gup.c 82.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>

#include <linux/mm.h>
8
#include <linux/memremap.h>
9 10 11 12 13
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>

14
#include <linux/sched/signal.h>
15
#include <linux/rwsem.h>
16
#include <linux/hugetlb.h>
17 18 19
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
20

21
#include <asm/mmu_context.h>
22
#include <asm/tlbflush.h>
23

24 25
#include "internal.h"

26 27 28 29 30
struct follow_page_context {
	struct dev_pagemap *pgmap;
	unsigned int page_mask;
};

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
static void hpage_pincount_add(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_add(refs, compound_pincount_ptr(page));
}

static void hpage_pincount_sub(struct page *page, int refs)
{
	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
	VM_BUG_ON_PAGE(page != compound_head(page), page);

	atomic_sub(refs, compound_pincount_ptr(page));
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*
 * Return the compound head page with ref appropriately incremented,
 * or NULL if that failed.
 */
static inline struct page *try_get_compound_head(struct page *page, int refs)
{
	struct page *head = compound_head(page);

	if (WARN_ON_ONCE(page_ref_count(head) < 0))
		return NULL;
	if (unlikely(!page_cache_add_speculative(head, refs)))
		return NULL;
	return head;
}

J
John Hubbard 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/*
 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
 * flags-dependent amount.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 * same time. (That's true throughout the get_user_pages*() and
 * pin_user_pages*() APIs.) Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: head page (with refcount appropriately incremented) for success, or
 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
 * considered failure, and furthermore, a likely bug in the caller, so a warning
 * is also emitted.
 */
static __maybe_unused struct page *try_grab_compound_head(struct page *page,
							  int refs,
							  unsigned int flags)
{
	if (flags & FOLL_GET)
		return try_get_compound_head(page, refs);
	else if (flags & FOLL_PIN) {
88 89
		int orig_refs = refs;

90 91 92 93 94 95 96 97
		/*
		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
		 * path, so fail and let the caller fall back to the slow path.
		 */
		if (unlikely(flags & FOLL_LONGTERM) &&
				is_migrate_cma_page(page))
			return NULL;

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
		/*
		 * When pinning a compound page of order > 1 (which is what
		 * hpage_pincount_available() checks for), use an exact count to
		 * track it, via hpage_pincount_add/_sub().
		 *
		 * However, be sure to *also* increment the normal page refcount
		 * field at least once, so that the page really is pinned.
		 */
		if (!hpage_pincount_available(page))
			refs *= GUP_PIN_COUNTING_BIAS;

		page = try_get_compound_head(page, refs);
		if (!page)
			return NULL;

		if (hpage_pincount_available(page))
			hpage_pincount_add(page, refs);

116 117 118
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
				    orig_refs);

119
		return page;
J
John Hubbard 已提交
120 121 122 123 124 125
	}

	WARN_ON_ONCE(1);
	return NULL;
}

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static void put_compound_head(struct page *page, int refs, unsigned int flags)
{
	if (flags & FOLL_PIN) {
		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
				    refs);

		if (hpage_pincount_available(page))
			hpage_pincount_sub(page, refs);
		else
			refs *= GUP_PIN_COUNTING_BIAS;
	}

	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
	/*
	 * Calling put_page() for each ref is unnecessarily slow. Only the last
	 * ref needs a put_page().
	 */
	if (refs > 1)
		page_ref_sub(page, refs - 1);
	put_page(page);
}

J
John Hubbard 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/**
 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 *
 * This might not do anything at all, depending on the flags argument.
 *
 * "grab" names in this file mean, "look at flags to decide whether to use
 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 *
 * @page:    pointer to page to be grabbed
 * @flags:   gup flags: these are the FOLL_* flag values.
 *
 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 * time. Cases:
 *
 *    FOLL_GET: page's refcount will be incremented by 1.
 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 *
 * Return: true for success, or if no action was required (if neither FOLL_PIN
 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 * FOLL_PIN was set, but the page could not be grabbed.
 */
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));

	if (flags & FOLL_GET)
		return try_get_page(page);
	else if (flags & FOLL_PIN) {
176 177
		int refs = 1;

J
John Hubbard 已提交
178 179 180 181 182
		page = compound_head(page);

		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
			return false;

183 184 185 186 187 188 189 190 191 192 193 194
		if (hpage_pincount_available(page))
			hpage_pincount_add(page, 1);
		else
			refs = GUP_PIN_COUNTING_BIAS;

		/*
		 * Similar to try_grab_compound_head(): even if using the
		 * hpage_pincount_add/_sub() routines, be sure to
		 * *also* increment the normal page refcount field at least
		 * once, so that the page really is pinned.
		 */
		page_ref_add(page, refs);
195 196

		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
J
John Hubbard 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
	}

	return true;
}

/**
 * unpin_user_page() - release a dma-pinned page
 * @page:            pointer to page to be released
 *
 * Pages that were pinned via pin_user_pages*() must be released via either
 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 * that such pages can be separately tracked and uniquely handled. In
 * particular, interactions with RDMA and filesystems need special handling.
 */
void unpin_user_page(struct page *page)
{
213
	put_compound_head(compound_head(page), 1, FOLL_PIN);
J
John Hubbard 已提交
214 215 216
}
EXPORT_SYMBOL(unpin_user_page);

217
/**
218
 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
219
 * @pages:  array of pages to be maybe marked dirty, and definitely released.
220
 * @npages: number of pages in the @pages array.
221
 * @make_dirty: whether to mark the pages dirty
222 223 224 225 226
 *
 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 * variants called on that page.
 *
 * For each page in the @pages array, make that page (or its head page, if a
227
 * compound page) dirty, if @make_dirty is true, and if the page was previously
228 229
 * listed as clean. In any case, releases all pages using unpin_user_page(),
 * possibly via unpin_user_pages(), for the non-dirty case.
230
 *
231
 * Please see the unpin_user_page() documentation for details.
232
 *
233 234 235
 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 * required, then the caller should a) verify that this is really correct,
 * because _lock() is usually required, and b) hand code it:
236
 * set_page_dirty_lock(), unpin_user_page().
237 238
 *
 */
239 240
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
				 bool make_dirty)
241
{
242
	unsigned long index;
243

244 245 246 247 248 249 250
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */

	if (!make_dirty) {
251
		unpin_user_pages(pages, npages);
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
		return;
	}

	for (index = 0; index < npages; index++) {
		struct page *page = compound_head(pages[index]);
		/*
		 * Checking PageDirty at this point may race with
		 * clear_page_dirty_for_io(), but that's OK. Two key
		 * cases:
		 *
		 * 1) This code sees the page as already dirty, so it
		 * skips the call to set_page_dirty(). That could happen
		 * because clear_page_dirty_for_io() called
		 * page_mkclean(), followed by set_page_dirty().
		 * However, now the page is going to get written back,
		 * which meets the original intention of setting it
		 * dirty, so all is well: clear_page_dirty_for_io() goes
		 * on to call TestClearPageDirty(), and write the page
		 * back.
		 *
		 * 2) This code sees the page as clean, so it calls
		 * set_page_dirty(). The page stays dirty, despite being
		 * written back, so it gets written back again in the
		 * next writeback cycle. This is harmless.
		 */
		if (!PageDirty(page))
			set_page_dirty_lock(page);
279
		unpin_user_page(page);
280
	}
281
}
282
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
283 284

/**
285
 * unpin_user_pages() - release an array of gup-pinned pages.
286 287 288
 * @pages:  array of pages to be marked dirty and released.
 * @npages: number of pages in the @pages array.
 *
289
 * For each page in the @pages array, release the page using unpin_user_page().
290
 *
291
 * Please see the unpin_user_page() documentation for details.
292
 */
293
void unpin_user_pages(struct page **pages, unsigned long npages)
294 295 296
{
	unsigned long index;

297 298 299 300 301 302 303
	/*
	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
	 * leaving them pinned), but probably not. More likely, gup/pup returned
	 * a hard -ERRNO error to the caller, who erroneously passed it here.
	 */
	if (WARN_ON(IS_ERR_VALUE(npages)))
		return;
304 305 306 307 308 309
	/*
	 * TODO: this can be optimized for huge pages: if a series of pages is
	 * physically contiguous and part of the same compound page, then a
	 * single operation to the head page should suffice.
	 */
	for (index = 0; index < npages; index++)
310
		unpin_user_page(pages[index]);
311
}
312
EXPORT_SYMBOL(unpin_user_pages);
313

314
#ifdef CONFIG_MMU
315 316
static struct page *no_page_table(struct vm_area_struct *vma,
		unsigned int flags)
317
{
318 319 320 321 322 323 324 325
	/*
	 * When core dumping an enormous anonymous area that nobody
	 * has touched so far, we don't want to allocate unnecessary pages or
	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
	 * then get_dump_page() will return NULL to leave a hole in the dump.
	 * But we can only make this optimization where a hole would surely
	 * be zero-filled if handle_mm_fault() actually did handle it.
	 */
326 327
	if ((flags & FOLL_DUMP) &&
			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
328 329 330
		return ERR_PTR(-EFAULT);
	return NULL;
}
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, unsigned int flags)
{
	/* No page to get reference */
	if (flags & FOLL_GET)
		return -EFAULT;

	if (flags & FOLL_TOUCH) {
		pte_t entry = *pte;

		if (flags & FOLL_WRITE)
			entry = pte_mkdirty(entry);
		entry = pte_mkyoung(entry);

		if (!pte_same(*pte, entry)) {
			set_pte_at(vma->vm_mm, address, pte, entry);
			update_mmu_cache(vma, address, pte);
		}
	}

	/* Proper page table entry exists, but no corresponding struct page */
	return -EEXIST;
}

356
/*
357 358
 * FOLL_FORCE can write to even unwritable pte's, but only
 * after we've gone through a COW cycle and they are dirty.
359 360 361
 */
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
362 363
	return pte_write(pte) ||
		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
364 365
}

366
static struct page *follow_page_pte(struct vm_area_struct *vma,
367 368
		unsigned long address, pmd_t *pmd, unsigned int flags,
		struct dev_pagemap **pgmap)
369 370 371 372 373
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	spinlock_t *ptl;
	pte_t *ptep, pte;
374
	int ret;
375

376 377 378 379
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
			 (FOLL_PIN | FOLL_GET)))
		return ERR_PTR(-EINVAL);
380
retry:
381
	if (unlikely(pmd_bad(*pmd)))
382
		return no_page_table(vma, flags);
383 384 385 386 387 388 389 390 391 392 393 394

