i915_gem_execbuffer.c 37.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
35
#include <linux/dma_remapping.h>
36 37 38 39 40

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
41
	uint32_t flips;
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

191 192 193
	if (obj->base.pending_write_domain)
		cd->flips |= atomic_read(&obj->pending_flip);

194 195 196 197 198 199 200 201 202 203 204 205
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
206
		cd->flush_rings |= intel_ring_flag(obj->ring);
207
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208
		cd->flush_rings |= intel_ring_flag(ring);
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

269 270 271 272 273 274
static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
{
	return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
		obj->cache_level != I915_CACHE_NONE);
}

275 276
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
277
				   struct eb_objects *eb,
278 279 280 281
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
282
	struct drm_i915_gem_object *target_i915_obj;
283 284 285
	uint32_t target_offset;
	int ret = -EINVAL;

286 287 288
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
289 290
		return -ENOENT;

291 292
	target_i915_obj = to_intel_bo(target_obj);
	target_offset = target_i915_obj->gtt_offset;
293 294 295 296

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
297
	if (unlikely(target_offset == 0)) {
298
		DRM_DEBUG("No GTT space found for object %d\n",
299
			  reloc->target_handle);
300
		return ret;
301 302 303
	}

	/* Validate that the target is in a valid r/w GPU domain */
304
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
305
		DRM_DEBUG("reloc with multiple write domains: "
306 307 308 309 310 311
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
312
		return ret;
313
	}
314 315
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
316
		DRM_DEBUG("reloc with read/write non-GPU domains: "
317 318 319 320 321 322
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
323
		return ret;
324
	}
325 326
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
327
		DRM_DEBUG("Write domain conflict: "
328 329 330 331 332 333
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
334
		return ret;
335 336 337 338 339 340 341 342 343
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
344
		return 0;
345 346

	/* Check that the relocation address is valid... */
347
	if (unlikely(reloc->offset > obj->base.size - 4)) {
348
		DRM_DEBUG("Relocation beyond object bounds: "
349 350 351 352
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
353
		return ret;
354
	}
355
	if (unlikely(reloc->offset & 3)) {
356
		DRM_DEBUG("Relocation not 4-byte aligned: "
357 358 359
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
360
		return ret;
361 362
	}

363 364 365 366
	/* We can't wait for rendering with pagefaults disabled */
	if (obj->active && in_atomic())
		return -EFAULT;

367
	reloc->delta += target_offset;
368
	if (use_cpu_reloc(obj)) {
369 370 371
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

372 373 374 375
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
			return ret;

376 377 378 379 380 381 382 383 384 385
		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
386
			return ret;
387 388 389 390 391 392 393 394 395 396 397

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

398 399 400 401 402 403 404 405 406 407
	/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
	 * pipe_control writes because the gpu doesn't properly redirect them
	 * through the ppgtt for non_secure batchbuffers. */
	if (unlikely(IS_GEN6(dev) &&
	    reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
	    !target_i915_obj->has_global_gtt_mapping)) {
		i915_gem_gtt_bind_object(target_i915_obj,
					 target_i915_obj->cache_level);
	}

408 409 410
	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

411
	return 0;
412 413 414 415
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
416
				    struct eb_objects *eb)
417
{
418 419
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
	struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
420
	struct drm_i915_gem_relocation_entry __user *user_relocs;
421
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
422
	int remain, ret;
423 424 425

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;

426 427 428 429 430 431 432 433 434
	remain = entry->relocation_count;
	while (remain) {
		struct drm_i915_gem_relocation_entry *r = stack_reloc;
		int count = remain;
		if (count > ARRAY_SIZE(stack_reloc))
			count = ARRAY_SIZE(stack_reloc);
		remain -= count;

		if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
435 436
			return -EFAULT;

