i915_gem_execbuffer.c 36.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

	/* blow away mappings if mapped through GTT */
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
		i915_gem_release_mmap(obj);

	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= obj->ring->id;
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= ring->id;
}

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
struct eb_objects {
	int and;
	struct hlist_head buckets[0];
};

static struct eb_objects *
eb_create(int size)
{
	struct eb_objects *eb;
	int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
	while (count > size)
		count >>= 1;
	eb = kzalloc(count*sizeof(struct hlist_head) +
		     sizeof(struct eb_objects),
		     GFP_KERNEL);
	if (eb == NULL)
		return eb;

	eb->and = count - 1;
	return eb;
}

static void
eb_reset(struct eb_objects *eb)
{
	memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}

static void
eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
{
	hlist_add_head(&obj->exec_node,
		       &eb->buckets[obj->exec_handle & eb->and]);
}

static struct drm_i915_gem_object *
eb_get_object(struct eb_objects *eb, unsigned long handle)
{
	struct hlist_head *head;
	struct hlist_node *node;
	struct drm_i915_gem_object *obj;

	head = &eb->buckets[handle & eb->and];
	hlist_for_each(node, head) {
		obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
		if (obj->exec_handle == handle)
			return obj;
	}

	return NULL;
}

static void
eb_destroy(struct eb_objects *eb)
{
	kfree(eb);
}

268 269
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270
				   struct eb_objects *eb,
271 272 273 274 275 276 277
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
	uint32_t target_offset;
	int ret = -EINVAL;

278 279 280
	/* we've already hold a reference to all valid objects */
	target_obj = &eb_get_object(eb, reloc->target_handle)->base;
	if (unlikely(target_obj == NULL))
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
		return -ENOENT;

	target_offset = to_intel_bo(target_obj)->gtt_offset;

#if WATCH_RELOC
	DRM_INFO("%s: obj %p offset %08x target %d "
		 "read %08x write %08x gtt %08x "
		 "presumed %08x delta %08x\n",
		 __func__,
		 obj,
		 (int) reloc->offset,
		 (int) reloc->target_handle,
		 (int) reloc->read_domains,
		 (int) reloc->write_domain,
		 (int) target_offset,
		 (int) reloc->presumed_offset,
		 reloc->delta);
#endif

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
303
	if (unlikely(target_offset == 0)) {
304 305
		DRM_ERROR("No GTT space found for object %d\n",
			  reloc->target_handle);
306
		return ret;
307 308 309
	}

	/* Validate that the target is in a valid r/w GPU domain */
310
	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
311 312 313 314 315 316 317
		DRM_ERROR("reloc with multiple write domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
318
		return ret;
319
	}
320
	if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
321 322 323 324 325 326 327
		DRM_ERROR("reloc with read/write CPU domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
328
		return ret;
329
	}
330 331
	if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
		     reloc->write_domain != target_obj->pending_write_domain)) {
332 333 334 335 336 337 338
		DRM_ERROR("Write domain conflict: "
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
339
		return ret;
340 341 342 343 344 345 346 347 348
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
349
		return 0;
350 351

	/* Check that the relocation address is valid... */
352
	if (unlikely(reloc->offset > obj->base.size - 4)) {
353 354 355 356 357
		DRM_ERROR("Relocation beyond object bounds: "
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
358
		return ret;
359
	}
360
	if (unlikely(reloc->offset & 3)) {
361 362 363 364
		DRM_ERROR("Relocation not 4-byte aligned: "
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
365
		return ret;
366 367 368
	}

	/* and points to somewhere within the target object. */
369
	if (unlikely(reloc->delta >= target_obj->size)) {
370 371 372 373 374
		DRM_ERROR("Relocation beyond target object bounds: "
			  "obj %p target %d delta %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->delta,
			  (int) target_obj->size);
375
		return ret;
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
	}

	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
393
			return ret;
394 395 396 397 398 399 400 401 402 403 404 405 406 407

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

408
	return 0;
409 410 411 412
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
413
				    struct eb_objects *eb)
414 415
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
416
	struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
417 418 419 420 421 422 423 424 425 426 427
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

428
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
429 430 431 432 433 434 435 436 437 438 439 440 441 442
		if (ret)
			return ret;

		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
443
					 struct eb_objects *eb,
444 445
					 struct drm_i915_gem_relocation_entry *relocs)
{
446
	const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
447 448 449
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
450
		ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
451 452 453 454 455 456 457 458 459
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
460
			     struct eb_objects *eb,
461
			     struct list_head *objects)
462
{
463 464
	struct drm_i915_gem_object *obj;
	int ret;
465

466
	list_for_each_entry(obj, objects, exec_list) {
467
		ret = i915_gem_execbuffer_relocate_object(obj, eb);
468 469 470 471 472 473 474 475
		if (ret)
			return ret;
	}

	return 0;
}

static int
476
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
477
			    struct drm_file *file,
478
			    struct list_head *objects)
479
{
480 481
	struct drm_i915_gem_object *obj;
	int ret, retry;
482
	bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	struct list_head ordered_objects;