	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
	pte = *ptep;
	if (!pte_present(pte)) {
		swp_entry_t entry;
		/*
		 * KSM's break_ksm() relies upon recognizing a ksm page
		 * even while it is being migrated, so for that case we
		 * need migration_entry_wait().
		 */
		if (likely(!(flags & FOLL_MIGRATION)))
			goto no_page;
395
		if (pte_none(pte))
396 397 398 399 400 401
			goto no_page;
		entry = pte_to_swp_entry(pte);
		if (!is_migration_entry(entry))
			goto no_page;
		pte_unmap_unlock(ptep, ptl);
		migration_entry_wait(mm, pmd, address);
402
		goto retry;
403
	}
404
	if ((flags & FOLL_NUMA) && pte_protnone(pte))
405
		goto no_page;
406
	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
407 408 409
		pte_unmap_unlock(ptep, ptl);
		return NULL;
	}
410 411

	page = vm_normal_page(vma, address, pte);
J
John Hubbard 已提交
412
	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
413
		/*
J
John Hubbard 已提交
414 415 416
		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
		 * case since they are only valid while holding the pgmap
		 * reference.
417
		 */
418 419
		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
		if (*pgmap)
420 421 422 423
			page = pte_page(pte);
		else
			goto no_page;
	} else if (unlikely(!page)) {
424 425 426 427 428 429 430 431 432 433 434 435 436
		if (flags & FOLL_DUMP) {
			/* Avoid special (like zero) pages in core dumps */
			page = ERR_PTR(-EFAULT);
			goto out;
		}

		if (is_zero_pfn(pte_pfn(pte))) {
			page = pte_page(pte);
		} else {
			ret = follow_pfn_pte(vma, address, ptep, flags);
			page = ERR_PTR(ret);
			goto out;
		}
437 438
	}

439 440 441 442 443 444 445 446 447 448 449 450
	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
		get_page(page);
		pte_unmap_unlock(ptep, ptl);
		lock_page(page);
		ret = split_huge_page(page);
		unlock_page(page);
		put_page(page);
		if (ret)
			return ERR_PTR(ret);
		goto retry;
	}

J
John Hubbard 已提交
451 452 453 454
	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
	if (unlikely(!try_grab_page(page, flags))) {
		page = ERR_PTR(-ENOMEM);
		goto out;
455
	}
456 457 458 459 460 461 462 463 464 465 466 467 468
	/*
	 * We need to make the page accessible if and only if we are going
	 * to access its content (the FOLL_PIN case).  Please see
	 * Documentation/core-api/pin_user_pages.rst for details.
	 */
	if (flags & FOLL_PIN) {
		ret = arch_make_page_accessible(page);
		if (ret) {
			unpin_user_page(page);
			page = ERR_PTR(ret);
			goto out;
		}
	}
469 470 471 472 473 474 475 476 477 478 479
	if (flags & FOLL_TOUCH) {
		if ((flags & FOLL_WRITE) &&
		    !pte_dirty(pte) && !PageDirty(page))
			set_page_dirty(page);
		/*
		 * pte_mkyoung() would be more correct here, but atomic care
		 * is needed to avoid losing the dirty bit: it is easier to use
		 * mark_page_accessed().
		 */
		mark_page_accessed(page);
	}
E
Eric B Munson 已提交
480
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
481 482 483 484
		/* Do not mlock pte-mapped THP */
		if (PageTransCompound(page))
			goto out;

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		/*
		 * The preliminary mapping check is mainly to avoid the
		 * pointless overhead of lock_page on the ZERO_PAGE
		 * which might bounce very badly if there is contention.
		 *
		 * If the page is already locked, we don't need to
		 * handle it now - vmscan will handle it later if and
		 * when it attempts to reclaim the page.
		 */
		if (page->mapping && trylock_page(page)) {
			lru_add_drain();  /* push cached pages to LRU */
			/*
			 * Because we lock page here, and migration is
			 * blocked by the pte's page reference, and we
			 * know the page is still mapped, we don't even
			 * need to check for file-cache page truncation.
			 */
			mlock_vma_page(page);
			unlock_page(page);
		}
	}
506
out:
507 508 509 510 511
	pte_unmap_unlock(ptep, ptl);
	return page;
no_page:
	pte_unmap_unlock(ptep, ptl);
	if (!pte_none(pte))
512 513 514 515
		return NULL;
	return no_page_table(vma, flags);
}

516 517
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
				    unsigned long address, pud_t *pudp,
518 519
				    unsigned int flags,
				    struct follow_page_context *ctx)
520
{
521
	pmd_t *pmd, pmdval;
522 523 524 525
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

526
	pmd = pmd_offset(pudp, address);
527 528 529 530 531 532
	/*
	 * The READ_ONCE() will stabilize the pmdval in a register or
	 * on the stack so that it will stop changing under the code.
	 */
	pmdval = READ_ONCE(*pmd);
	if (pmd_none(pmdval))
533
		return no_page_table(vma, flags);
534
	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
535 536 537 538
		page = follow_huge_pmd(mm, address, pmd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
539
	}
540
	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
541
		page = follow_huge_pd(vma, address,
542
				      __hugepd(pmd_val(pmdval)), flags,
543 544 545 546 547
				      PMD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
548
retry:
549
	if (!pmd_present(pmdval)) {
550 551 552
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		VM_BUG_ON(thp_migration_supported() &&
553 554
				  !is_pmd_migration_entry(pmdval));
		if (is_pmd_migration_entry(pmdval))
555
			pmd_migration_entry_wait(mm, pmd);
556 557 558
		pmdval = READ_ONCE(*pmd);
		/*
		 * MADV_DONTNEED may convert the pmd to null because
559
		 * mmap_lock is held in read mode
560 561 562
		 */
		if (pmd_none(pmdval))
			return no_page_table(vma, flags);
563 564
		goto retry;
	}
565
	if (pmd_devmap(pmdval)) {
566
		ptl = pmd_lock(mm, pmd);
567
		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
568 569 570 571
		spin_unlock(ptl);
		if (page)
			return page;
	}
572
	if (likely(!pmd_trans_huge(pmdval)))
573
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
574

575
	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
576 577
		return no_page_table(vma, flags);

578
retry_locked:
579
	ptl = pmd_lock(mm, pmd);
580 581 582 583
	if (unlikely(pmd_none(*pmd))) {
		spin_unlock(ptl);
		return no_page_table(vma, flags);
	}
584 585 586 587 588 589 590
	if (unlikely(!pmd_present(*pmd))) {
		spin_unlock(ptl);
		if (likely(!(flags & FOLL_MIGRATION)))
			return no_page_table(vma, flags);
		pmd_migration_entry_wait(mm, pmd);
		goto retry_locked;
	}
591 592
	if (unlikely(!pmd_trans_huge(*pmd))) {
		spin_unlock(ptl);
593
		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
594
	}
S
Song Liu 已提交
595
	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
596 597 598 599 600
		int ret;
		page = pmd_page(*pmd);
		if (is_huge_zero_page(page)) {
			spin_unlock(ptl);
			ret = 0;
601
			split_huge_pmd(vma, pmd, address);
602 603
			if (pmd_trans_unstable(pmd))
				ret = -EBUSY;
S
Song Liu 已提交
604
		} else if (flags & FOLL_SPLIT) {
605 606 607 608
			if (unlikely(!try_get_page(page))) {
				spin_unlock(ptl);
				return ERR_PTR(-ENOMEM);
			}
609
			spin_unlock(ptl);
610 611 612 613
			lock_page(page);
			ret = split_huge_page(page);
			unlock_page(page);
			put_page(page);
614 615
			if (pmd_none(*pmd))
				return no_page_table(vma, flags);
S
Song Liu 已提交
616 617 618 619
		} else {  /* flags & FOLL_SPLIT_PMD */
			spin_unlock(ptl);
			split_huge_pmd(vma, pmd, address);
			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
620 621 622
		}

		return ret ? ERR_PTR(ret) :
623
			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
624
	}
625 626
	page = follow_trans_huge_pmd(vma, address, pmd, flags);
	spin_unlock(ptl);
627
	ctx->page_mask = HPAGE_PMD_NR - 1;
628
	return page;
629 630
}

631 632
static struct page *follow_pud_mask(struct vm_area_struct *vma,
				    unsigned long address, p4d_t *p4dp,
633 634
				    unsigned int flags,
				    struct follow_page_context *ctx)
635 636 637 638 639 640 641 642 643
{
	pud_t *pud;
	spinlock_t *ptl;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

	pud = pud_offset(p4dp, address);
	if (pud_none(*pud))
		return no_page_table(vma, flags);
644
	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
645 646 647 648 649
		page = follow_huge_pud(mm, address, pud, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
650 651 652 653 654 655 656 657
	if (is_hugepd(__hugepd(pud_val(*pud)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pud_val(*pud)), flags,
				      PUD_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
658 659
	if (pud_devmap(*pud)) {
		ptl = pud_lock(mm, pud);
660
		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
661 662 663 664 665 666 667
		spin_unlock(ptl);
		if (page)
			return page;
	}
	if (unlikely(pud_bad(*pud)))
		return no_page_table(vma, flags);

668
	return follow_pmd_mask(vma, address, pud, flags, ctx);
669 670 671 672
}

static struct page *follow_p4d_mask(struct vm_area_struct *vma,
				    unsigned long address, pgd_t *pgdp,
673 674
				    unsigned int flags,
				    struct follow_page_context *ctx)
675 676
{
	p4d_t *p4d;
677
	struct page *page;
678 679 680 681 682 683 684 685

	p4d = p4d_offset(pgdp, address);
	if (p4d_none(*p4d))
		return no_page_table(vma, flags);
	BUILD_BUG_ON(p4d_huge(*p4d));
	if (unlikely(p4d_bad(*p4d)))
		return no_page_table(vma, flags);

686 687 688 689 690 691 692 693
	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(p4d_val(*p4d)), flags,
				      P4D_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
694
	return follow_pud_mask(vma, address, p4d, flags, ctx);
695 696 697 698 699 700 701
}

/**
 * follow_page_mask - look up a page descriptor from a user-virtual address
 * @vma: vm_area_struct mapping @address
 * @address: virtual address to look up
 * @flags: flags modifying lookup behaviour
702 703
 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 *       pointer to output page_mask
704 705 706
 *
 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 *
707 708 709 710 711 712
 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 *
 * On output, the @ctx->page_mask is set according to the size of the page.
 *
 * Return: the mapped (struct page *), %NULL if no mapping exists, or
713 714 715
 * an error pointer if there is a mapping to something not represented
 * by a page descriptor (see also vm_normal_page()).
 */
716
static struct page *follow_page_mask(struct vm_area_struct *vma,
717
			      unsigned long address, unsigned int flags,
718
			      struct follow_page_context *ctx)
719 720 721 722 723
{
	pgd_t *pgd;
	struct page *page;
	struct mm_struct *mm = vma->vm_mm;