437 438
		do {
			u64 offset = r->presumed_offset;
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453
			ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
			if (ret)
				return ret;

			if (r->presumed_offset != offset &&
			    __copy_to_user_inatomic(&user_relocs->presumed_offset,
						    &r->presumed_offset,
						    sizeof(r->presumed_offset))) {
				return -EFAULT;
			}

			user_relocs++;
			r++;
		} while (--count);
454 455 456
	}

	return 0;
457
#undef N_RELOC
458 459 460 461
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
462
					 struct eb_objects *eb,
463 464
					 struct drm_i915_gem_relocation_entry *relocs)
{
465
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
466 467 468
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
469
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
470 471 472 473 474 475 476 477 478
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
479
			     struct eb_objects *eb,
480
			     struct list_head *objects)
481
{
482
	struct drm_i915_gem_object *obj;
483 484 485 486 487 488 489 490 491 492
	int ret = 0;

	/* This is the fast path and we cannot handle a pagefault whilst
	 * holding the struct mutex lest the user pass in the relocations
	 * contained within a mmaped bo. For in such a case we, the page
	 * fault handler would call i915_gem_fault() and we would try to
	 * acquire the struct mutex again. Obviously this is bad and so
	 * lockdep complains vehemently.
	 */
	pagefault_disable();
493
	list_for_each_entry(obj, objects, exec_list) {
494
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
495
		if (ret)
496
			break;
497
	}
498
	pagefault_enable();
499

500
	return ret;
501 502
}

503 504
#define  __EXEC_OBJECT_HAS_FENCE (1<<31)

505 506 507 508 509 510 511
static int
need_reloc_mappable(struct drm_i915_gem_object *obj)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	return entry->relocation_count && !use_cpu_reloc(obj);
}

512 513 514 515 516 517 518 519 520 521 522 523 524
static int
pin_and_fence_object(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *ring)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
	bool need_fence, need_mappable;
	int ret;

	need_fence =
		has_fenced_gpu_access &&
		entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
		obj->tiling_mode != I915_TILING_NONE;
525
	need_mappable = need_fence || need_reloc_mappable(obj);
526 527 528 529 530 531 532

	ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
	if (ret)
		return ret;

	if (has_fenced_gpu_access) {
		if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
533 534 535
			ret = i915_gem_object_get_fence(obj, ring);
			if (ret)
				goto err_unpin;
536

537
			if (i915_gem_object_pin_fence(obj))
538
				entry->flags |= __EXEC_OBJECT_HAS_FENCE;
539

540
			obj->pending_fenced_gpu_access = true;
541 542 543 544 545 546 547 548 549 550 551
		}
	}

	entry->offset = obj->gtt_offset;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
	return ret;
}

552
static int
553
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
554
			    struct drm_file *file,
555
			    struct list_head *objects)
556
{
557
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
558 559
	struct drm_i915_gem_object *obj;
	int ret, retry;
560
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
577
		need_mappable = need_fence || need_reloc_mappable(obj);
578 579 580 581 582

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
583 584 585

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
586 587
	}
	list_splice(&ordered_objects, objects);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
606
		list_for_each_entry(obj, objects, exec_list) {
607
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
608
			bool need_fence, need_mappable;
609

610
			if (!obj->gtt_space)
611 612 613
				continue;

			need_fence =
614
				has_fenced_gpu_access &&
615 616
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
617
			need_mappable = need_fence || need_reloc_mappable(obj);
618 619 620 621 622

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
623
				ret = pin_and_fence_object(obj, ring);
624
			if (ret)
625 626 627 628
				goto err;
		}

		/* Bind fresh objects */
629
		list_for_each_entry(obj, objects, exec_list) {
630 631
			if (obj->gtt_space)
				continue;
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646
			ret = pin_and_fence_object(obj, ring);
			if (ret) {
				int ret_ignore;

				/* This can potentially raise a harmless
				 * -EINVAL if we failed to bind in the above
				 * call. It cannot raise -EINTR since we know
				 * that the bo is freshly bound and so will
				 * not need to be flushed or waited upon.
				 */
				ret_ignore = i915_gem_object_unbind(obj);
				(void)ret_ignore;
				WARN_ON(obj->gtt_space);
				break;
647 648 649
			}
		}

