_firmware(adev->pm.fw);
		adev->pm.fw = NULL;
	}
	return err;
196 197
}

198 199
static int smu_v11_0_load_microcode(struct smu_context *smu)
{
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	struct amdgpu_device *adev = smu->adev;
	const uint32_t *src;
	const struct smc_firmware_header_v1_0 *hdr;
	uint32_t addr_start = MP1_SRAM;
	uint32_t i;
	uint32_t mp1_fw_flags;

	hdr = (const struct smc_firmware_header_v1_0 *)	adev->pm.fw->data;
	src = (const uint32_t *)(adev->pm.fw->data +
		le32_to_cpu(hdr->header.ucode_array_offset_bytes));

	for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) {
		WREG32_PCIE(addr_start, src[i]);
		addr_start += 4;
	}

	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & MP1_SMN_PUB_CTRL__RESET_MASK);
	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
		1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);

	for (i = 0; i < adev->usec_timeout; i++) {
		mp1_fw_flags = RREG32_PCIE(MP1_Public |
			(smnMP1_FIRMWARE_FLAGS & 0xffffffff));
		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
			MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
			break;
		udelay(1);
	}

	if (i == adev->usec_timeout)
		return -ETIME;

233 234 235
	return 0;
}

236 237
static int smu_v11_0_check_fw_status(struct smu_context *smu)
{
238 239 240
	struct amdgpu_device *adev = smu->adev;
	uint32_t mp1_fw_flags;

241 242
	mp1_fw_flags = RREG32_PCIE(MP1_Public |
				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
243 244 245 246

	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
		return 0;
247

248
	return -EIO;
249 250
}

251 252
static int smu_v11_0_check_fw_version(struct smu_context *smu)
{
253 254 255
	uint32_t if_version = 0xff, smu_version = 0xff;
	uint16_t smu_major;
	uint8_t smu_minor, smu_debug;
256 257
	int ret = 0;

258
	ret = smu_get_smc_version(smu, &if_version, &smu_version);
259
	if (ret)
260
		return ret;
261

262 263 264 265 266 267
	smu_major = (smu_version >> 16) & 0xffff;
	smu_minor = (smu_version >> 8) & 0xff;
	smu_debug = (smu_version >> 0) & 0xff;

	pr_info("SMU Driver IF Version = 0x%08x, SMU FW Version = 0x%08x (%d.%d.%d)\n",
		if_version, smu_version, smu_major, smu_minor, smu_debug);
268

269 270
	if (if_version != smu->smc_if_version) {
		pr_err("SMU driver if version not matched\n");
271
		ret = -EINVAL;
272 273
	}

274 275 276
	return ret;
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t ppt_offset_bytes;
	const struct smc_firmware_header_v2_0 *v2;

	v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data;

	ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes);
	*size = le32_to_cpu(v2->ppt_size_bytes);
	*table = (uint8_t *)v2 + ppt_offset_bytes;

	return 0;
}

static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id)
{
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v2_1 *v2_1;
	struct smc_soft_pptable_entry *entries;
	uint32_t pptable_count = 0;
	int i = 0;

	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
	entries = (struct smc_soft_pptable_entry *)
		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
	pptable_count = le32_to_cpu(v2_1->pptable_count);
	for (i = 0; i < pptable_count; i++) {
		if (le32_to_cpu(entries[i].id) == pptable_id) {
			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
			*size = le32_to_cpu(entries[i].ppt_size_bytes);
			break;
		}
	}

	if (i == pptable_count)
		return -EINVAL;

	return 0;
}

static int smu_v11_0_setup_pptable(struct smu_context *smu)
319
{
320 321
	struct amdgpu_device *adev = smu->adev;
	const struct smc_firmware_header_v1_0 *hdr;
322
	int ret, index;
323
	uint32_t size;
324
	uint8_t frev, crev;
325
	void *table;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
	uint16_t version_major, version_minor;

	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
	version_major = le16_to_cpu(hdr->header.header_version_major);
	version_minor = le16_to_cpu(hdr->header.header_version_minor);

	if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) {
		switch (version_minor) {
		case 0:
			ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size);
			break;
		case 1:
			ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size,
							 smu->smu_table.boot_values.pp_table_id);
			break;
		default:
			ret = -EINVAL;
			break;
		}
		if (ret)
			return ret;
347

348 349 350
	} else {
		index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
						    powerplayinfo);
351

352
		ret = smu_get_atom_data_table(smu, index, (uint16_t *)&size, &frev, &crev,
353 354 355 356
					      (uint8_t **)&table);
		if (ret)
			return ret;
	}
357

358 359 360 361
	if (!smu->smu_table.power_play_table)
		smu->smu_table.power_play_table = table;
	if (!smu->smu_table.power_play_table_size)
		smu->smu_table.power_play_table_size = size;
362 363 364 365

	return 0;
}

366 367 368 369 370 371 372
static int smu_v11_0_init_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0)
		return -EINVAL;