724
	ctx->page_mask = 0;
725 726 727 728

	/* make this handle hugepd */
	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
	if (!IS_ERR(page)) {
J
John Hubbard 已提交
729
		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
730 731 732 733 734 735 736 737
		return page;
	}

	pgd = pgd_offset(mm, address);

	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		return no_page_table(vma, flags);

738 739 740 741 742 743
	if (pgd_huge(*pgd)) {
		page = follow_huge_pgd(mm, address, pgd, flags);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
744 745 746 747 748 749 750 751
	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
		page = follow_huge_pd(vma, address,
				      __hugepd(pgd_val(*pgd)), flags,
				      PGDIR_SHIFT);
		if (page)
			return page;
		return no_page_table(vma, flags);
	}
752

753 754 755 756 757 758 759 760 761 762 763 764 765
	return follow_p4d_mask(vma, address, pgd, flags, ctx);
}

struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
			 unsigned int foll_flags)
{
	struct follow_page_context ctx = { NULL };
	struct page *page;

	page = follow_page_mask(vma, address, foll_flags, &ctx);
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return page;
766 767
}

768 769 770 771 772
static int get_gate_page(struct mm_struct *mm, unsigned long address,
		unsigned int gup_flags, struct vm_area_struct **vma,
		struct page **page)
{
	pgd_t *pgd;
773
	p4d_t *p4d;
774 775 776 777 778 779 780 781 782 783 784 785
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	int ret = -EFAULT;

	/* user gate pages are read-only */
	if (gup_flags & FOLL_WRITE)
		return -EFAULT;
	if (address > TASK_SIZE)
		pgd = pgd_offset_k(address);
	else
		pgd = pgd_offset_gate(mm, address);
786 787
	if (pgd_none(*pgd))
		return -EFAULT;
788
	p4d = p4d_offset(pgd, address);
789 790
	if (p4d_none(*p4d))
		return -EFAULT;
791
	pud = pud_offset(p4d, address);
792 793
	if (pud_none(*pud))
		return -EFAULT;
794
	pmd = pmd_offset(pud, address);
795
	if (!pmd_present(*pmd))
796 797 798 799 800 801 802 803 804 805 806 807 808 809
		return -EFAULT;
	VM_BUG_ON(pmd_trans_huge(*pmd));
	pte = pte_offset_map(pmd, address);
	if (pte_none(*pte))
		goto unmap;
	*vma = get_gate_vma(mm);
	if (!page)
		goto out;
	*page = vm_normal_page(*vma, address, *pte);
	if (!*page) {
		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
			goto unmap;
		*page = pte_page(*pte);
	}
810
	if (unlikely(!try_grab_page(*page, gup_flags))) {
811 812 813
		ret = -ENOMEM;
		goto unmap;
	}
814 815 816 817 818 819 820
out:
	ret = 0;
unmap:
	pte_unmap(pte);
	return ret;
}

821
/*
822 823
 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
824
 * is, *@locked will be set to 0 and -EBUSY returned.
825
 */
826
static int faultin_page(struct vm_area_struct *vma,
827
		unsigned long address, unsigned int *flags, int *locked)
828 829
{
	unsigned int fault_flags = 0;
830
	vm_fault_t ret;
831

E
Eric B Munson 已提交
832 833 834
	/* mlock all present pages, but do not fault in new pages */
	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
		return -ENOENT;
835 836
	if (*flags & FOLL_WRITE)
		fault_flags |= FAULT_FLAG_WRITE;
837 838
	if (*flags & FOLL_REMOTE)
		fault_flags |= FAULT_FLAG_REMOTE;
839
	if (locked)
840
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
841 842
	if (*flags & FOLL_NOWAIT)
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
843
	if (*flags & FOLL_TRIED) {
844 845 846 847
		/*
		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
		 * can co-exist
		 */
848 849
		fault_flags |= FAULT_FLAG_TRIED;
	}
850

851
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
852
	if (ret & VM_FAULT_ERROR) {
853 854 855 856
		int err = vm_fault_to_errno(ret, *flags);

		if (err)
			return err;
857 858 859 860
		BUG();
	}

	if (ret & VM_FAULT_RETRY) {
861 862
		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
			*locked = 0;
863 864 865 866 867 868 869 870 871 872 873 874 875
		return -EBUSY;
	}

	/*
	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
	 * can thus safely do subsequent page lookups as if they were reads.
	 * But only do so when looping for pte_write is futile: in some cases
	 * userspace may also be wanting to write to the gotten user page,
	 * which a read fault here might prevent (a readonly page might get
	 * reCOWed by userspace write).
	 */
	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
876
		*flags |= FOLL_COW;
877 878 879
	return 0;
}

880 881 882
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
	vm_flags_t vm_flags = vma->vm_flags;
883 884
	int write = (gup_flags & FOLL_WRITE);
	int foreign = (gup_flags & FOLL_REMOTE);
885 886 887 888

	if (vm_flags & (VM_IO | VM_PFNMAP))
		return -EFAULT;

889 890 891
	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
		return -EFAULT;

892 893 894
	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
		return -EOPNOTSUPP;

895
	if (write) {
896 897 898 899 900 901 902 903 904 905 906 907
		if (!(vm_flags & VM_WRITE)) {
			if (!(gup_flags & FOLL_FORCE))
				return -EFAULT;
			/*
			 * We used to let the write,force case do COW in a
			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
			 * set a breakpoint in a read-only mapping of an
			 * executable, without corrupting the file (yet only
			 * when that file had been opened for writing!).
			 * Anon pages in shared mappings are surprising: now
			 * just reject it.
			 */
908
			if (!is_cow_mapping(vm_flags))
909 910 911 912 913 914 915 916 917 918 919 920
				return -EFAULT;
		}
	} else if (!(vm_flags & VM_READ)) {
		if (!(gup_flags & FOLL_FORCE))
			return -EFAULT;
		/*
		 * Is there actually any vma we can reach here which does not
		 * have VM_MAYREAD set?
		 */
		if (!(vm_flags & VM_MAYREAD))
			return -EFAULT;
	}
921 922 923 924 925
	/*
	 * gups are always data accesses, not instruction
	 * fetches, so execute=false here
	 */
	if (!arch_vma_access_permitted(vma, write, false, foreign))
926
		return -EFAULT;
927 928 929
	return 0;
}

930 931 932 933 934 935 936 937 938 939 940
/**
 * __get_user_pages() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying pin behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
941
 * @locked:     whether we're still with the mmap_lock held
942
 *
943 944 945 946 947 948 949
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
950
 * -- 0 return value is possible when the fault would need to be retried.
951 952 953
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
954
 * @vmas are valid only as long as mmap_lock is held.
955
 *
956
 * Must be called with mmap_lock held.  It may be released.  See below.
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
 *
 * __get_user_pages walks a process's page tables and takes a reference to
 * each struct page that each user address corresponds to at a given
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
 * __get_user_pages returns, and there may even be a completely different
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 * appropriate) must be called after the page is finished with, and
 * before put_page is called.
 *
977
 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
978 979
 * released by an up_read().  That can happen if @gup_flags does not
 * have FOLL_NOWAIT.
980
 *
981
 * A caller using such a combination of @locked and @gup_flags
982
 * must therefore hold the mmap_lock for reading only, and recognize
983 984
 * when it's been released.  Otherwise, it must be held for either
 * reading or writing and will not be released.
985 986 987 988 989
 *
 * In most cases, get_user_pages or get_user_pages_fast should be used
 * instead of __get_user_pages. __get_user_pages should be used only if
 * you need some special @gup_flags.
 */
990
static long __get_user_pages(struct mm_struct *mm,
991 992
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
993
		struct vm_area_struct **vmas, int *locked)
994
{
995
	long ret = 0, i = 0;
996
	struct vm_area_struct *vma = NULL;
997
	struct follow_page_context ctx = { NULL };
998 999 1000 1001

	if (!nr_pages)
		return 0;

1002 1003
	start = untagged_addr(start);

1004
	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

	/*
	 * If FOLL_FORCE is set then do not force a full fault as the hinting
	 * fault information is unrelated to the reference behaviour of a task
	 * using the address space
	 */
	if (!(gup_flags & FOLL_FORCE))
		gup_flags |= FOLL_NUMA;

	do {
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		struct page *page;
		unsigned int foll_flags = gup_flags;
		unsigned int page_increm;

		/* first iteration or cross vma bound */
		if (!vma || start >= vma->vm_end) {
			vma = find_extend_vma(mm, start);
			if (!vma && in_gate_area(mm, start)) {
				ret = get_gate_page(mm, start & PAGE_MASK,
						gup_flags, &vma,
						pages ? &pages[i] : NULL);
				if (ret)
1027
					goto out;
1028
				ctx.page_mask = 0;
1029 1030
				goto next_page;
			}
1031

1032
			if (!vma) {
1033 1034 1035
				ret = -EFAULT;
				goto out;
			}
1036 1037 1038 1039
			ret = check_vma_flags(vma, gup_flags);
			if (ret)
				goto out;

