i915_gem_execbuffer.c 37.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
35
#include <linux/dma_remapping.h>
36 37 38 39 40

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
41
	uint32_t flips;
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

191 192 193
	if (obj->base.pending_write_domain)
		cd->flips |= atomic_read(&obj->pending_flip);

194 195 196 197 198 199 200 201 202 203 204 205
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
206
		cd->flush_rings |= intel_ring_flag(obj->ring);
207
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208
		cd->flush_rings |= intel_ring_flag(ring);
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

269 270
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
271
				   struct eb_objects *eb,
272 273 274 275 276 277 278
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
	uint32_t target_offset;
	int ret = -EINVAL;

279 280 281
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
282 283 284 285 286 287 288
		return -ENOENT;

	target_offset = to_intel_bo(target_obj)->gtt_offset;

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
289
	if (unlikely(target_offset == 0)) {
290
		DRM_DEBUG("No GTT space found for object %d\n",
291
			  reloc->target_handle);
292
		return ret;
293 294 295
	}

	/* Validate that the target is in a valid r/w GPU domain */
296
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
297
		DRM_DEBUG("reloc with multiple write domains: "
298 299 300 301 302 303
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
304
		return ret;
305
	}
306 307
	if (unlikely((reloc->write_domain | reloc->read_domains)
		     & ~I915_GEM_GPU_DOMAINS)) {
308
		DRM_DEBUG("reloc with read/write non-GPU domains: "
309 310 311 312 313 314
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
315
		return ret;
316
	}
317 318
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
319
		DRM_DEBUG("Write domain conflict: "
320 321 322 323 324 325
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
326
		return ret;
327 328 329 330 331 332 333 334 335
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
336
		return 0;
337 338

	/* Check that the relocation address is valid... */
339
	if (unlikely(reloc->offset > obj->base.size - 4)) {
340
		DRM_DEBUG("Relocation beyond object bounds: "
341 342 343 344
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
345
		return ret;
346
	}
347
	if (unlikely(reloc->offset & 3)) {
348
		DRM_DEBUG("Relocation not 4-byte aligned: "
349 350 351
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
352
		return ret;
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
	}

	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

368 369 370 371
		/* We can't wait for rendering with pagefaults disabled */
		if (obj->active && in_atomic())
			return -EFAULT;

372 373
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
374
			return ret;
375 376 377 378 379 380 381 382 383 384 385 386 387 388

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

389
	return 0;
390 391 392 393
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
394
				    struct eb_objects *eb)
395 396
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
397
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
398 399 400 401 402 403 404 405 406 407 408
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

409
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
410 411 412 413 414 415 416 417 418 419 420 421 422 423
		if (ret)
			return ret;

		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
424
					 struct eb_objects *eb,
425 426
					 struct drm_i915_gem_relocation_entry *relocs)
{
427
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
428 429 430
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
431
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
432 433 434 435 436 437 438 439 440
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
441
			     struct eb_objects *eb,
442
			     struct list_head *objects)
443
{
444
	struct drm_i915_gem_object *obj;
445 446 447 448 449 450 451 452 453 454
	int ret = 0;

	/* This is the fast path and we cannot handle a pagefault whilst
	 * holding the struct mutex lest the user pass in the relocations
	 * contained within a mmaped bo. For in such a case we, the page
	 * fault handler would call i915_gem_fault() and we would try to
	 * acquire the struct mutex again. Obviously this is bad and so
	 * lockdep complains vehemently.
	 */
	pagefault_disable();
455
	list_for_each_entry(obj, objects, exec_list) {
456
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
457
		if (ret)
458
			break;
459
	}
460
	pagefault_enable();
461

462
	return ret;
463 464
}

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
#define  __EXEC_OBJECT_HAS_FENCE (1<<31)

static int
pin_and_fence_object(struct drm_i915_gem_object *obj,
		     struct intel_ring_buffer *ring)
{
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
	bool need_fence, need_mappable;
	int ret;

	need_fence =
		has_fenced_gpu_access &&
		entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
		obj->tiling_mode != I915_TILING_NONE;
	need_mappable =
		entry->relocation_count ? true : need_fence;

	ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
	if (ret)
		return ret;

	if (has_fenced_gpu_access) {
		if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
			if (obj->tiling_mode) {
				ret = i915_gem_object_get_fence(obj, ring);
				if (ret)
					goto err_unpin;

				entry->flags |= __EXEC_OBJECT_HAS_FENCE;
				i915_gem_object_pin_fence(obj);
			} else {
				ret = i915_gem_object_put_fence(obj);
				if (ret)
					goto err_unpin;
			}
		}
		obj->pending_fenced_gpu_access = need_fence;
	}

	entry->offset = obj->gtt_offset;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
	return ret;
}