373
	return smu_alloc_dpm_context(smu);
374 375 376 377 378 379 380 381 382 383
}

static int smu_v11_0_fini_dpm_context(struct smu_context *smu)
{
	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;

	if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0)
		return -EINVAL;

	kfree(smu_dpm->dpm_context);
384
	kfree(smu_dpm->golden_dpm_context);
385 386
	kfree(smu_dpm->dpm_current_power_state);
	kfree(smu_dpm->dpm_request_power_state);
387
	smu_dpm->dpm_context = NULL;
388
	smu_dpm->golden_dpm_context = NULL;
389
	smu_dpm->dpm_context_size = 0;
390 391
	smu_dpm->dpm_current_power_state = NULL;
	smu_dpm->dpm_request_power_state = NULL;
392 393 394 395

	return 0;
}

396 397 398 399
static int smu_v11_0_init_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *tables = NULL;
400
	int ret = 0;
401

402
	if (smu_table->tables || smu_table->table_count == 0)
403 404
		return -EINVAL;

405 406
	tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table),
			 GFP_KERNEL);
407 408 409 410 411
	if (!tables)
		return -ENOMEM;

	smu_table->tables = tables;

412
	smu_tables_init(smu, tables);
413

414 415 416 417
	ret = smu_v11_0_init_dpm_context(smu);
	if (ret)
		return ret;

418 419 420 421 422 423
	return 0;
}

static int smu_v11_0_fini_smc_tables(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
424
	int ret = 0;
425 426 427 428 429 430 431 432

	if (!smu_table->tables || smu_table->table_count == 0)
		return -EINVAL;

	kfree(smu_table->tables);
	smu_table->tables = NULL;
	smu_table->table_count = 0;

433 434 435
	ret = smu_v11_0_fini_dpm_context(smu);
	if (ret)
		return ret;
436 437
	return 0;
}
438 439 440 441 442

static int smu_v11_0_init_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

443 444
	if (!smu->pm_enabled)
		return 0;
445 446 447 448 449 450 451 452 453
	if (smu_power->power_context || smu_power->power_context_size != 0)
		return -EINVAL;

	smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
					   GFP_KERNEL);
	if (!smu_power->power_context)
		return -ENOMEM;
	smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context);

454 455 456 457 458 459 460
	smu->metrics_time = 0;
	smu->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
	if (!smu->metrics_table) {
		kfree(smu_power->power_context);
		return -ENOMEM;
	}

461 462 463 464 465 466 467
	return 0;
}

static int smu_v11_0_fini_power(struct smu_context *smu)
{
	struct smu_power_context *smu_power = &smu->smu_power;

468 469
	if (!smu->pm_enabled)
		return 0;
470 471 472
	if (!smu_power->power_context || smu_power->power_context_size == 0)
		return -EINVAL;

473
	kfree(smu->metrics_table);
474
	kfree(smu_power->power_context);
475
	smu->metrics_table = NULL;
476 477 478 479 480 481
	smu_power->power_context = NULL;
	smu_power->power_context_size = 0;

	return 0;
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu)
{
	int ret, index;
	uint16_t size;
	uint8_t frev, crev;
	struct atom_common_table_header *header;
	struct atom_firmware_info_v3_3 *v_3_3;
	struct atom_firmware_info_v3_1 *v_3_1;

	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
					    firmwareinfo);

	ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev,
				      (uint8_t **)&header);
	if (ret)
		return ret;

	if (header->format_revision != 3) {
		pr_err("unknown atom_firmware_info version! for smu11\n");
		return -EINVAL;
	}

	switch (header->content_revision) {
	case 0:
	case 1:
	case 2:
		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = 0;
		break;
	case 3:
	default:
		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
		smu->smu_table.boot_values.socclk = 0;
		smu->smu_table.boot_values.dcefclk = 0;
		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
	}

	return 0;
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu)
{
	int ret, index;
	struct amdgpu_device *adev = smu->adev;
	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;

	input.clk_id = SMU11_SYSPLL0_SOCCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_ECLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_VCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

	memset(&input, 0, sizeof(input));
	input.clk_id = SMU11_SYSPLL0_DCLK_ID;
	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
					    getsmuclockinfo);

	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
					(uint32_t *)&input);
	if (ret)
		return -EINVAL;

	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
	smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;

616 617 618
	return 0;
}

619 620 621 622 623 624 625 626 627 628 629
static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu)
{
	struct smu_table_context *smu_table = &smu->smu_table;
	struct smu_table *memory_pool = &smu_table->memory_pool;
	int ret = 0;
	uint64_t address;
	uint32_t address_low, address_high;

	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
		return ret;

630
	address = (uintptr_t)memory_pool->cpu_addr;
631 632 633 634
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

	ret = smu_send_smc_msg_with_param(smu,
635
					  SMU_MSG_SetSystemVirtualDramAddrHigh,
636 637 638 639
					  address_high);
	if (ret)
		return ret;
	ret = smu_send_smc_msg_with_param(smu,
640
					  SMU_MSG_SetSystemVirtualDramAddrLow,
641 642 643 644 645 646 647 648
					  address_low);
	if (ret)
		return ret;

	address = memory_pool->mc_address;
	address_high = (uint32_t)upper_32_bits(address);
	address_low  = (uint32_t)lower_32_bits(address);