1040 1041 1042
			if (is_vm_hugetlb_page(vma)) {
				i = follow_hugetlb_page(mm, vma, pages, vmas,
						&start, &nr_pages, i,
1043
						gup_flags, locked);
1044 1045 1046
				if (locked && *locked == 0) {
					/*
					 * We've got a VM_FAULT_RETRY
1047
					 * and we've lost mmap_lock.
1048 1049 1050 1051 1052 1053
					 * We must stop here.
					 */
					BUG_ON(gup_flags & FOLL_NOWAIT);
					BUG_ON(ret != 0);
					goto out;
				}
1054
				continue;
1055
			}
1056 1057 1058 1059 1060 1061
		}
retry:
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
1062
		if (fatal_signal_pending(current)) {
1063
			ret = -EINTR;
1064 1065
			goto out;
		}
1066
		cond_resched();
1067 1068

		page = follow_page_mask(vma, start, foll_flags, &ctx);
1069
		if (!page) {
1070
			ret = faultin_page(vma, start, &foll_flags, locked);
1071 1072 1073
			switch (ret) {
			case 0:
				goto retry;
1074 1075
			case -EBUSY:
				ret = 0;
J
Joe Perches 已提交
1076
				fallthrough;
1077 1078 1079
			case -EFAULT:
			case -ENOMEM:
			case -EHWPOISON:
1080
				goto out;
1081 1082
			case -ENOENT:
				goto next_page;
1083
			}
1084
			BUG();
1085 1086 1087 1088 1089 1090 1091
		} else if (PTR_ERR(page) == -EEXIST) {
			/*
			 * Proper page table entry exists, but no corresponding
			 * struct page.
			 */
			goto next_page;
		} else if (IS_ERR(page)) {
1092 1093
			ret = PTR_ERR(page);
			goto out;
1094
		}
1095 1096 1097 1098
		if (pages) {
			pages[i] = page;
			flush_anon_page(vma, page, start);
			flush_dcache_page(page);
1099
			ctx.page_mask = 0;
1100 1101
		}
next_page:
1102 1103
		if (vmas) {
			vmas[i] = vma;
1104
			ctx.page_mask = 0;
1105
		}
1106
		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1107 1108 1109 1110 1111
		if (page_increm > nr_pages)
			page_increm = nr_pages;
		i += page_increm;
		start += page_increm * PAGE_SIZE;
		nr_pages -= page_increm;
1112
	} while (nr_pages);
1113 1114 1115 1116
out:
	if (ctx.pgmap)
		put_dev_pagemap(ctx.pgmap);
	return i ? i : ret;
1117 1118
}

1119 1120
static bool vma_permits_fault(struct vm_area_struct *vma,
			      unsigned int fault_flags)
1121
{
1122 1123
	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1124
	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1125 1126 1127 1128

	if (!(vm_flags & vma->vm_flags))
		return false;

1129 1130
	/*
	 * The architecture might have a hardware protection
1131
	 * mechanism other than read/write that can deny access.
1132 1133 1134
	 *
	 * gup always represents data access, not instruction
	 * fetches, so execute=false here:
1135
	 */
1136
	if (!arch_vma_access_permitted(vma, write, false, foreign))
1137 1138
		return false;

1139 1140 1141
	return true;
}

1142
/**
1143 1144 1145 1146
 * fixup_user_fault() - manually resolve a user page fault
 * @mm:		mm_struct of target mm
 * @address:	user address
 * @fault_flags:flags to pass down to handle_mm_fault()
1147
 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1148 1149
 *		does not allow retry. If NULL, the caller must guarantee
 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
 *
 * This is meant to be called in the specific scenario where for locking reasons
 * we try to access user memory in atomic context (within a pagefault_disable()
 * section), this returns -EFAULT, and we want to resolve the user fault before
 * trying again.
 *
 * Typically this is meant to be used by the futex code.
 *
 * The main difference with get_user_pages() is that this function will
 * unconditionally call handle_mm_fault() which will in turn perform all the
 * necessary SW fixup of the dirty and young bits in the PTE, while
1161
 * get_user_pages() only guarantees to update these in the struct page.
1162 1163 1164 1165 1166 1167
 *
 * This is important for some architectures where those bits also gate the
 * access permission to the page because they are maintained in software.  On
 * such architectures, gup() will not be enough to make a subsequent access
 * succeed.
 *
1168 1169
 * This function will not return with an unlocked mmap_lock. So it has not the
 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1170
 */
1171
int fixup_user_fault(struct mm_struct *mm,
1172 1173
		     unsigned long address, unsigned int fault_flags,
		     bool *unlocked)
1174 1175
{
	struct vm_area_struct *vma;
1176
	vm_fault_t ret, major = 0;
1177

1178 1179
	address = untagged_addr(address);

1180
	if (unlocked)
1181
		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1182

1183
retry:
1184 1185 1186 1187
	vma = find_extend_vma(mm, address);
	if (!vma || address < vma->vm_start)
		return -EFAULT;

1188
	if (!vma_permits_fault(vma, fault_flags))
1189 1190
		return -EFAULT;

1191 1192 1193 1194
	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
	    fatal_signal_pending(current))
		return -EINTR;

1195
	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1196
	major |= ret & VM_FAULT_MAJOR;
1197
	if (ret & VM_FAULT_ERROR) {
1198 1199 1200 1201
		int err = vm_fault_to_errno(ret, 0);

		if (err)
			return err;
1202 1203
		BUG();
	}
1204 1205

	if (ret & VM_FAULT_RETRY) {
1206
		mmap_read_lock(mm);
1207 1208 1209
		*unlocked = true;
		fault_flags |= FAULT_FLAG_TRIED;
		goto retry;
1210 1211
	}

1212 1213
	return 0;
}
1214
EXPORT_SYMBOL_GPL(fixup_user_fault);
1215

1216 1217 1218 1219
/*
 * Please note that this function, unlike __get_user_pages will not
 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 */
1220
static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1221 1222 1223 1224
						unsigned long start,
						unsigned long nr_pages,
						struct page **pages,
						struct vm_area_struct **vmas,
1225
						int *locked,
1226
						unsigned int flags)
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
{
	long ret, pages_done;
	bool lock_dropped;

	if (locked) {
		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
		BUG_ON(vmas);
		/* check caller initialized locked */
		BUG_ON(*locked != 1);
	}

P
Peter Xu 已提交
1238
	if (flags & FOLL_PIN)
1239
		atomic_set(&mm->has_pinned, 1);
P
Peter Xu 已提交
1240

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	/*
	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
	 * for FOLL_GET, not for the newer FOLL_PIN.
	 *
	 * FOLL_PIN always expects pages to be non-null, but no need to assert
	 * that here, as any failures will be obvious enough.
	 */
	if (pages && !(flags & FOLL_PIN))
1251 1252 1253 1254 1255
		flags |= FOLL_GET;

	pages_done = 0;
	lock_dropped = false;
	for (;;) {
1256
		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
				       vmas, locked);
		if (!locked)
			/* VM_FAULT_RETRY couldn't trigger, bypass */
			return ret;

		/* VM_FAULT_RETRY cannot return errors */
		if (!*locked) {
			BUG_ON(ret < 0);
			BUG_ON(ret >= nr_pages);
		}

		if (ret > 0) {
			nr_pages -= ret;
			pages_done += ret;
			if (!nr_pages)
				break;
		}
		if (*locked) {
1275 1276 1277 1278
			/*
			 * VM_FAULT_RETRY didn't trigger or it was a
			 * FOLL_NOWAIT.
			 */
1279 1280 1281 1282
			if (!pages_done)
				pages_done = ret;
			break;
		}
1283 1284 1285 1286 1287 1288
		/*
		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
		 * For the prefault case (!pages) we only update counts.
		 */
		if (likely(pages))
			pages += ret;
1289
		start += ret << PAGE_SHIFT;
1290
		lock_dropped = true;
1291

1292
retry:
1293 1294
		/*
		 * Repeat on the address that fired VM_FAULT_RETRY
1295 1296 1297 1298
		 * with both FAULT_FLAG_ALLOW_RETRY and
		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
		 * by fatal signals, so we need to check it before we
		 * start trying again otherwise it can loop forever.
1299
		 */
1300

1301 1302 1303
		if (fatal_signal_pending(current)) {
			if (!pages_done)
				pages_done = -EINTR;
1304
			break;
1305
		}
1306

1307
		ret = mmap_read_lock_killable(mm);
1308 1309 1310 1311 1312 1313
		if (ret) {
			BUG_ON(ret > 0);
			if (!pages_done)
				pages_done = ret;
			break;
		}
1314

1315
		*locked = 1;
1316
		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1317 1318 1319 1320 1321 1322
				       pages, NULL, locked);
		if (!*locked) {
			/* Continue to retry until we succeeded */
			BUG_ON(ret != 0);
			goto retry;
		}
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
		if (ret != 1) {
			BUG_ON(ret > 1);
			if (!pages_done)
				pages_done = ret;
			break;
		}
		nr_pages--;
		pages_done++;
		if (!nr_pages)
			break;
1333 1334
		if (likely(pages))
			pages++;
1335 1336
		start += PAGE_SIZE;
	}
1337
	if (lock_dropped && *locked) {
1338 1339 1340 1341
		/*
		 * We must let the caller know we temporarily dropped the lock
		 * and so the critical section protected by it was lost.
		 */
1342
		mmap_read_unlock(mm);
1343 1344 1345 1346 1347
		*locked = 0;
	}
	return pages_done;
}

1348 1349 1350 1351 1352
/**
 * populate_vma_page_range() -  populate a range of pages in the vma.
 * @vma:   target vma
 * @start: start address
 * @end:   end address
1353
 * @locked: whether the mmap_lock is still held
1354 1355 1356
 *
 * This takes care of mlocking the pages too if VM_LOCKED is set.
 *
1357 1358
 * Return either number of pages pinned in the vma, or a negative error
 * code on error.
1359
 *
1360
 * vma->vm_mm->mmap_lock must be held.
1361
 *
1362
 * If @locked is NULL, it may be held for read or write and will
1363 1364
 * be unperturbed.
 *
1365 1366
 * If @locked is non-NULL, it must held for read only and may be
 * released.  If it's released, *@locked will be set to 0.
1367 1368
 */
long populate_vma_page_range(struct vm_area_struct *vma,
1369
		unsigned long start, unsigned long end, int *locked)
1370 1371 1372 1373 1374 1375 1376 1377 1378
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long nr_pages = (end - start) / PAGE_SIZE;
	int gup_flags;

	VM_BUG_ON(start & ~PAGE_MASK);
	VM_BUG_ON(end   & ~PAGE_MASK);
	VM_BUG_ON_VMA(start < vma->vm_start, vma);
	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1379
	mmap_assert_locked(mm);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
	if (vma->vm_flags & VM_LOCKONFAULT)
		gup_flags &= ~FOLL_POPULATE;
	/*
	 * We want to touch writable mappings with a write fault in order
	 * to break COW, except for shared mappings because these don't COW
	 * and we would not want to dirty them for nothing.
	 */
	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
		gup_flags |= FOLL_WRITE;

	/*
	 * We want mlock to succeed for regions that have any permissions
	 * other than PROT_NONE.
	 */
1396
	if (vma_is_accessible(vma))
1397 1398 1399 1400 1401 1402
		gup_flags |= FOLL_FORCE;

	/*
	 * We made sure addr is within a VMA, so the following will
	 * not result in a stack expansion that recurses back here.
	 */
1403
	return __get_user_pages(mm, start, nr_pages, gup_flags,
1404
				NULL, NULL, locked);
1405 1406 1407 1408 1409 1410 1411
}