650 651
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
652 653 654 655 656 657 658 659 660 661 662 663
			struct drm_i915_gem_exec_object2 *entry;

			if (!obj->gtt_space)
				continue;

			entry = obj->exec_entry;
			if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
				i915_gem_object_unpin_fence(obj);
				entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
			}

			i915_gem_object_unpin(obj);
664 665 666 667 668 669 670 671

			/* ... and ensure ppgtt mapping exist if needed. */
			if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
				i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
						       obj, obj->cache_level);

				obj->has_aliasing_ppgtt_mapping = 1;
			}
672 673 674 675 676 677 678 679
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
680
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
681 682 683 684 685
		if (ret)
			return ret;

		retry++;
	} while (1);
686 687

err:
688 689 690 691 692 693 694 695 696 697 698
	list_for_each_entry_continue_reverse(obj, objects, exec_list) {
		struct drm_i915_gem_exec_object2 *entry;

		if (!obj->gtt_space)
			continue;

		entry = obj->exec_entry;
		if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
			i915_gem_object_unpin_fence(obj);
			entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
		}
699

700
		i915_gem_object_unpin(obj);
701 702 703
	}

	return ret;
704 705 706 707 708
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
709
				  struct intel_ring_buffer *ring,
710
				  struct list_head *objects,
711
				  struct eb_objects *eb,
712
				  struct drm_i915_gem_exec_object2 *exec,
713 714 715
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
716
	struct drm_i915_gem_object *obj;
717
	int *reloc_offset;
718 719
	int i, total, ret;

720
	/* We may process another execbuffer during the unlock... */
721
	while (!list_empty(objects)) {
722 723 724 725 726 727 728
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

729 730 731 732
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
733
		total += exec[i].relocation_count;
734

735
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
736
	reloc = drm_malloc_ab(total, sizeof(*reloc));
737 738 739
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
740 741 742 743 744 745 746 747
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

748
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
749 750

		if (copy_from_user(reloc+total, user_relocs,
751
				   exec[i].relocation_count * sizeof(*reloc))) {
752 753 754 755 756
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

757
		reloc_offset[i] = total;
758
		total += exec[i].relocation_count;
759 760 761 762 763 764 765 766
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

767 768 769 770 771
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
772
		if (&obj->base == NULL) {
773
			DRM_DEBUG("Invalid object handle %d at index %d\n",
774 775 776 777 778 779 780
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
781
		obj->exec_entry = &exec[i];
782 783 784
		eb_add_object(eb, obj);
	}

785
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
786 787 788
	if (ret)
		goto err;

789
	list_for_each_entry(obj, objects, exec_list) {
790
		int offset = obj->exec_entry - exec;
791
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
792
							       reloc + reloc_offset[offset]);
793 794 795 796 797 798 799 800 801 802 803 804
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
805
	drm_free_large(reloc_offset);
806 807 808
	return ret;
}

809
static int
810 811 812 813 814 815
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
816
	int i, ret;
817 818 819 820

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

821 822 823
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

824
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
825
		for (i = 0; i < I915_NUM_RINGS; i++)
826
			if (flush_rings & (1 << i)) {
C
Chris Wilson 已提交
827
				ret = i915_gem_flush_ring(&dev_priv->ring[i],
828 829 830 831 832
							  invalidate_domains,
							  flush_domains);
				if (ret)
					return ret;
			}
833
	}
834 835

	return 0;
836 837
}

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
{
	u32 plane, flip_mask;
	int ret;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */

	for (plane = 0; flips >> plane; plane++) {
		if (((flips >> plane) & 1) == 0)
			continue;

		if (plane)
			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
		else
			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
	}

	return 0;
}


871
static int
872 873
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
874
{
875
	struct drm_i915_gem_object *obj;
876
	struct change_domains cd;
877
	int ret;
878