649
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
650 651 652
					  address_high);
	if (ret)
		return ret;
653
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
654 655 656
					  address_low);
	if (ret)
		return ret;
657
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
658 659 660 661 662 663 664
					  (uint32_t)memory_pool->size);
	if (ret)
		return ret;

	return ret;
}

665 666 667 668 669 670 671 672
static int smu_v11_0_check_pptable(struct smu_context *smu)
{
	int ret;

	ret = smu_check_powerplay_table(smu);
	return ret;
}

673 674 675 676 677
static int smu_v11_0_parse_pptable(struct smu_context *smu)
{
	int ret;

	struct smu_table_context *table_context = &smu->smu_table;
678
	struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE];
679 680 681 682

	if (table_context->driver_pptable)
		return -EINVAL;

683
	table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL);
684 685 686 687 688

	if (!table_context->driver_pptable)
		return -ENOMEM;

	ret = smu_store_powerplay_table(smu);
689 690 691 692
	if (ret)
		return -EINVAL;

	ret = smu_append_powerplay_table(smu);
693 694 695 696

	return ret;
}

697 698
static int smu_v11_0_populate_smc_pptable(struct smu_context *smu)
{
699
	int ret;
700

701
	ret = smu_set_default_dpm_table(smu);
702

703
	return ret;
704 705
}

706 707
static int smu_v11_0_write_pptable(struct smu_context *smu)
{
708
	struct smu_table_context *table_context = &smu->smu_table;
709 710
	int ret = 0;

711 712
	ret = smu_update_table(smu, SMU_TABLE_PPTABLE,
			       table_context->driver_pptable, true);
713 714 715 716

	return ret;
}

717 718
static int smu_v11_0_write_watermarks_table(struct smu_context *smu)
{
719 720 721
	return smu_update_table(smu, SMU_TABLE_WATERMARKS,
				smu->smu_table.tables[SMU_TABLE_WATERMARKS].cpu_addr,
				true);
722 723
}

724 725 726 727 728 729 730 731 732 733 734 735
static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
{
	int ret;

	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetMinDeepSleepDcefclk, clk);
	if (ret)
		pr_err("SMU11 attempt to set divider for DCEFCLK Failed!");

	return ret;
}

736 737 738 739
static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu)
{
	struct smu_table_context *table_context = &smu->smu_table;

740 741
	if (!smu->pm_enabled)
		return 0;
742 743 744
	if (!table_context)
		return -EINVAL;

745
	return smu_set_deep_sleep_dcefclk(smu,
746 747 748
					  table_context->boot_values.dcefclk / 100);
}

749 750 751
static int smu_v11_0_set_tool_table_location(struct smu_context *smu)
{
	int ret = 0;
752
	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
753 754 755

	if (tool_table->mc_address) {
		ret = smu_send_smc_msg_with_param(smu,
756
				SMU_MSG_SetToolsDramAddrHigh,
757 758 759
				upper_32_bits(tool_table->mc_address));
		if (!ret)
			ret = smu_send_smc_msg_with_param(smu,
760
				SMU_MSG_SetToolsDramAddrLow,
761 762 763 764 765 766
				lower_32_bits(tool_table->mc_address));
	}

	return ret;
}

767 768 769
static int smu_v11_0_init_display(struct smu_context *smu)
{
	int ret = 0;
770 771 772

	if (!smu->pm_enabled)
		return ret;
773 774 775 776
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0);
	return ret;
}

777 778 779 780 781
static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled)
{
	uint32_t feature_low = 0, feature_high = 0;
	int ret = 0;

782 783
	if (!smu->pm_enabled)
		return ret;
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	if (feature_id >= 0 && feature_id < 31)
		feature_low = (1 << feature_id);
	else if (feature_id > 31 && feature_id < 63)
		feature_high = (1 << feature_id);
	else
		return -EINVAL;

	if (enabled) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
						  feature_low);
		if (ret)
			return ret;
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
						  feature_high);
		if (ret)
			return ret;

	}

	return ret;
}

816 817 818 819 820 821
static int smu_v11_0_set_allowed_mask(struct smu_context *smu)
{
	struct smu_feature *feature = &smu->smu_feature;
	int ret = 0;
	uint32_t feature_mask[2];

822
	mutex_lock(&feature->mutex);
823
	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64)
824
		goto failed;
825 826 827 828 829 830

	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
					  feature_mask[1]);
	if (ret)
831
		goto failed;
832 833 834 835

	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow,
					  feature_mask[0]);
	if (ret)
836
		goto failed;
837

838 839
failed:
	mutex_unlock(&feature->mutex);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	return ret;
}

static int smu_v11_0_get_enabled_mask(struct smu_context *smu,
				      uint32_t *feature_mask, uint32_t num)
{
	uint32_t feature_mask_high = 0, feature_mask_low = 0;
	int ret = 0;

	if (!feature_mask || num < 2)
		return -EINVAL;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_high);
	if (ret)
		return ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow);
	if (ret)
		return ret;
	ret = smu_read_smc_arg(smu, &feature_mask_low);
	if (ret)
		return ret;

	feature_mask[0] = feature_mask_low;
	feature_mask[1] = feature_mask_high;

	return ret;
}

872 873
static int smu_v11_0_system_features_control(struct smu_context *smu,
					     bool en)
874 875 876 877 878
{
	struct smu_feature *feature = &smu->smu_feature;
	uint32_t feature_mask[2];
	int ret = 0;

879 880 881 882 883 884 885
	if (smu->pm_enabled) {
		ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
					     SMU_MSG_DisableAllSmuFeatures));
		if (ret)
			return ret;
	}