/*
 * __mm_populate - populate and/or mlock pages within a range of address space.
 *
 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
 * flags. VMAs must be already marked with the desired vm_flags, and
1412
 * mmap_lock must not be held.
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
 */
int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
{
	struct mm_struct *mm = current->mm;
	unsigned long end, nstart, nend;
	struct vm_area_struct *vma = NULL;
	int locked = 0;
	long ret = 0;

	end = start + len;

	for (nstart = start; nstart < end; nstart = nend) {
		/*
		 * We want to fault in pages for [nstart; end) address range.
		 * Find first corresponding VMA.
		 */
		if (!locked) {
			locked = 1;
1431
			mmap_read_lock(mm);
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
			vma = find_vma(mm, nstart);
		} else if (nstart >= vma->vm_end)
			vma = vma->vm_next;
		if (!vma || vma->vm_start >= end)
			break;
		/*
		 * Set [nstart; nend) to intersection of desired address
		 * range with the first VMA. Also, skip undesirable VMA types.
		 */
		nend = min(end, vma->vm_end);
		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
			continue;
		if (nstart < vma->vm_start)
			nstart = vma->vm_start;
		/*
		 * Now fault in a range of pages. populate_vma_page_range()
		 * double checks the vma flags, so that it won't mlock pages
		 * if the vma was already munlocked.
		 */
		ret = populate_vma_page_range(vma, nstart, nend, &locked);
		if (ret < 0) {
			if (ignore_errors) {
				ret = 0;
				continue;	/* continue at next VMA */
			}
			break;
		}
		nend = nstart + ret * PAGE_SIZE;
		ret = 0;
	}
	if (locked)
1463
		mmap_read_unlock(mm);
1464 1465
	return ret;	/* 0 or negative error code */
}
1466
#else /* CONFIG_MMU */
1467
static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		unsigned long nr_pages, struct page **pages,
		struct vm_area_struct **vmas, int *locked,
		unsigned int foll_flags)
{
	struct vm_area_struct *vma;
	unsigned long vm_flags;
	int i;

	/* calculate required read or write permissions.
	 * If FOLL_FORCE is set, we only require the "MAY" flags.
	 */
	vm_flags  = (foll_flags & FOLL_WRITE) ?
			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
	vm_flags &= (foll_flags & FOLL_FORCE) ?
			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

	for (i = 0; i < nr_pages; i++) {
		vma = find_vma(mm, start);
		if (!vma)
			goto finish_or_fault;

		/* protect what we can, including chardevs */
		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
		    !(vm_flags & vma->vm_flags))
			goto finish_or_fault;

		if (pages) {
			pages[i] = virt_to_page(start);
			if (pages[i])
				get_page(pages[i]);
		}
		if (vmas)
			vmas[i] = vma;
		start = (start + PAGE_SIZE) & PAGE_MASK;
	}

	return i;

finish_or_fault:
	return i ? : -EFAULT;
}
#endif /* !CONFIG_MMU */
1510

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/**
 * get_dump_page() - pin user page in memory while writing it to core dump
 * @addr: user address
 *
 * Returns struct page pointer of user page pinned for dump,
 * to be freed afterwards by put_page().
 *
 * Returns NULL on any kind of failure - a hole must then be inserted into
 * the corefile, to preserve alignment with its headers; and also returns
 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
 * allowing a hole to be left in the corefile to save diskspace.
 *
1523
 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1524 1525 1526 1527
 */
#ifdef CONFIG_ELF_CORE
struct page *get_dump_page(unsigned long addr)
{
1528
	struct mm_struct *mm = current->mm;
1529
	struct page *page;
1530 1531
	int locked = 1;
	int ret;
1532

1533
	if (mmap_read_lock_killable(mm))
1534
		return NULL;
1535 1536 1537 1538 1539
	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
	if (locked)
		mmap_read_unlock(mm);
	return (ret == 1) ? page : NULL;
1540 1541 1542
}
#endif /* CONFIG_ELF_CORE */

1543
#ifdef CONFIG_CMA
1544
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1545 1546
					unsigned long start,
					unsigned long nr_pages,
1547
					struct page **pages,
1548 1549
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1550
{
1551 1552
	unsigned long i;
	unsigned long step;
1553 1554 1555
	bool drain_allow = true;
	bool migrate_allow = true;
	LIST_HEAD(cma_page_list);
1556
	long ret = nr_pages;
1557 1558 1559 1560
	struct migration_target_control mtc = {
		.nid = NUMA_NO_NODE,
		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
	};
1561 1562

check_again:
1563 1564 1565 1566 1567 1568 1569 1570
	for (i = 0; i < nr_pages;) {

		struct page *head = compound_head(pages[i]);

		/*
		 * gup may start from a tail page. Advance step by the left
		 * part.
		 */
1571
		step = compound_nr(head) - (pages[i] - head);
1572 1573 1574 1575 1576
		/*
		 * If we get a page from the CMA zone, since we are going to
		 * be pinning these entries, we might as well move them out
		 * of the CMA zone if possible.
		 */
1577 1578
		if (is_migrate_cma_page(head)) {
			if (PageHuge(head))
1579
				isolate_huge_page(head, &cma_page_list);
1580
			else {
1581 1582 1583 1584 1585 1586 1587 1588 1589
				if (!PageLRU(head) && drain_allow) {
					lru_add_drain_all();
					drain_allow = false;
				}

				if (!isolate_lru_page(head)) {
					list_add_tail(&head->lru, &cma_page_list);
					mod_node_page_state(page_pgdat(head),
							    NR_ISOLATED_ANON +
H
Huang Ying 已提交
1590
							    page_is_file_lru(head),
1591
							    thp_nr_pages(head));
1592 1593 1594
				}
			}
		}
1595 1596

		i += step;
1597 1598 1599 1600 1601 1602
	}

	if (!list_empty(&cma_page_list)) {
		/*
		 * drop the above get_user_pages reference.
		 */
1603 1604 1605 1606 1607
		if (gup_flags & FOLL_PIN)
			unpin_user_pages(pages, nr_pages);
		else
			for (i = 0; i < nr_pages; i++)
				put_page(pages[i]);
1608

1609 1610
		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
			/*
			 * some of the pages failed migration. Do get_user_pages
			 * without migration.
			 */
			migrate_allow = false;

			if (!list_empty(&cma_page_list))
				putback_movable_pages(&cma_page_list);
		}
		/*
1621 1622 1623
		 * We did migrate all the pages, Try to get the page references
		 * again migrating any new CMA pages which we failed to isolate
		 * earlier.
1624
		 */
1625
		ret = __get_user_pages_locked(mm, start, nr_pages,
1626 1627 1628
						   pages, vmas, NULL,
						   gup_flags);

1629 1630
		if ((ret > 0) && migrate_allow) {
			nr_pages = ret;
1631 1632 1633 1634 1635
			drain_allow = true;
			goto check_again;
		}
	}

1636
	return ret;
1637 1638
}
#else
1639
static long check_and_migrate_cma_pages(struct mm_struct *mm,
1640 1641 1642 1643 1644
					unsigned long start,
					unsigned long nr_pages,
					struct page **pages,
					struct vm_area_struct **vmas,
					unsigned int gup_flags)
1645 1646 1647
{
	return nr_pages;
}
1648
#endif /* CONFIG_CMA */
1649

1650
/*
1651 1652
 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
 * allows us to process the FOLL_LONGTERM flag.
1653
 */
1654
static long __gup_longterm_locked(struct mm_struct *mm,
1655 1656 1657 1658 1659
				  unsigned long start,
				  unsigned long nr_pages,
				  struct page **pages,
				  struct vm_area_struct **vmas,
				  unsigned int gup_flags)
1660
{
1661
	unsigned long flags = 0;
1662
	long rc;
1663

1664
	if (gup_flags & FOLL_LONGTERM)
1665
		flags = memalloc_nocma_save();
1666

1667 1668
	rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
				     gup_flags);
1669

1670
	if (gup_flags & FOLL_LONGTERM) {
1671 1672 1673
		if (rc > 0)
			rc = check_and_migrate_cma_pages(mm, start, rc, pages,
							 vmas, gup_flags);
1674
		memalloc_nocma_restore(flags);
1675
	}
1676 1677
	return rc;
}
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static bool is_valid_gup_flags(unsigned int gup_flags)
{
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that with an assertion:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return false;
	/*
	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
	 * FOLL_PIN.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return false;

	return true;
}

1698
#ifdef CONFIG_MMU
1699
static long __get_user_pages_remote(struct mm_struct *mm,
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	/*
	 * Parts of FOLL_LONGTERM behavior are incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas. However, this only comes up if locked is set, and there are
	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
	 * allow what we can.
	 */
	if (gup_flags & FOLL_LONGTERM) {
		if (WARN_ON_ONCE(locked))
			return -EINVAL;
		/*
		 * This will check the vmas (even if our vmas arg is NULL)
		 * and return -ENOTSUPP if DAX isn't allowed in this case:
		 */
1718
		return __gup_longterm_locked(mm, start, nr_pages, pages,
1719 1720 1721 1722
					     vmas, gup_flags | FOLL_TOUCH |
					     FOLL_REMOTE);
	}

1723
	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1724 1725 1726 1727
				       locked,
				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
}

1728
/**
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
 * get_user_pages_remote() - pin user pages in memory
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Returns either number of pages pinned (which may be less than the
 * number requested), or an error. Details about the return value:
 *
 * -- If nr_pages is 0, returns 0.
 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 *    pages pinned. Again, this may be less than nr_pages.
 *
 * The caller is responsible for releasing returned @pages, via put_page().
 *
1753
 * @vmas are valid only as long as mmap_lock is held.
1754
 *
1755
 * Must be called with mmap_lock held for read or write.
1756
 *
1757 1758
 * get_user_pages_remote walks a process's page tables and takes a reference
 * to each struct page that each user address corresponds to at a given
1759 1760 1761 1762
 * instant. That is, it takes the page that would be accessed if a user
 * thread accesses the given user virtual address at that instant.
 *
 * This does not guarantee that the page exists in the user mappings when
1763
 * get_user_pages_remote returns, and there may even be a completely different
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
 * page there in some cases (eg. if mmapped pagecache has been invalidated
 * and subsequently re faulted). However it does guarantee that the page
 * won't be freed completely. And mostly callers simply care that the page
 * contains data that was valid *at some point in time*. Typically, an IO
 * or similar operation cannot guarantee anything stronger anyway because
 * locks can't be held over the syscall boundary.
 *
 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
 * be called after the page is finished with, and before put_page is called.
 *
1775 1776 1777 1778 1779
 * get_user_pages_remote is typically used for fewer-copy IO operations,
 * to get a handle on the memory by some means other than accesses
 * via the user virtual addresses. The pages may be submitted for
 * DMA to devices or accessed via their kernel linear mapping (via the
 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1780 1781 1782
 *
 * See also get_user_pages_fast, for performance critical applications.
 *
1783
 * get_user_pages_remote should be phased out in favor of
1784
 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1785
 * should use get_user_pages_remote because it cannot pass
1786 1787
 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
 */
1788
long get_user_pages_remote(struct mm_struct *mm,
1789 1790 1791 1792
		unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas, int *locked)
{
1793
	if (!is_valid_gup_flags(gup_flags))
1794 1795
		return -EINVAL;