879
	memset(&cd, 0, sizeof(cd));
880 881
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
882 883

	if (cd.invalidate_domains | cd.flush_domains) {
884 885 886 887 888 889
		ret = i915_gem_execbuffer_flush(ring->dev,
						cd.invalidate_domains,
						cd.flush_domains,
						cd.flush_rings);
		if (ret)
			return ret;
890 891
	}

892 893 894 895 896 897
	if (cd.flips) {
		ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
		if (ret)
			return ret;
	}

898
	list_for_each_entry(obj, objects, exec_list) {
899
		ret = i915_gem_object_sync(obj, ring);
900 901
		if (ret)
			return ret;
902 903 904 905 906
	}

	return 0;
}

907 908
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
909
{
910
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

937
		if (fault_in_multipages_readable(ptr, length))
938 939 940 941 942 943
			return -EFAULT;
	}

	return 0;
}

944 945
static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
946 947
				   struct intel_ring_buffer *ring,
				   u32 seqno)
948 949 950 951
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
C
Chris Wilson 已提交
952 953 954 955
		  u32 old_read = obj->base.read_domains;
		  u32 old_write = obj->base.write_domain;


956 957 958 959
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

960
		i915_gem_object_move_to_active(obj, ring, seqno);
961 962
		if (obj->base.write_domain) {
			obj->dirty = 1;
963
			obj->pending_gpu_write = true;
964 965 966 967 968
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

C
Chris Wilson 已提交
969
		trace_i915_gem_object_change_domain(obj, old_read, old_write);
970 971 972
	}
}

973 974
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
975
				    struct drm_file *file,
976 977
				    struct intel_ring_buffer *ring)
{
978
	struct drm_i915_gem_request *request;
979
	u32 invalidate;
980

981 982 983 984 985 986
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
987
	invalidate = I915_GEM_DOMAIN_COMMAND;
988
	if (INTEL_INFO(dev)->gen >= 4)
989 990
		invalidate |= I915_GEM_DOMAIN_SAMPLER;
	if (ring->flush(ring, invalidate, 0)) {
C
Chris Wilson 已提交
991
		i915_gem_next_request_seqno(ring);
992 993
		return;
	}
994

995 996
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
C
Chris Wilson 已提交
997 998
	if (request == NULL || i915_add_request(ring, file, request)) {
		i915_gem_next_request_seqno(ring);
999 1000 1001
		kfree(request);
	}
}
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret, i;

	if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
		return 0;

	ret = intel_ring_begin(ring, 4 * 3);
	if (ret)
		return ret;

	for (i = 0; i < 4; i++) {
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
		intel_ring_emit(ring, 0);
	}

	intel_ring_advance(ring);

	return 0;
}

1028 1029 1030 1031
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1032
		       struct drm_i915_gem_exec_object2 *exec)
1033 1034
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1035
	struct list_head objects;
1036
	struct eb_objects *eb;
1037 1038 1039
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
1040
	u32 exec_start, exec_len;
1041
	u32 seqno;
1042
	u32 mask;
1043
	int ret, mode, i;
1044

1045
	if (!i915_gem_check_execbuffer(args)) {
1046
		DRM_DEBUG("execbuf with invalid offset/length\n");
1047 1048 1049 1050
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
1051 1052 1053 1054 1055 1056
	if (ret)
		return ret;

	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
1057
		ring = &dev_priv->ring[RCS];
1058 1059 1060
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
1061
			DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1062 1063
			return -EINVAL;
		}
1064
		ring = &dev_priv->ring[VCS];
1065 1066 1067
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
1068
			DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1069 1070
			return -EINVAL;
		}
1071
		ring = &dev_priv->ring[BCS];
1072 1073
		break;
	default:
1074
		DRM_DEBUG("execbuf with unknown ring: %d\n",
1075 1076 1077 1078
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