886 887 888 889 890 891 892 893 894 895 896 897
	ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
	if (ret)
		return ret;

	bitmap_copy(feature->enabled, (unsigned long *)&feature_mask,
		    feature->feature_num);
	bitmap_copy(feature->supported, (unsigned long *)&feature_mask,
		    feature->feature_num);

	return ret;
}

898 899 900 901
static int smu_v11_0_notify_display_change(struct smu_context *smu)
{
	int ret = 0;

902 903
	if (!smu->pm_enabled)
		return ret;
904
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT))
905 906 907 908 909
	    ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1);

	return ret;
}

910 911
static int
smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
912
				    enum smu_clk_type clock_select)
913 914 915
{
	int ret = 0;

916 917
	if (!smu->pm_enabled)
		return ret;
918
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
919
					  smu_clk_get_index(smu, clock_select) << 16);
920 921 922 923 924 925 926 927 928 929 930 931 932 933
	if (ret) {
		pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);
	if (ret)
		return ret;

	if (*clock != 0)
		return 0;

	/* if DC limit is zero, return AC limit */
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
934
					  smu_clk_get_index(smu, clock_select) << 16);
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	if (ret) {
		pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!");
		return ret;
	}

	ret = smu_read_smc_arg(smu, clock);

	return ret;
}

static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu)
{
	struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks;
	int ret = 0;

	max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks),
					 GFP_KERNEL);
	smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks;

	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;

961
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
962 963
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->uclock),
964
							  SMU_UCLK);
965 966 967 968 969 970 971
		if (ret) {
			pr_err("[%s] failed to get max UCLK from SMC!",
			       __func__);
			return ret;
		}
	}

972
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
973 974
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->soc_clock),
975
							  SMU_SOCCLK);
976 977 978 979 980 981 982
		if (ret) {
			pr_err("[%s] failed to get max SOCCLK from SMC!",
			       __func__);
			return ret;
		}
	}

983
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
984 985
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->dcef_clock),
986
							  SMU_DCEFCLK);
987 988 989 990 991 992 993 994
		if (ret) {
			pr_err("[%s] failed to get max DCEFCLK from SMC!",
			       __func__);
			return ret;
		}

		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->display_clock),
995
							  SMU_DISPCLK);
996 997 998 999 1000 1001 1002
		if (ret) {
			pr_err("[%s] failed to get max DISPCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->phy_clock),
1003
							  SMU_PHYCLK);
1004 1005 1006 1007 1008 1009 1010
		if (ret) {
			pr_err("[%s] failed to get max PHYCLK from SMC!",
			       __func__);
			return ret;
		}
		ret = smu_v11_0_get_max_sustainable_clock(smu,
							  &(max_sustainable_clocks->pixel_clock),
1011
							  SMU_PIXCLK);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		if (ret) {
			pr_err("[%s] failed to get max PIXCLK from SMC!",
			       __func__);
			return ret;
		}
	}

	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;

	return 0;
}

1025 1026 1027
static int smu_v11_0_get_power_limit(struct smu_context *smu,
				     uint32_t *limit,
				     bool get_default)
1028
{
1029
	int ret = 0;
1030

1031 1032 1033
	if (get_default) {
		mutex_lock(&smu->mutex);
		*limit = smu->default_power_limit;
1034 1035 1036 1037
		if (smu->od_enabled) {
			*limit *= (100 + smu->smu_table.TDPODLimit);
			*limit /= 100;
		}
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		mutex_unlock(&smu->mutex);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit,
						  POWER_SOURCE_AC << 16);
		if (ret) {
			pr_err("[%s] get PPT limit failed!", __func__);
			return ret;
		}
		smu_read_smc_arg(smu, limit);
		smu->power_limit = *limit;
	}

	return ret;
}

static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n)
{
1055
	uint32_t max_power_limit;
1056 1057
	int ret = 0;

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	if (n == 0)
		n = smu->default_power_limit;

	max_power_limit = smu->default_power_limit;

	if (smu->od_enabled) {
		max_power_limit *= (100 + smu->smu_table.TDPODLimit);
		max_power_limit /= 100;
	}

1068
	if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
1069
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n);
1070
	if (ret) {
1071
		pr_err("[%s] Set power limit Failed!", __func__);
1072 1073 1074
		return ret;
	}

1075
	return ret;
1076 1077
}

1078 1079 1080
static int smu_v11_0_get_current_clk_freq(struct smu_context *smu,
					  enum smu_clk_type clk_id,
					  uint32_t *value)
1081 1082 1083 1084
{
	int ret = 0;
	uint32_t freq;

1085
	if (clk_id >= SMU_CLK_COUNT || !value)
1086 1087
		return -EINVAL;