1796
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1797
				       pages, vmas, locked);
1798 1799 1800
}
EXPORT_SYMBOL(get_user_pages_remote);

1801
#else /* CONFIG_MMU */
1802
long get_user_pages_remote(struct mm_struct *mm,
1803 1804 1805 1806 1807 1808
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
J
John Hubbard 已提交
1809

1810
static long __get_user_pages_remote(struct mm_struct *mm,
J
John Hubbard 已提交
1811 1812 1813 1814 1815 1816
				    unsigned long start, unsigned long nr_pages,
				    unsigned int gup_flags, struct page **pages,
				    struct vm_area_struct **vmas, int *locked)
{
	return 0;
}
1817 1818
#endif /* !CONFIG_MMU */

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
/**
 * get_user_pages() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @vmas:       array of pointers to vmas corresponding to each page.
 *              Or NULL if the caller does not require them.
 *
1830 1831 1832 1833
 * This is the same as get_user_pages_remote(), just with a less-flexible
 * calling convention where we assume that the mm being operated on belongs to
 * the current task, and doesn't allow passing of a locked parameter.  We also
 * obviously don't pass FOLL_REMOTE in here.
1834 1835 1836 1837 1838
 */
long get_user_pages(unsigned long start, unsigned long nr_pages,
		unsigned int gup_flags, struct page **pages,
		struct vm_area_struct **vmas)
{
1839
	if (!is_valid_gup_flags(gup_flags))
1840 1841
		return -EINVAL;

1842
	return __gup_longterm_locked(current->mm, start, nr_pages,
1843 1844 1845
				     pages, vmas, gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(get_user_pages);
1846

1847
/**
1848
 * get_user_pages_locked() is suitable to replace the form:
1849
 *
1850
 *      mmap_read_lock(mm);
1851
 *      do_something()
1852
 *      get_user_pages(mm, ..., pages, NULL);
1853
 *      mmap_read_unlock(mm);
1854
 *
1855
 *  to:
1856
 *
1857
 *      int locked = 1;
1858
 *      mmap_read_lock(mm);
1859
 *      do_something()
1860
 *      get_user_pages_locked(mm, ..., pages, &locked);
1861
 *      if (locked)
1862
 *          mmap_read_unlock(mm);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
 *
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying lookup behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long. Or NULL, if caller
 *              only intends to ensure the pages are faulted in.
 * @locked:     pointer to lock flag indicating whether lock is held and
 *              subsequently whether VM_FAULT_RETRY functionality can be
 *              utilised. Lock must initially be held.
 *
 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 * paths better by using either get_user_pages_locked() or
 * get_user_pages_unlocked().
 *
1878
 */
1879 1880 1881
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
1882 1883
{
	/*
1884 1885 1886 1887
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
1888
	 */
1889 1890
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1891 1892 1893 1894 1895 1896
	/*
	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
	 * never directly by the caller, so enforce that:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
		return -EINVAL;
1897

1898
	return __get_user_pages_locked(current->mm, start, nr_pages,
1899 1900
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
1901
}
1902
EXPORT_SYMBOL(get_user_pages_locked);
1903 1904

/*
1905
 * get_user_pages_unlocked() is suitable to replace the form:
1906
 *
1907
 *      mmap_read_lock(mm);
1908
 *      get_user_pages(mm, ..., pages, NULL);
1909
 *      mmap_read_unlock(mm);
1910 1911 1912
 *
 *  with:
 *
1913
 *      get_user_pages_unlocked(mm, ..., pages);
1914 1915 1916 1917
 *
 * It is functionally equivalent to get_user_pages_fast so
 * get_user_pages_fast should be used instead if specific gup_flags
 * (e.g. FOLL_FORCE) are not required.
1918
 */
1919 1920
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
1921 1922
{
	struct mm_struct *mm = current->mm;
1923 1924
	int locked = 1;
	long ret;
1925

1926 1927 1928 1929 1930 1931 1932 1933
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;
1934

1935
	mmap_read_lock(mm);
1936
	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1937
				      &locked, gup_flags | FOLL_TOUCH);
1938
	if (locked)
1939
		mmap_read_unlock(mm);
1940
	return ret;
1941
}
1942
EXPORT_SYMBOL(get_user_pages_unlocked);
1943 1944

/*
1945
 * Fast GUP
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
 *
 * get_user_pages_fast attempts to pin user pages by walking the page
 * tables directly and avoids taking locks. Thus the walker needs to be
 * protected from page table pages being freed from under it, and should
 * block any THP splits.
 *
 * One way to achieve this is to have the walker disable interrupts, and
 * rely on IPIs from the TLB flushing code blocking before the page table
 * pages are freed. This is unsuitable for architectures that do not need
 * to broadcast an IPI when invalidating TLBs.
 *
 * Another way to achieve this is to batch up page table containing pages
 * belonging to more than one mm_user, then rcu_sched a callback to free those
 * pages. Disabling interrupts will allow the fast_gup walker to both block
 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
 * (which is a relatively rare event). The code below adopts this strategy.
 *
 * Before activating this code, please be aware that the following assumptions
 * are currently made:
 *
1966
 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1967
 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1968 1969 1970 1971 1972 1973 1974 1975 1976
 *
 *  *) ptes can be read atomically by the architecture.
 *
 *  *) access_ok is sufficient to validate userspace address ranges.
 *
 * The last two assumptions can be relaxed by the addition of helper functions.
 *
 * This code is based heavily on the PowerPC implementation by Nick Piggin.
 */
1977
#ifdef CONFIG_HAVE_FAST_GUP
1978
#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
J
John Hubbard 已提交
1979

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
/*
 * WARNING: only to be used in the get_user_pages_fast() implementation.
 *
 * With get_user_pages_fast(), we walk down the pagetables without taking any
 * locks.  For this we would like to load the pointers atomically, but sometimes
 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
 * we do have is the guarantee that a PTE will only either go from not present
 * to present, or present to not present or both -- it will not switch to a
 * completely different present page without a TLB flush in between; something
 * that we are blocking by holding interrupts off.
 *
 * Setting ptes from not present to present goes:
 *
 *   ptep->pte_high = h;
 *   smp_wmb();
 *   ptep->pte_low = l;
 *
 * And present to not present goes:
 *
 *   ptep->pte_low = 0;
 *   smp_wmb();
 *   ptep->pte_high = 0;
 *
 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
 * We load pte_high *after* loading pte_low, which ensures we don't see an older
 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
 * picked up a changed pte high. We might have gotten rubbish values from
 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
 * operates on present ptes we're safe.
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
	pte_t pte;
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	do {
		pte.pte_low = ptep->pte_low;
		smp_rmb();
		pte.pte_high = ptep->pte_high;
		smp_rmb();
	} while (unlikely(pte.pte_low != ptep->pte_low));

	return pte;
}
#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2025
/*
2026
 * We require that the PTE can be read atomically.
2027 2028 2029
 */
static inline pte_t gup_get_pte(pte_t *ptep)
{
2030
	return ptep_get(ptep);
2031
}
2032
#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2033

2034
static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2035
					    unsigned int flags,
2036
					    struct page **pages)
2037 2038 2039 2040 2041
{
	while ((*nr) - nr_start) {
		struct page *page = pages[--(*nr)];

		ClearPageReferenced(page);
J
John Hubbard 已提交
2042 2043 2044 2045
		if (flags & FOLL_PIN)
			unpin_user_page(page);
		else
			put_page(page);
2046 2047 2048
	}
}

2049
#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2050
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2051
			 unsigned int flags, struct page **pages, int *nr)
2052
{
2053 2054
	struct dev_pagemap *pgmap = NULL;
	int nr_start = *nr, ret = 0;
2055 2056 2057 2058
	pte_t *ptep, *ptem;

	ptem = ptep = pte_offset_map(&pmd, addr);
	do {
2059
		pte_t pte = gup_get_pte(ptep);
2060
		struct page *head, *page;
2061 2062 2063

		/*
		 * Similar to the PMD case below, NUMA hinting must take slow
2064
		 * path using the pte_protnone check.
2065
		 */
2066 2067 2068
		if (pte_protnone(pte))
			goto pte_unmap;

2069
		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2070 2071
			goto pte_unmap;

2072
		if (pte_devmap(pte)) {
2073 2074 2075
			if (unlikely(flags & FOLL_LONGTERM))
				goto pte_unmap;

2076 2077
			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
			if (unlikely(!pgmap)) {
2078
				undo_dev_pagemap(nr, nr_start, flags, pages);
2079 2080 2081
				goto pte_unmap;
			}
		} else if (pte_special(pte))
2082 2083 2084 2085 2086
			goto pte_unmap;

		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);

J
John Hubbard 已提交
2087
		head = try_grab_compound_head(page, 1, flags);
2088
		if (!head)
2089 2090 2091
			goto pte_unmap;

		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
J
John Hubbard 已提交
2092
			put_compound_head(head, 1, flags);
2093 2094 2095
			goto pte_unmap;
		}

2096
		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		/*
		 * We need to make the page accessible if and only if we are
		 * going to access its content (the FOLL_PIN case).  Please
		 * see Documentation/core-api/pin_user_pages.rst for
		 * details.
		 */
		if (flags & FOLL_PIN) {
			ret = arch_make_page_accessible(page);
			if (ret) {
				unpin_user_page(page);
				goto pte_unmap;
			}
		}
2111
		SetPageReferenced(page);
2112 2113 2114 2115 2116 2117 2118 2119
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);

	ret = 1;

pte_unmap:
2120 2121
	if (pgmap)
		put_dev_pagemap(pgmap);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	pte_unmap(ptem);
	return ret;
}
#else