1079
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1080
	mask = I915_EXEC_CONSTANTS_MASK;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;
1093 1094 1095 1096

			/* The HW changed the meaning on this bit on gen6 */
			if (INTEL_INFO(dev)->gen >= 6)
				mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1097 1098 1099
		}
		break;
	default:
1100
		DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1101 1102 1103
		return -EINVAL;
	}

1104
	if (args->buffer_count < 1) {
1105
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1106 1107 1108 1109
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1110
		if (ring != &dev_priv->ring[RCS]) {
1111
			DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1112 1113 1114
			return -EINVAL;
		}

1115
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1116 1117 1118 1119 1120 1121
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1122 1123 1124 1125
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1141 1142 1143 1144 1145 1146 1147
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1148
	/* Look up object handles */
1149
	INIT_LIST_HEAD(&objects);
1150 1151 1152
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1153 1154
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1155
		if (&obj->base == NULL) {
1156
			DRM_DEBUG("Invalid object handle %d at index %d\n",
1157
				   exec[i].handle, i);
1158 1159 1160 1161 1162
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1163
		if (!list_empty(&obj->exec_list)) {
1164
			DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1165
				   obj, exec[i].handle, i);
1166 1167 1168
			ret = -EINVAL;
			goto err;
		}
1169 1170

		list_add_tail(&obj->exec_list, &objects);
1171
		obj->exec_handle = exec[i].handle;
1172
		obj->exec_entry = &exec[i];
1173
		eb_add_object(eb, obj);
1174 1175
	}

1176 1177 1178 1179 1180
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1181
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1182
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1183 1184 1185 1186
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1187
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1188 1189
	if (ret) {
		if (ret == -EFAULT) {
1190
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1191 1192
								&objects, eb,
								exec,
1193 1194 1195 1196 1197 1198 1199 1200 1201
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
1202
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1203 1204 1205 1206 1207
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1208 1209
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1210 1211
		goto err;

C
Chris Wilson 已提交
1212
	seqno = i915_gem_next_request_seqno(ring);
1213
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1214 1215 1216 1217 1218
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
1219
			ret = i915_gpu_idle(dev, true);
1220 1221 1222 1223 1224 1225 1226
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1227 1228 1229 1230 1231 1232 1233 1234 1235
	if (ring == &dev_priv->ring[RCS] &&
	    mode != dev_priv->relative_constants_mode) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
				goto err;

		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, INSTPM);
1236
		intel_ring_emit(ring, mask << 16 | mode);
1237 1238 1239 1240 1241
		intel_ring_advance(ring);

		dev_priv->relative_constants_mode = mode;
	}

1242 1243 1244 1245 1246 1247
	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		ret = i915_reset_gen7_sol_offsets(dev, ring);
		if (ret)
			goto err;
	}

C
Chris Wilson 已提交
1248 1249
	trace_i915_gem_ring_dispatch(ring, seqno);

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1269

1270
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1271
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1272 1273

err:
1274
	eb_destroy(eb);
1275 1276 1277 1278 1279 1280 1281 1282
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

	if (args->buffer_count < 1) {
1307
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1308 1309 1310 1311 1312 1313 1314
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
1315
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
1326
		DRM_DEBUG("copy %d exec entries failed %d\n",
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1367
			DRM_DEBUG("failed to copy %d exec entries "
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

	if (args->buffer_count < 1) {
1387
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1388 1389 1390
		return -EINVAL;
	}

1391 1392 1393 1394 1395
	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (exec2_list == NULL)
		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
					   args->buffer_count);
1396
	if (exec2_list == NULL) {
1397
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1398 1399 1400 1401 1402 1403 1404 1405
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
1406
		DRM_DEBUG("copy %d exec entries failed %d\n",
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1421
			DRM_DEBUG("failed to copy %d exec entries "
1422 1423 1424 1425 1426 1427 1428 1429
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}