1088 1089
	ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq,
					  (smu_clk_get_index(smu, clk_id) << 16));
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	if (ret)
		return ret;

	ret = smu_read_smc_arg(smu, &freq);
	if (ret)
		return ret;

	freq *= 100;
	*value = freq;

	return ret;
}

1103 1104 1105
static int smu_v11_0_get_thermal_range(struct smu_context *smu,
				struct PP_TemperatureRange *range)
{
1106
	PPTable_t *pptable = smu->smu_table.driver_pptable;
1107 1108
	memcpy(range, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	range->max = pptable->TedgeLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->hotspot_crit_max = pptable->ThotspotLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->mem_crit_max = pptable->ThbmLimit *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	range->mem_emergency_max = (pptable->ThbmLimit + CTF_OFFSET_HBM)*
1120 1121 1122 1123 1124
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;

	return 0;
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
static int smu_v11_0_set_thermal_range(struct smu_context *smu,
			struct PP_TemperatureRange *range)
{
	struct amdgpu_device *adev = smu->adev;
	int low = SMU11_THERMAL_MINIMUM_ALERT_TEMP *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	int high = SMU11_THERMAL_MAXIMUM_ALERT_TEMP *
		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
	uint32_t val;

	if (low < range->min)
		low = range->min;
	if (high > range->max)
		high = range->max;

	if (low > high)
		return -EINVAL;

	val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low / PP_TEMPERATURE_UNITS_PER_CENTIGRADES));
	val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val);

	return 0;
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static int smu_v11_0_enable_thermal_alert(struct smu_context *smu)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t val = 0;

	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
	val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);

	WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val);

	return 0;
}

1169 1170 1171
static int smu_v11_0_start_thermal_control(struct smu_context *smu)
{
	int ret = 0;
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	struct PP_TemperatureRange range = {
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MIN,
		TEMP_RANGE_MAX,
		TEMP_RANGE_MAX};
1182 1183
	struct amdgpu_device *adev = smu->adev;

1184 1185
	if (!smu->pm_enabled)
		return ret;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	smu_v11_0_get_thermal_range(smu, &range);

	if (smu->smu_table.thermal_controller_type) {
		ret = smu_v11_0_set_thermal_range(smu, &range);
		if (ret)
			return ret;

		ret = smu_v11_0_enable_thermal_alert(smu);
		if (ret)
			return ret;
1196
		ret = smu_set_thermal_fan_table(smu);
1197 1198 1199 1200 1201 1202
		if (ret)
			return ret;
	}

	adev->pm.dpm.thermal.min_temp = range.min;
	adev->pm.dpm.thermal.max_temp = range.max;
1203 1204 1205 1206 1207 1208 1209
	adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max;
	adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min;
	adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max;
	adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max;
	adev->pm.dpm.thermal.min_mem_temp = range.mem_min;
	adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max;
	adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max;
1210 1211 1212 1213

	return ret;
}

1214 1215 1216 1217 1218 1219
static int smu_v11_0_get_metrics_table(struct smu_context *smu,
		SmuMetrics_t *metrics_table)
{
	int ret = 0;

	if (!smu->metrics_time || time_after(jiffies, smu->metrics_time + HZ / 1000)) {
1220
		ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS,
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
				(void *)metrics_table, false);
		if (ret) {
			pr_info("Failed to export SMU metrics table!\n");
			return ret;
		}
		memcpy(smu->metrics_table, metrics_table, sizeof(SmuMetrics_t));
		smu->metrics_time = jiffies;
	} else
		memcpy(metrics_table, smu->metrics_table, sizeof(SmuMetrics_t));

	return ret;
}

1234 1235 1236
static int smu_v11_0_thermal_get_temperature(struct smu_context *smu,
					     enum amd_pp_sensors sensor,
					     uint32_t *value)
1237 1238
{
	struct amdgpu_device *adev = smu->adev;
1239
	SmuMetrics_t metrics;
1240
	uint32_t temp = 0;
1241
	int ret = 0;
1242 1243 1244 1245

	if (!value)
		return -EINVAL;

1246 1247 1248 1249 1250 1251 1252 1253 1254
	ret = smu_v11_0_get_metrics_table(smu, &metrics);
	if (ret)
		return ret;

	switch (sensor) {
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
		temp = RREG32_SOC15(THM, 0, mmCG_MULT_THERMAL_STATUS);
		temp = (temp & CG_MULT_THERMAL_STATUS__CTF_TEMP_MASK) >>
				CG_MULT_THERMAL_STATUS__CTF_TEMP__SHIFT;
1255

1256 1257
		temp = temp & 0x1ff;
		temp *= SMU11_TEMPERATURE_UNITS_PER_CENTIGRADES;
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		*value = temp;
		break;
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
		*value = metrics.TemperatureEdge *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		*value = metrics.TemperatureHBM *
			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
		break;
	default:
		pr_err("Invalid sensor for retrieving temp\n");
		return -EINVAL;
	}
1273 1274 1275 1276

	return 0;
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static uint16_t convert_to_vddc(uint8_t vid)
{
	return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE);
}

static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t vdd = 0, val_vid = 0;

	if (!value)
		return -EINVAL;
	val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) &
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;

	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);

	*value = vdd;

	return 0;