/*
 * If we can't determine whether or not a pte is special, then fail immediately
 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
 * to be special.
 *
 * For a futex to be placed on a THP tail page, get_futex_key requires a
2133
 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2134 2135 2136
 * useful to have gup_huge_pmd even if we can't operate on ptes.
 */
static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2137
			 unsigned int flags, struct page **pages, int *nr)
2138 2139 2140
{
	return 0;
}
2141
#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2142

R
Robin Murphy 已提交
2143
#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2144
static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2145 2146
			     unsigned long end, unsigned int flags,
			     struct page **pages, int *nr)
2147 2148 2149 2150 2151 2152 2153 2154 2155
{
	int nr_start = *nr;
	struct dev_pagemap *pgmap = NULL;

	do {
		struct page *page = pfn_to_page(pfn);

		pgmap = get_dev_pagemap(pfn, pgmap);
		if (unlikely(!pgmap)) {
2156
			undo_dev_pagemap(nr, nr_start, flags, pages);
2157 2158 2159 2160
			return 0;
		}
		SetPageReferenced(page);
		pages[*nr] = page;
J
John Hubbard 已提交
2161 2162 2163 2164
		if (unlikely(!try_grab_page(page, flags))) {
			undo_dev_pagemap(nr, nr_start, flags, pages);
			return 0;
		}
2165 2166 2167
		(*nr)++;
		pfn++;
	} while (addr += PAGE_SIZE, addr != end);
2168 2169 2170

	if (pgmap)
		put_dev_pagemap(pgmap);
2171 2172 2173
	return 1;
}

2174
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2175 2176
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2177 2178
{
	unsigned long fault_pfn;
2179 2180 2181
	int nr_start = *nr;

	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2182
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2183
		return 0;
2184

2185
	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2186
		undo_dev_pagemap(nr, nr_start, flags, pages);
2187 2188 2189
		return 0;
	}
	return 1;
2190 2191
}

2192
static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2193 2194
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2195 2196
{
	unsigned long fault_pfn;
2197 2198 2199
	int nr_start = *nr;

	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2200
	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2201
		return 0;
2202

2203
	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2204
		undo_dev_pagemap(nr, nr_start, flags, pages);
2205 2206 2207
		return 0;
	}
	return 1;
2208 2209
}
#else
2210
static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2211 2212
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2213 2214 2215 2216 2217
{
	BUILD_BUG();
	return 0;
}

2218
static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2219 2220
				 unsigned long end, unsigned int flags,
				 struct page **pages, int *nr)
2221 2222 2223 2224 2225 2226
{
	BUILD_BUG();
	return 0;
}
#endif

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
static int record_subpages(struct page *page, unsigned long addr,
			   unsigned long end, struct page **pages)
{
	int nr;

	for (nr = 0; addr != end; addr += PAGE_SIZE)
		pages[nr++] = page++;

	return nr;
}

2238 2239 2240 2241 2242 2243 2244 2245 2246
#ifdef CONFIG_ARCH_HAS_HUGEPD
static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
				      unsigned long sz)
{
	unsigned long __boundary = (addr + sz) & ~(sz-1);
	return (__boundary - 1 < end - 1) ? __boundary : end;
}

static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2247 2248
		       unsigned long end, unsigned int flags,
		       struct page **pages, int *nr)
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
{
	unsigned long pte_end;
	struct page *head, *page;
	pte_t pte;
	int refs;

	pte_end = (addr + sz) & ~(sz-1);
	if (pte_end < end)
		end = pte_end;

2259
	pte = huge_ptep_get(ptep);
2260

2261
	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2262 2263 2264 2265 2266 2267 2268
		return 0;

	/* hugepages are never "special" */
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	head = pte_page(pte);
	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2269
	refs = record_subpages(page, addr, end, pages + *nr);
2270

J
John Hubbard 已提交
2271
	head = try_grab_compound_head(head, refs, flags);
2272
	if (!head)
2273 2274 2275
		return 0;

	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2276
		put_compound_head(head, refs, flags);
2277 2278 2279
		return 0;
	}

2280
	*nr += refs;
2281
	SetPageReferenced(head);
2282 2283 2284 2285
	return 1;
}

static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2286
		unsigned int pdshift, unsigned long end, unsigned int flags,
2287 2288 2289 2290 2291 2292 2293 2294 2295
		struct page **pages, int *nr)
{
	pte_t *ptep;
	unsigned long sz = 1UL << hugepd_shift(hugepd);
	unsigned long next;

	ptep = hugepte_offset(hugepd, addr, pdshift);
	do {
		next = hugepte_addr_end(addr, end, sz);
2296
		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2297 2298 2299 2300 2301 2302 2303
			return 0;
	} while (ptep++, addr = next, addr != end);

	return 1;
}
#else
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2304
		unsigned int pdshift, unsigned long end, unsigned int flags,
2305 2306 2307 2308 2309 2310
		struct page **pages, int *nr)
{
	return 0;
}
#endif /* CONFIG_ARCH_HAS_HUGEPD */

2311
static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2312 2313
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2314
{
2315
	struct page *head, *page;
2316 2317
	int refs;

2318
	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2319 2320
		return 0;

2321 2322 2323
	if (pmd_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2324 2325
		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
					     pages, nr);
2326
	}
2327

2328
	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2329
	refs = record_subpages(page, addr, end, pages + *nr);
2330

J
John Hubbard 已提交
2331
	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2332
	if (!head)
2333 2334 2335
		return 0;

	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2336
		put_compound_head(head, refs, flags);
2337 2338 2339
		return 0;
	}

2340
	*nr += refs;
2341
	SetPageReferenced(head);
2342 2343 2344 2345
	return 1;
}

static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2346 2347
			unsigned long end, unsigned int flags,
			struct page **pages, int *nr)
2348
{
2349
	struct page *head, *page;
2350 2351
	int refs;

2352
	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2353 2354
		return 0;

2355 2356 2357
	if (pud_devmap(orig)) {
		if (unlikely(flags & FOLL_LONGTERM))
			return 0;
2358 2359
		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
					     pages, nr);
2360
	}
2361

2362
	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2363
	refs = record_subpages(page, addr, end, pages + *nr);
2364

J
John Hubbard 已提交
2365
	head = try_grab_compound_head(pud_page(orig), refs, flags);
2366
	if (!head)
2367 2368 2369
		return 0;

	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2370
		put_compound_head(head, refs, flags);
2371 2372 2373
		return 0;
	}

2374
	*nr += refs;
2375
	SetPageReferenced(head);
2376 2377 2378
	return 1;
}

2379
static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2380
			unsigned long end, unsigned int flags,
2381 2382 2383
			struct page **pages, int *nr)
{
	int refs;
2384
	struct page *head, *page;
2385

2386
	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2387 2388
		return 0;

2389
	BUILD_BUG_ON(pgd_devmap(orig));
2390

2391
	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2392
	refs = record_subpages(page, addr, end, pages + *nr);
2393

J
John Hubbard 已提交
2394
	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2395
	if (!head)
2396 2397 2398
		return 0;

	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2399
		put_compound_head(head, refs, flags);
2400 2401 2402
		return 0;
	}

2403
	*nr += refs;
2404
	SetPageReferenced(head);
2405 2406 2407
	return 1;
}

2408
static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2409
		unsigned int flags, struct page **pages, int *nr)
2410 2411 2412 2413
{
	unsigned long next;
	pmd_t *pmdp;

2414
	pmdp = pmd_offset_lockless(pudp, pud, addr);
2415
	do {
2416
		pmd_t pmd = READ_ONCE(*pmdp);
2417 2418

		next = pmd_addr_end(addr, end);
2419
		if (!pmd_present(pmd))
2420 2421
			return 0;

Y
Yu Zhao 已提交
2422 2423
		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
			     pmd_devmap(pmd))) {
2424 2425 2426 2427 2428
			/*
			 * NUMA hinting faults need to be handled in the GUP
			 * slowpath for accounting purposes and so that they
			 * can be serialised against THP migration.
			 */
2429
			if (pmd_protnone(pmd))
2430 2431
				return 0;

2432
			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2433 2434 2435
				pages, nr))
				return 0;

2436 2437 2438 2439 2440 2441
		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
			/*
			 * architecture have different format for hugetlbfs
			 * pmd format and THP pmd format
			 */
			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2442
					 PMD_SHIFT, next, flags, pages, nr))
2443
				return 0;
2444
		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2445
			return 0;
2446 2447 2448 2449 2450
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

2451
static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2452
			 unsigned int flags, struct page **pages, int *nr)
2453 2454 2455 2456
{
	unsigned long next;
	pud_t *pudp;

2457
	pudp = pud_offset_lockless(p4dp, p4d, addr);
2458
	do {
2459
		pud_t pud = READ_ONCE(*pudp);
2460 2461

		next = pud_addr_end(addr, end);
Q
Qiujun Huang 已提交
2462
		if (unlikely(!pud_present(pud)))
2463
			return 0;
2464
		if (unlikely(pud_huge(pud))) {
2465
			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2466 2467 2468 2469
					  pages, nr))
				return 0;
		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2470
					 PUD_SHIFT, next, flags, pages, nr))
2471
				return 0;
2472
		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2473 2474 2475 2476 2477 2478
			return 0;
	} while (pudp++, addr = next, addr != end);

	return 1;
}

2479
static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2480
			 unsigned int flags, struct page **pages, int *nr)
2481 2482 2483 2484
{
	unsigned long next;
	p4d_t *p4dp;

2485
	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2486 2487 2488 2489 2490 2491 2492 2493 2494
	do {
		p4d_t p4d = READ_ONCE(*p4dp);

		next = p4d_addr_end(addr, end);
		if (p4d_none(p4d))
			return 0;
		BUILD_BUG_ON(p4d_huge(p4d));
		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2495
					 P4D_SHIFT, next, flags, pages, nr))
2496
				return 0;
2497
		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2498 2499 2500 2501 2502 2503
			return 0;
	} while (p4dp++, addr = next, addr != end);

	return 1;
}

2504
static void gup_pgd_range(unsigned long addr, unsigned long end,
2505
		unsigned int flags, struct page **pages, int *nr)
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
{
	unsigned long next;
	pgd_t *pgdp;

	pgdp = pgd_offset(current->mm, addr);
	do {
		pgd_t pgd = READ_ONCE(*pgdp);

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			return;
		if (unlikely(pgd_huge(pgd))) {
2518
			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2519 2520 2521 2522
					  pages, nr))
				return;
		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2523
					 PGDIR_SHIFT, next, flags, pages, nr))
2524
				return;
2525
		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2526 2527 2528
			return;
	} while (pgdp++, addr = next, addr != end);
}
2529 2530 2531 2532 2533 2534
#else
static inline void gup_pgd_range(unsigned long addr, unsigned long end,
		unsigned int flags, struct page **pages, int *nr)
{
}
#endif /* CONFIG_HAVE_FAST_GUP */
2535 2536 2537