513
static int
514
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
515
			    struct drm_file *file,
516
			    struct list_head *objects)
517
{
518
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
519 520
	struct drm_i915_gem_object *obj;
	int ret, retry;
521
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
		need_mappable =
			entry->relocation_count ? true : need_fence;

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
545 546 547

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
548 549
	}
	list_splice(&ordered_objects, objects);
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
568
		list_for_each_entry(obj, objects, exec_list) {
569
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
570
			bool need_fence, need_mappable;
571

572
			if (!obj->gtt_space)
573 574 575
				continue;

			need_fence =
576
				has_fenced_gpu_access &&
577 578 579 580 581 582 583 584 585
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
			need_mappable =
				entry->relocation_count ? true : need_fence;

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
586
				ret = pin_and_fence_object(obj, ring);
587
			if (ret)
588 589 590 591
				goto err;
		}

		/* Bind fresh objects */
592
		list_for_each_entry(obj, objects, exec_list) {
593 594
			if (obj->gtt_space)
				continue;
595

596 597 598 599 600 601 602 603 604 605 606 607 608 609
			ret = pin_and_fence_object(obj, ring);
			if (ret) {
				int ret_ignore;

				/* This can potentially raise a harmless
				 * -EINVAL if we failed to bind in the above
				 * call. It cannot raise -EINTR since we know
				 * that the bo is freshly bound and so will
				 * not need to be flushed or waited upon.
				 */
				ret_ignore = i915_gem_object_unbind(obj);
				(void)ret_ignore;
				WARN_ON(obj->gtt_space);
				break;
610 611 612
			}
		}

613 614
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
615 616 617 618 619 620 621 622 623 624 625 626
			struct drm_i915_gem_exec_object2 *entry;

			if (!obj->gtt_space)
				continue;

			entry = obj->exec_entry;
			if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
				i915_gem_object_unpin_fence(obj);
				entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
			}

			i915_gem_object_unpin(obj);
627 628 629 630 631 632 633 634

			/* ... and ensure ppgtt mapping exist if needed. */
			if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
				i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
						       obj, obj->cache_level);

				obj->has_aliasing_ppgtt_mapping = 1;
			}
635 636 637 638 639 640 641 642
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
643
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
644 645 646 647 648
		if (ret)
			return ret;

		retry++;
	} while (1);
649 650

err:
651 652 653 654 655 656 657 658 659 660 661
	list_for_each_entry_continue_reverse(obj, objects, exec_list) {
		struct drm_i915_gem_exec_object2 *entry;

		if (!obj->gtt_space)
			continue;

		entry = obj->exec_entry;
		if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
			i915_gem_object_unpin_fence(obj);
			entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
		}
662

663
		i915_gem_object_unpin(obj);
664 665 666
	}

	return ret;
667 668 669 670 671
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
672
				  struct intel_ring_buffer *ring,
673
				  struct list_head *objects,
674
				  struct eb_objects *eb,
675
				  struct drm_i915_gem_exec_object2 *exec,
676 677 678
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
679
	struct drm_i915_gem_object *obj;
680
	int *reloc_offset;
681 682
	int i, total, ret;

683
	/* We may process another execbuffer during the unlock... */
684
	while (!list_empty(objects)) {
685 686 687 688 689 690 691
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

692 693 694 695
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
696
		total += exec[i].relocation_count;
697

698
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
699
	reloc = drm_malloc_ab(total, sizeof(*reloc));
700 701 702
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
703 704 705 706 707 708 709 710
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

711
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
712 713

		if (copy_from_user(reloc+total, user_relocs,
714
				   exec[i].relocation_count * sizeof(*reloc))) {
715 716 717 718 719
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

720
		reloc_offset[i] = total;
721
		total += exec[i].relocation_count;
722 723 724 725 726 727 728 729
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

730 731 732 733 734
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
735
		if (&obj->base == NULL) {
736
			DRM_DEBUG("Invalid object handle %d at index %d\n",
737 738 739 740 741 742 743
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
744
		obj->exec_entry = &exec[i];
745 746 747
		eb_add_object(eb, obj);
	}

748
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
749 750 751
	if (ret)
		goto err;

752
	list_for_each_entry(obj, objects, exec_list) {
753
		int offset = obj->exec_entry - exec;
754
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
755
							       reloc + reloc_offset[offset]);
756 757 758 759 760 761 762 763 764 765 766 767
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
768
	drm_free_large(reloc_offset);
769 770 771
	return ret;
}

772
static int
773 774 775 776 777 778
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
779
	int i, ret;
780 781 782 783

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

784 785 786
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

787
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
788
		for (i = 0; i < I915_NUM_RINGS; i++)
789
			if (flush_rings & (1 << i)) {
C
Chris Wilson 已提交
790
				ret = i915_gem_flush_ring(&dev_priv->ring[i],
791 792 793 794 795
							  invalidate_domains,
							  flush_domains);
				if (ret)
					return ret;
			}
796
	}
797 798

	return 0;
799 800
}

801 802 803 804 805 806 807 808 809
static bool
intel_enable_semaphores(struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen < 6)
		return 0;

	if (i915_semaphores >= 0)
		return i915_semaphores;