}

1301 1302 1303 1304
static int smu_v11_0_read_sensor(struct smu_context *smu,
				 enum amd_pp_sensors sensor,
				 void *data, uint32_t *size)
{
1305 1306
	struct smu_table_context *table_context = &smu->smu_table;
	PPTable_t *pptable = table_context->driver_pptable;
1307 1308 1309
	int ret = 0;
	switch (sensor) {
	case AMDGPU_PP_SENSOR_GPU_LOAD:
1310
	case AMDGPU_PP_SENSOR_MEM_LOAD:
1311 1312 1313
		ret = smu_get_current_activity_percent(smu,
						       sensor,
						       (uint32_t *)data);
1314
		*size = 4;
1315 1316
		break;
	case AMDGPU_PP_SENSOR_GFX_MCLK:
1317
		ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data);
1318 1319 1320
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_GFX_SCLK:
1321
		ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data);
1322
		*size = 4;
1323
		break;
1324 1325 1326 1327
	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
	case AMDGPU_PP_SENSOR_EDGE_TEMP:
	case AMDGPU_PP_SENSOR_MEM_TEMP:
		ret = smu_v11_0_thermal_get_temperature(smu, sensor, (uint32_t *)data);
1328
		*size = 4;
1329 1330
		break;
	case AMDGPU_PP_SENSOR_GPU_POWER:
1331
		ret = smu_get_gpu_power(smu, (uint32_t *)data);
1332
		*size = 4;
1333 1334 1335 1336
		break;
	case AMDGPU_PP_SENSOR_VDDGFX:
		ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
		*size = 4;
1337
		break;
1338 1339 1340 1341 1342 1343 1344 1345
	case AMDGPU_PP_SENSOR_MIN_FAN_RPM:
		*(uint32_t *)data = 0;
		*size = 4;
		break;
	case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
		*(uint32_t *)data = pptable->FanMaximumRpm;
		*size = 4;
		break;
1346
	default:
1347
		ret = smu_common_read_sensor(smu, sensor, data, size);
1348 1349 1350
		break;
	}

1351 1352 1353 1354
	/* try get sensor data by asic */
	if (ret)
		ret = smu_asic_read_sensor(smu, sensor, data, size);

1355 1356 1357 1358 1359 1360
	if (ret)
		*size = 0;

	return ret;
}

1361 1362 1363 1364 1365 1366 1367
static int
smu_v11_0_display_clock_voltage_request(struct smu_context *smu,
					struct pp_display_clock_request
					*clock_req)
{
	enum amd_pp_clock_type clk_type = clock_req->clock_type;
	int ret = 0;
1368
	enum smu_clk_type clk_select = 0;
1369 1370
	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;

1371 1372
	if (!smu->pm_enabled)
		return -EINVAL;
1373
	if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
1374 1375
		switch (clk_type) {
		case amd_pp_dcef_clock:
1376
			clk_select = SMU_DCEFCLK;
1377 1378
			break;
		case amd_pp_disp_clock:
1379
			clk_select = SMU_DISPCLK;
1380 1381
			break;
		case amd_pp_pixel_clock:
1382
			clk_select = SMU_PIXCLK;
1383 1384
			break;
		case amd_pp_phy_clock:
1385
			clk_select = SMU_PHYCLK;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
			break;
		default:
			pr_info("[%s] Invalid Clock Type!", __func__);
			ret = -EINVAL;
			break;
		}

		if (ret)
			goto failed;

		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1397
			(smu_clk_get_index(smu, clk_select) << 16) | clk_freq);
1398 1399 1400 1401 1402 1403
	}

failed:
	return ret;
}

1404 1405 1406 1407 1408 1409
static int
smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct
					  dm_pp_wm_sets_with_clock_ranges_soc15
					  *clock_ranges)
{
	int ret = 0;
1410
	struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
1411
	void *table = watermarks->cpu_addr;
1412 1413

	if (!smu->disable_watermark &&
1414 1415
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
	    smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
1416
		smu_set_watermarks_table(smu, table, clock_ranges);
1417 1418 1419 1420 1421 1422 1423
		smu->watermarks_bitmap |= WATERMARKS_EXIST;
		smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
	}

	return ret;
}

1424 1425 1426
static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable)
{
	int ret = 0;
1427
	struct amdgpu_device *adev = smu->adev;
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		break;
	case CHIP_NAVI10:
		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
			return 0;
		mutex_lock(&smu->mutex);
		if (enable)
			ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff);
		else
			ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff);
		mutex_unlock(&smu->mutex);
		break;
	default:
		break;
	}
1445 1446 1447 1448 1449

	return ret;
}


1450 1451
static int smu_v11_0_get_clock_ranges(struct smu_context *smu,
				      uint32_t *clock,
1452
				      enum smu_clk_type clock_select,
1453 1454 1455 1456 1457 1458
				      bool max)
{
	int ret;
	*clock = 0;
	if (max) {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
1459
				smu_clk_get_index(smu, clock_select) << 16);
1460 1461 1462 1463 1464 1465 1466
		if (ret) {
			pr_err("[GetClockRanges] Failed to get max clock from SMC!\n");
			return ret;
		}
		smu_read_smc_arg(smu, clock);
	} else {
		ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq,
1467
				smu_clk_get_index(smu, clock_select) << 16);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
		if (ret) {
			pr_err("[GetClockRanges] Failed to get min clock from SMC!\n");
			return ret;
		}
		smu_read_smc_arg(smu, clock);
	}

	return 0;
}

static uint32_t smu_v11_0_dpm_get_sclk(struct smu_context *smu, bool low)
{
	uint32_t gfx_clk;
	int ret;