#ifndef gup_fast_permitted
/*
2538
 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2539 2540
 * we need to fall back to the slow version:
 */
2541
static bool gup_fast_permitted(unsigned long start, unsigned long end)
2542
{
2543
	return true;
2544 2545 2546
}
#endif

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
				   unsigned int gup_flags, struct page **pages)
{
	int ret;

	/*
	 * FIXME: FOLL_LONGTERM does not work with
	 * get_user_pages_unlocked() (see comments in that function)
	 */
	if (gup_flags & FOLL_LONGTERM) {
2557
		mmap_read_lock(current->mm);
2558
		ret = __gup_longterm_locked(current->mm,
2559 2560
					    start, nr_pages,
					    pages, NULL, gup_flags);
2561
		mmap_read_unlock(current->mm);
2562 2563 2564 2565 2566 2567 2568 2569
	} else {
		ret = get_user_pages_unlocked(start, nr_pages,
					      pages, gup_flags);
	}

	return ret;
}

2570 2571 2572 2573 2574 2575 2576
static unsigned long lockless_pages_from_mm(unsigned long start,
					    unsigned long end,
					    unsigned int gup_flags,
					    struct page **pages)
{
	unsigned long flags;
	int nr_pinned = 0;
2577
	unsigned seq;
2578 2579 2580 2581 2582

	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
	    !gup_fast_permitted(start, end))
		return 0;

2583 2584 2585 2586 2587 2588
	if (gup_flags & FOLL_PIN) {
		seq = raw_read_seqcount(&current->mm->write_protect_seq);
		if (seq & 1)
			return 0;
	}

2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	/*
	 * Disable interrupts. The nested form is used, in order to allow full,
	 * general purpose use of this routine.
	 *
	 * With interrupts disabled, we block page table pages from being freed
	 * from under us. See struct mmu_table_batch comments in
	 * include/asm-generic/tlb.h for more details.
	 *
	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
	 * that come from THPs splitting.
	 */
	local_irq_save(flags);
	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
	local_irq_restore(flags);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

	/*
	 * When pinning pages for DMA there could be a concurrent write protect
	 * from fork() via copy_page_range(), in this case always fail fast GUP.
	 */
	if (gup_flags & FOLL_PIN) {
		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
			unpin_user_pages(pages, nr_pinned);
			return 0;
		}
	}
2614 2615 2616 2617 2618
	return nr_pinned;
}

static int internal_get_user_pages_fast(unsigned long start,
					unsigned long nr_pages,
2619 2620
					unsigned int gup_flags,
					struct page **pages)
2621
{
2622 2623 2624
	unsigned long len, end;
	unsigned long nr_pinned;
	int ret;
2625

2626
	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2627 2628
				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
				       FOLL_FAST_ONLY)))
2629 2630
		return -EINVAL;

P
Peter Xu 已提交
2631 2632 2633
	if (gup_flags & FOLL_PIN)
		atomic_set(&current->mm->has_pinned, 1);

2634
	if (!(gup_flags & FOLL_FAST_ONLY))
2635
		might_lock_read(&current->mm->mmap_lock);
2636

2637
	start = untagged_addr(start) & PAGE_MASK;
2638 2639
	len = nr_pages << PAGE_SHIFT;
	if (check_add_overflow(start, len, &end))
2640
		return 0;
2641
	if (unlikely(!access_ok((void __user *)start, len)))
2642
		return -EFAULT;
2643

2644 2645 2646
	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
		return nr_pinned;
2647

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
	/* Slow path: try to get the remaining pages with get_user_pages */
	start += nr_pinned << PAGE_SHIFT;
	pages += nr_pinned;
	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
				      pages);
	if (ret < 0) {
		/*
		 * The caller has to unpin the pages we already pinned so
		 * returning -errno is not an option
		 */
		if (nr_pinned)
			return nr_pinned;
		return ret;
2661
	}
2662
	return ret + nr_pinned;
2663
}
2664

2665 2666 2667 2668 2669 2670 2671 2672
/**
 * get_user_pages_fast_only() - pin user pages in memory
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
 * the regular GUP.
 * Note a difference with get_user_pages_fast: this always returns the
 * number of pages pinned, 0 if no pages were pinned.
 *
 * If the architecture does not support this function, simply return with no
 * pages pinned.
 *
 * Careful, careful! COW breaking can go either way, so a non-write
 * access can get ambiguous page results. If you call this function without
 * 'write' set, you'd better be sure that you're ok with that ambiguity.
 */
2685 2686
int get_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
2687
{
2688
	int nr_pinned;
2689 2690 2691
	/*
	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
	 * because gup fast is always a "pin with a +1 page refcount" request.
2692 2693 2694
	 *
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
2695
	 */
2696
	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2697

2698 2699
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
2700 2701

	/*
2702 2703 2704 2705
	 * As specified in the API description above, this routine is not
	 * allowed to return negative values. However, the common core
	 * routine internal_get_user_pages_fast() *can* return -errno.
	 * Therefore, correct for that here:
2706
	 */
2707 2708
	if (nr_pinned < 0)
		nr_pinned = 0;
2709 2710 2711

	return nr_pinned;
}
2712
EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2713

2714 2715
/**
 * get_user_pages_fast() - pin user pages in memory
J
John Hubbard 已提交
2716 2717 2718 2719 2720
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
2721
 *
2722
 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number requested.
 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
 * -errno.
 */
int get_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
2733
	if (!is_valid_gup_flags(gup_flags))
2734 2735
		return -EINVAL;

2736 2737 2738 2739 2740 2741 2742
	/*
	 * The caller may or may not have explicitly set FOLL_GET; either way is
	 * OK. However, internally (within mm/gup.c), gup fast variants must set
	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
	 * request.
	 */
	gup_flags |= FOLL_GET;
2743 2744
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
}
2745
EXPORT_SYMBOL_GPL(get_user_pages_fast);
2746 2747 2748 2749

/**
 * pin_user_pages_fast() - pin user pages in memory without taking locks
 *
J
John Hubbard 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
 * @start:      starting user address
 * @nr_pages:   number of pages from start to pin
 * @gup_flags:  flags modifying pin behaviour
 * @pages:      array that receives pointers to the pages pinned.
 *              Should be at least nr_pages long.
 *
 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
 * get_user_pages_fast() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2761
 * see Documentation/core-api/pin_user_pages.rst for further details.
2762 2763 2764 2765
 */
int pin_user_pages_fast(unsigned long start, int nr_pages,
			unsigned int gup_flags, struct page **pages)
{
J
John Hubbard 已提交
2766 2767 2768 2769 2770 2771
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2772 2773 2774
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast);

2775
/*
2776 2777
 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
 *
 * The API rules are the same, too: no negative values may be returned.
 */
int pin_user_pages_fast_only(unsigned long start, int nr_pages,
			     unsigned int gup_flags, struct page **pages)
{
	int nr_pinned;

	/*
	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
	 * rules require returning 0, rather than -errno:
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return 0;
	/*
	 * FOLL_FAST_ONLY is required in order to match the API description of
	 * this routine: no fall back to regular ("slow") GUP.
	 */
	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
						 pages);
	/*
	 * This routine is not allowed to return negative values. However,
	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
	 * correct for that here:
	 */
	if (nr_pinned < 0)
		nr_pinned = 0;

	return nr_pinned;
}
EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);

2811
/**
2812
 * pin_user_pages_remote() - pin pages of a remote process
2813
 *
J
John Hubbard 已提交
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
 * @mm:		mm_struct of target mm
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 * @locked:	pointer to lock flag indicating whether lock is held and
 *		subsequently whether VM_FAULT_RETRY functionality can be
 *		utilised. Lock must initially be held.
 *
 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
 * get_user_pages_remote() for documentation on the function arguments, because
 * the arguments here are identical.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2832
 * see Documentation/core-api/pin_user_pages.rst for details.
2833
 */
2834
long pin_user_pages_remote(struct mm_struct *mm,
2835 2836 2837 2838
			   unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   struct vm_area_struct **vmas, int *locked)
{
J
John Hubbard 已提交
2839 2840 2841 2842 2843
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2844
	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
J
John Hubbard 已提交
2845
				       pages, vmas, locked);
2846 2847 2848 2849 2850 2851
}
EXPORT_SYMBOL(pin_user_pages_remote);

/**
 * pin_user_pages() - pin user pages in memory for use by other devices
 *
J
John Hubbard 已提交
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @gup_flags:	flags modifying lookup behaviour
 * @pages:	array that receives pointers to the pages pinned.
 *		Should be at least nr_pages long. Or NULL, if caller
 *		only intends to ensure the pages are faulted in.
 * @vmas:	array of pointers to vmas corresponding to each page.
 *		Or NULL if the caller does not require them.
 *
 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
 * FOLL_PIN is set.
 *
 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2865
 * see Documentation/core-api/pin_user_pages.rst for details.
2866 2867 2868 2869 2870
 */
long pin_user_pages(unsigned long start, unsigned long nr_pages,
		    unsigned int gup_flags, struct page **pages,
		    struct vm_area_struct **vmas)
{
J
John Hubbard 已提交
2871 2872 2873 2874 2875
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2876
	return __gup_longterm_locked(current->mm, start, nr_pages,
J
John Hubbard 已提交
2877
				     pages, vmas, gup_flags);
2878 2879
}
EXPORT_SYMBOL(pin_user_pages);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896

/*
 * pin_user_pages_unlocked() is the FOLL_PIN variant of
 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
 * FOLL_PIN and rejects FOLL_GET.
 */
long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
			     struct page **pages, unsigned int gup_flags)
{
	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
}
EXPORT_SYMBOL(pin_user_pages_unlocked);
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920

/*
 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
 * Behavior is the same, except that this one sets FOLL_PIN and rejects
 * FOLL_GET.
 */
long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
			   unsigned int gup_flags, struct page **pages,
			   int *locked)
{
	/*
	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
	 * vmas.  As there are no users of this flag in this call we simply
	 * disallow this option for now.
	 */
	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
		return -EINVAL;

	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
		return -EINVAL;

	gup_flags |= FOLL_PIN;
2921
	return __get_user_pages_locked(current->mm, start, nr_pages,
2922 2923 2924 2925
				       pages, NULL, locked,
				       gup_flags | FOLL_TOUCH);
}
EXPORT_SYMBOL(pin_user_pages_locked);