810
	/* Disable semaphores on SNB */
811
	if (INTEL_INFO(dev)->gen == 6)
812
		return 0;
813 814 815 816

	return 1;
}

817 818 819 820 821 822 823 824 825 826 827
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
			       struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

828
	/* XXX gpu semaphores are implicated in various hard hangs on SNB */
829
	if (!intel_enable_semaphores(obj->base.dev))
830
		return i915_gem_object_wait_rendering(obj);
831 832 833 834 835 836 837 838 839 840 841 842 843 844

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

C
Chris Wilson 已提交
845
		ret = i915_add_request(from, NULL, request);
846 847 848 849 850 851 852 853 854
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}

	from->sync_seqno[idx] = seqno;
855 856

	return to->sync_to(to, from, seqno - 1);
857
}
858

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
{
	u32 plane, flip_mask;
	int ret;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */

	for (plane = 0; flips >> plane; plane++) {
		if (((flips >> plane) & 1) == 0)
			continue;

		if (plane)
			flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
		else
			flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;

		intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
		intel_ring_emit(ring, MI_NOOP);
		intel_ring_advance(ring);
	}

	return 0;
}


892
static int
893 894
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
895
{
896
	struct drm_i915_gem_object *obj;
897
	struct change_domains cd;
898
	int ret;
899

900
	memset(&cd, 0, sizeof(cd));
901 902
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
903 904

	if (cd.invalidate_domains | cd.flush_domains) {
905 906 907 908 909 910
		ret = i915_gem_execbuffer_flush(ring->dev,
						cd.invalidate_domains,
						cd.flush_domains,
						cd.flush_rings);
		if (ret)
			return ret;
911 912
	}

913 914 915 916 917 918
	if (cd.flips) {
		ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
		if (ret)
			return ret;
	}

919
	list_for_each_entry(obj, objects, exec_list) {
920 921 922
		ret = i915_gem_execbuffer_sync_rings(obj, ring);
		if (ret)
			return ret;
923 924 925 926 927
	}

	return 0;
}

928 929
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
930
{
931
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
	}

	return 0;
}

965 966
static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
967 968
				   struct intel_ring_buffer *ring,
				   u32 seqno)
969 970 971 972
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
C
Chris Wilson 已提交
973 974 975 976
		  u32 old_read = obj->base.read_domains;
		  u32 old_write = obj->base.write_domain;


977 978 979 980
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

981
		i915_gem_object_move_to_active(obj, ring, seqno);
982 983
		if (obj->base.write_domain) {
			obj->dirty = 1;
984
			obj->pending_gpu_write = true;
985 986 987 988 989
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

C
Chris Wilson 已提交
990
		trace_i915_gem_object_change_domain(obj, old_read, old_write);
991 992 993
	}
}

994 995
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
996
				    struct drm_file *file,
997 998
				    struct intel_ring_buffer *ring)
{
999
	struct drm_i915_gem_request *request;
1000
	u32 invalidate;
1001

1002 1003 1004 1005 1006 1007
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
1008
	invalidate = I915_GEM_DOMAIN_COMMAND;
1009
	if (INTEL_INFO(dev)->gen >= 4)
1010 1011
		invalidate |= I915_GEM_DOMAIN_SAMPLER;
	if (ring->flush(ring, invalidate, 0)) {
C
Chris Wilson 已提交
1012
		i915_gem_next_request_seqno(ring);
1013 1014
		return;
	}
1015

1016 1017
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
C
Chris Wilson 已提交
1018 1019
	if (request == NULL || i915_add_request(ring, file, request)) {
		i915_gem_next_request_seqno(ring);
1020 1021 1022
		kfree(request);
	}
}
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret, i;

	if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
		return 0;

	ret = intel_ring_begin(ring, 4 * 3);
	if (ret)
		return ret;

	for (i = 0; i < 4; i++) {
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
		intel_ring_emit(ring, 0);
	}

	intel_ring_advance(ring);

	return 0;
}

1049 1050 1051 1052
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
1053
		       struct drm_i915_gem_exec_object2 *exec)
1054 1055
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1056
	struct list_head objects;
1057
	struct eb_objects *eb;
1058 1059 1060
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
1061
	u32 exec_start, exec_len;
1062
	u32 seqno;
1063
	u32 mask;
1064
	int ret, mode, i;
1065

1066
	if (!i915_gem_check_execbuffer(args)) {
1067
		DRM_DEBUG("execbuf with invalid offset/length\n");
1068 1069 1070 1071
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
1072 1073 1074 1075 1076 1077
	if (ret)
		return ret;