1483
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
1484 1485 1486 1487 1488
		pr_err("[GetSclks]: gfxclk dpm not enabled!\n");
		return -EPERM;
	}

	if (low) {
1489
		ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, SMU_GFXCLK, false);
1490
		if (ret) {
1491
			pr_err("[GetSclks]: fail to get min SMU_GFXCLK\n");
1492 1493 1494
			return ret;
		}
	} else {
1495
		ret = smu_v11_0_get_clock_ranges(smu, &gfx_clk, SMU_GFXCLK, true);
1496
		if (ret) {
1497
			pr_err("[GetSclks]: fail to get max SMU_GFXCLK\n");
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
			return ret;
		}
	}

	return (gfx_clk * 100);
}

static uint32_t smu_v11_0_dpm_get_mclk(struct smu_context *smu, bool low)
{
	uint32_t mem_clk;
	int ret;

1510
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1511 1512 1513 1514 1515
		pr_err("[GetMclks]: memclk dpm not enabled!\n");
		return -EPERM;
	}

	if (low) {
1516
		ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, SMU_UCLK, false);
1517
		if (ret) {
1518
			pr_err("[GetMclks]: fail to get min SMU_UCLK\n");
1519 1520 1521
			return ret;
		}
	} else {
1522
		ret = smu_v11_0_get_clock_ranges(smu, &mem_clk, SMU_GFXCLK, true);
1523
		if (ret) {
1524
			pr_err("[GetMclks]: fail to get max SMU_UCLK\n");
1525 1526 1527 1528 1529 1530 1531
			return ret;
		}
	}

	return (mem_clk * 100);
}

1532 1533
static int smu_v11_0_set_od8_default_settings(struct smu_context *smu,
					      bool initialize)
1534 1535
{
	struct smu_table_context *table_context = &smu->smu_table;
1536
	struct smu_table *table = &table_context->tables[SMU_TABLE_OVERDRIVE];
1537 1538
	int ret;

1539 1540 1541 1542 1543 1544 1545
	/**
	 * TODO: Enable overdrive for navi10, that replies on smc/pptable
	 * support.
	 */
	if (smu->adev->asic_type == CHIP_NAVI10)
		return 0;

1546 1547 1548
	if (initialize) {
		if (table_context->overdrive_table)
			return -EINVAL;
1549

1550
		table_context->overdrive_table = kzalloc(table->size, GFP_KERNEL);
1551

1552 1553
		if (!table_context->overdrive_table)
			return -ENOMEM;
1554

1555 1556
		ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
				       table_context->overdrive_table, false);
1557 1558 1559 1560
		if (ret) {
			pr_err("Failed to export over drive table!\n");
			return ret;
		}
1561

1562 1563
		smu_set_default_od8_settings(smu);
	}
1564

1565 1566
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
			       table_context->overdrive_table, true);
1567 1568 1569 1570 1571 1572 1573 1574
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1575 1576 1577 1578 1579 1580 1581
static int smu_v11_0_update_od8_settings(struct smu_context *smu,
					uint32_t index,
					uint32_t value)
{
	struct smu_table_context *table_context = &smu->smu_table;
	int ret;

1582
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
1583 1584 1585 1586 1587 1588 1589 1590
			       table_context->overdrive_table, false);
	if (ret) {
		pr_err("Failed to export over drive table!\n");
		return ret;
	}

	smu_update_specified_od8_value(smu, index, value);

1591
	ret = smu_update_table(smu, SMU_TABLE_OVERDRIVE,
1592 1593 1594 1595 1596 1597 1598 1599 1600
			       table_context->overdrive_table, true);
	if (ret) {
		pr_err("Failed to import over drive table!\n");
		return ret;
	}

	return 0;
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static int smu_v11_0_get_current_rpm(struct smu_context *smu,
				     uint32_t *current_rpm)
{
	int ret;

	ret = smu_send_smc_msg(smu, SMU_MSG_GetCurrentRpm);

	if (ret) {
		pr_err("Attempt to get current RPM from SMC Failed!\n");
		return ret;
	}

	smu_read_smc_arg(smu, current_rpm);

	return 0;
}

1618 1619 1620
static uint32_t
smu_v11_0_get_fan_control_mode(struct smu_context *smu)
{
1621
	if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
		return AMD_FAN_CTRL_MANUAL;
	else
		return AMD_FAN_CTRL_AUTO;
}

static int
smu_v11_0_smc_fan_control(struct smu_context *smu, bool start)
{
	int ret = 0;

1632
	if (smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1633 1634
		return 0;

1635
	ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, start);
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	if (ret)
		pr_err("[%s]%s smc FAN CONTROL feature failed!",
		       __func__, (start ? "Start" : "Stop"));

	return ret;
}

static int
smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
{
	struct amdgpu_device *adev = smu->adev;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, TMIN, 0));
	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2),
				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));

	return 0;
}

static int
smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	uint32_t duty100;
	uint32_t duty;
	uint64_t tmp64;
	bool stop = 0;

	if (speed > 100)
		speed = 100;

	if (smu_v11_0_smc_fan_control(smu, stop))
		return -EINVAL;
	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1),
				CG_FDO_CTRL1, FMAX_DUTY100);
	if (!duty100)
		return -EINVAL;

	tmp64 = (uint64_t)speed * duty100;
	do_div(tmp64, 100);
	duty = (uint32_t)tmp64;

	WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0),
				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));

	return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
static int
smu_v11_0_set_fan_control_mode(struct smu_context *smu,
			       uint32_t mode)
{
	int ret = 0;
	bool start = 1;
	bool stop  = 0;

	switch (mode) {
	case AMD_FAN_CTRL_NONE:
		ret = smu_v11_0_set_fan_speed_percent(smu, 100);
		break;
	case AMD_FAN_CTRL_MANUAL:
		ret = smu_v11_0_smc_fan_control(smu, stop);
		break;
	case AMD_FAN_CTRL_AUTO:
		ret = smu_v11_0_smc_fan_control(smu, start);
		break;
	default:
		break;
	}

	if (ret) {
1711
		pr_err("[%s]Set fan control mode failed!", __func__);
1712 1713 1714 1715 1716 1717
		return -EINVAL;
	}

	return ret;
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu,
				       uint32_t speed)
{
	struct amdgpu_device *adev = smu->adev;
	int ret;
	uint32_t tach_period, crystal_clock_freq;
	bool stop = 0;

	if (!speed)
		return -EINVAL;

	mutex_lock(&(smu->mutex));
	ret = smu_v11_0_smc_fan_control(smu, stop);
	if (ret)
		goto set_fan_speed_rpm_failed;

	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
	WREG32_SOC15(THM, 0, mmCG_TACH_CTRL,
		     REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL),
				   CG_TACH_CTRL, TARGET_PERIOD,
				   tach_period));

	ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);

set_fan_speed_rpm_failed:
	mutex_unlock(&(smu->mutex));
	return ret;
}

1748 1749 1750
static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu,
				     uint32_t pstate)
{
1751 1752 1753 1754 1755 1756 1757
	int ret = 0;
	mutex_lock(&(smu->mutex));
	ret = smu_send_smc_msg_with_param(smu,
					  SMU_MSG_SetXgmiMode,
					  pstate ? XGMI_STATE_D0 : XGMI_STATE_D3);
	mutex_unlock(&(smu->mutex));
	return ret;
1758 1759
}

1760 1761
static const struct smu_funcs smu_v11_0_funcs = {
	.init_microcode = smu_v11_0_init_microcode,
1762
	.load_microcode = smu_v11_0_load_microcode,
1763
	.check_fw_status = smu_v11_0_check_fw_status,
1764
	.check_fw_version = smu_v11_0_check_fw_version,
1765 1766
	.send_smc_msg = smu_v11_0_send_msg,
	.send_smc_msg_with_param = smu_v11_0_send_msg_with_param,
1767
	.read_smc_arg = smu_v11_0_read_arg,
1768
	.setup_pptable = smu_v11_0_setup_pptable,
1769 1770
	.init_smc_tables = smu_v11_0_init_smc_tables,
	.fini_smc_tables = smu_v11_0_fini_smc_tables,
1771 1772
	.init_power = smu_v11_0_init_power,
	.fini_power = smu_v11_0_fini_power,
1773
	.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
1774
	.get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios,
1775
	.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
1776
	.check_pptable = smu_v11_0_check_pptable,
1777
	.parse_pptable = smu_v11_0_parse_pptable,
1778
	.populate_smc_pptable = smu_v11_0_populate_smc_pptable,
1779
	.write_pptable = smu_v11_0_write_pptable,
1780
	.write_watermarks_table = smu_v11_0_write_watermarks_table,
1781
	.set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep,
1782
	.set_tool_table_location = smu_v11_0_set_tool_table_location,
1783
	.init_display = smu_v11_0_init_display,
1784 1785
	.set_allowed_mask = smu_v11_0_set_allowed_mask,
	.get_enabled_mask = smu_v11_0_get_enabled_mask,
1786
	.system_features_control = smu_v11_0_system_features_control,
1787
	.update_feature_enable_state = smu_v11_0_update_feature_enable_state,
1788
	.notify_display_change = smu_v11_0_notify_display_change,
1789
	.get_power_limit = smu_v11_0_get_power_limit,
1790
	.set_power_limit = smu_v11_0_set_power_limit,
1791
	.get_current_clk_freq = smu_v11_0_get_current_clk_freq,
1792
	.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
1793
	.start_thermal_control = smu_v11_0_start_thermal_control,
1794
	.read_sensor = smu_v11_0_read_sensor,
1795
	.set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk,
1796
	.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
1797
	.set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges,
1798 1799
	.get_sclk = smu_v11_0_dpm_get_sclk,
	.get_mclk = smu_v11_0_dpm_get_mclk,
1800
	.set_od8_default_settings = smu_v11_0_set_od8_default_settings,
1801
	.update_od8_settings = smu_v11_0_update_od8_settings,
1802
	.get_current_rpm = smu_v11_0_get_current_rpm,
1803
	.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
1804
	.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
1805
	.set_fan_speed_percent = smu_v11_0_set_fan_speed_percent,
1806
	.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
1807
	.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
1808
	.gfx_off_control = smu_v11_0_gfx_off_control,
1809 1810 1811 1812
};

void smu_v11_0_set_smu_funcs(struct smu_context *smu)
{
1813 1814
	struct amdgpu_device *adev = smu->adev;

1815
	smu->funcs = &smu_v11_0_funcs;
1816 1817 1818 1819
	switch (adev->asic_type) {
	case CHIP_VEGA20:
		vega20_set_ppt_funcs(smu);
		break;
1820 1821 1822
	case CHIP_NAVI10:
		navi10_set_ppt_funcs(smu);
		break;
1823
	default:
1824
		pr_warn("Unknown asic for smu11\n");
1825
	}
1826
}