	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
1078
		ring = &dev_priv->ring[RCS];
1079 1080 1081
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
1082
			DRM_DEBUG("execbuf with invalid ring (BSD)\n");
1083 1084
			return -EINVAL;
		}
1085
		ring = &dev_priv->ring[VCS];
1086 1087 1088
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
1089
			DRM_DEBUG("execbuf with invalid ring (BLT)\n");
1090 1091
			return -EINVAL;
		}
1092
		ring = &dev_priv->ring[BCS];
1093 1094
		break;
	default:
1095
		DRM_DEBUG("execbuf with unknown ring: %d\n",
1096 1097 1098 1099
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

1100
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1101
	mask = I915_EXEC_CONSTANTS_MASK;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;
1114 1115 1116 1117

			/* The HW changed the meaning on this bit on gen6 */
			if (INTEL_INFO(dev)->gen >= 6)
				mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1118 1119 1120
		}
		break;
	default:
1121
		DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
1122 1123 1124
		return -EINVAL;
	}

1125
	if (args->buffer_count < 1) {
1126
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1127 1128 1129 1130
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1131
		if (ring != &dev_priv->ring[RCS]) {
1132
			DRM_DEBUG("clip rectangles are only valid with the render ring\n");
1133 1134 1135
			return -EINVAL;
		}

1136
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1137 1138 1139 1140 1141 1142
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1143 1144 1145 1146
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1162 1163 1164 1165 1166 1167 1168
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1169
	/* Look up object handles */
1170
	INIT_LIST_HEAD(&objects);
1171 1172 1173
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1174 1175
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1176
		if (&obj->base == NULL) {
1177
			DRM_DEBUG("Invalid object handle %d at index %d\n",
1178
				   exec[i].handle, i);
1179 1180 1181 1182 1183
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1184
		if (!list_empty(&obj->exec_list)) {
1185
			DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
1186
				   obj, exec[i].handle, i);
1187 1188 1189
			ret = -EINVAL;
			goto err;
		}
1190 1191

		list_add_tail(&obj->exec_list, &objects);
1192
		obj->exec_handle = exec[i].handle;
1193
		obj->exec_entry = &exec[i];
1194
		eb_add_object(eb, obj);
1195 1196
	}

1197 1198 1199 1200 1201
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1202
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1203
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1204 1205 1206 1207
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1208
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1209 1210
	if (ret) {
		if (ret == -EFAULT) {
1211
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1212 1213
								&objects, eb,
								exec,
1214 1215 1216 1217 1218 1219 1220 1221 1222
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
1223
		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1224 1225 1226 1227 1228
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1229 1230
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1231 1232
		goto err;

C
Chris Wilson 已提交
1233
	seqno = i915_gem_next_request_seqno(ring);
1234
	for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1235 1236 1237 1238 1239
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
1240
			ret = i915_gpu_idle(dev, true);
1241 1242 1243 1244 1245 1246 1247
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1248 1249 1250 1251 1252 1253 1254 1255 1256
	if (ring == &dev_priv->ring[RCS] &&
	    mode != dev_priv->relative_constants_mode) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
				goto err;

		intel_ring_emit(ring, MI_NOOP);
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, INSTPM);
1257
		intel_ring_emit(ring, mask << 16 | mode);
1258 1259 1260 1261 1262
		intel_ring_advance(ring);

		dev_priv->relative_constants_mode = mode;
	}

1263 1264 1265 1266 1267 1268
	if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
		ret = i915_reset_gen7_sol_offsets(dev, ring);
		if (ret)
			goto err;
	}

C
Chris Wilson 已提交
1269 1270
	trace_i915_gem_ring_dispatch(ring, seqno);

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1290

1291
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1292
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1293 1294

err:
1295
	eb_destroy(eb);
1296 1297 1298 1299 1300 1301 1302 1303
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

	if (args->buffer_count < 1) {
1328
		DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1329 1330 1331 1332 1333 1334 1335
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
1336
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
1347
		DRM_DEBUG("copy %d exec entries failed %d\n",
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1388
			DRM_DEBUG("failed to copy %d exec entries "
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

	if (args->buffer_count < 1) {
1408
		DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1409 1410 1411
		return -EINVAL;
	}

1412 1413 1414 1415 1416
	exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
			     GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
	if (exec2_list == NULL)
		exec2_list = drm_malloc_ab(sizeof(*exec2_list),
					   args->buffer_count);
1417
	if (exec2_list == NULL) {
1418
		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1419 1420 1421 1422 1423 1424 1425 1426
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
1427
		DRM_DEBUG("copy %d exec entries failed %d\n",
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
1442
			DRM_DEBUG("failed to copy %d exec entries "
1443 1444 1445 1446 1447 1448 1449 1450
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}