	INIT_LIST_HEAD(&ordered_objects);
	while (!list_empty(objects)) {
		struct drm_i915_gem_exec_object2 *entry;
		bool need_fence, need_mappable;

		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		entry = obj->exec_entry;

		need_fence =
			has_fenced_gpu_access &&
			entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
			obj->tiling_mode != I915_TILING_NONE;
		need_mappable =
			entry->relocation_count ? true : need_fence;

		if (need_mappable)
			list_move(&obj->exec_list, &ordered_objects);
		else
			list_move_tail(&obj->exec_list, &ordered_objects);
506 507 508

		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
509 510
	}
	list_splice(&ordered_objects, objects);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
529
		list_for_each_entry(obj, objects, exec_list) {
530
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
531
			bool need_fence, need_mappable;
532
			if (!obj->gtt_space)
533 534 535
				continue;

			need_fence =
536
				has_fenced_gpu_access &&
537 538 539 540 541 542 543 544 545 546 547 548
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
			need_mappable =
				entry->relocation_count ? true : need_fence;

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
549
			if (ret)
550
				goto err;
551 552

			entry++;
553 554 555
		}

		/* Bind fresh objects */
556
		list_for_each_entry(obj, objects, exec_list) {
557
			struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
558 559 560
			bool need_fence;

			need_fence =
561
				has_fenced_gpu_access &&
562 563 564 565 566 567 568 569 570 571 572 573 574 575
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

			if (!obj->gtt_space) {
				bool need_mappable =
					entry->relocation_count ? true : need_fence;

				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
				if (ret)
					break;
			}

576 577 578 579 580 581 582 583 584 585 586 587 588
			if (has_fenced_gpu_access) {
				if (need_fence) {
					ret = i915_gem_object_get_fence(obj, ring, 1);
					if (ret)
						break;
				} else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
					   obj->tiling_mode == I915_TILING_NONE) {
					/* XXX pipelined! */
					ret = i915_gem_object_put_fence(obj);
					if (ret)
						break;
				}
				obj->pending_fenced_gpu_access = need_fence;
589 590 591 592 593
			}

			entry->offset = obj->gtt_offset;
		}

594 595
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
596 597 598 599 600 601 602 603 604 605
			if (obj->gtt_space)
				i915_gem_object_unpin(obj);
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
606
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
607 608 609 610 611
		if (ret)
			return ret;

		retry++;
	} while (1);
612 613

err:
614 615 616
	obj = list_entry(obj->exec_list.prev,
			 struct drm_i915_gem_object,
			 exec_list);
617 618 619 620 621 622 623 624 625 626
	while (objects != &obj->exec_list) {
		if (obj->gtt_space)
			i915_gem_object_unpin(obj);

		obj = list_entry(obj->exec_list.prev,
				 struct drm_i915_gem_object,
				 exec_list);
	}

	return ret;
627 628 629 630 631
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
632
				  struct intel_ring_buffer *ring,
633
				  struct list_head *objects,
634
				  struct eb_objects *eb,
635
				  struct drm_i915_gem_exec_object2 *exec,
636 637 638
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
639
	struct drm_i915_gem_object *obj;
640
	int *reloc_offset;
641 642
	int i, total, ret;

643
	/* We may process another execbuffer during the unlock... */
644
	while (!list_empty(objects)) {
645 646 647 648 649 650 651
		obj = list_first_entry(objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
	}

652 653 654 655
	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
656
		total += exec[i].relocation_count;
657

658
	reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
659
	reloc = drm_malloc_ab(total, sizeof(*reloc));
660 661 662
	if (reloc == NULL || reloc_offset == NULL) {
		drm_free_large(reloc);
		drm_free_large(reloc_offset);
663 664 665 666 667 668 669 670
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

671
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
672 673

		if (copy_from_user(reloc+total, user_relocs,
674
				   exec[i].relocation_count * sizeof(*reloc))) {
675 676 677 678 679
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

680
		reloc_offset[i] = total;
681
		total += exec[i].relocation_count;
682 683 684 685 686 687 688 689
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
	/* reacquire the objects */
	eb_reset(eb);
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj;

		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
		if (obj == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec[i].handle, i);
			ret = -ENOENT;
			goto err;
		}

		list_add_tail(&obj->exec_list, objects);
		obj->exec_handle = exec[i].handle;
706
		obj->exec_entry = &exec[i];
707 708 709
		eb_add_object(eb, obj);
	}

710
	ret = i915_gem_execbuffer_reserve(ring, file, objects);
711 712 713
	if (ret)
		goto err;

714
	list_for_each_entry(obj, objects, exec_list) {
715
		int offset = obj->exec_entry - exec;
716
		ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
717
							       reloc + reloc_offset[offset]);
718 719 720 721 722 723 724 725 726 727 728 729
		if (ret)
			goto err;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
730
	drm_free_large(reloc_offset);
731 732 733
	return ret;
}

734
static int
735 736 737 738 739 740
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
741
	int i, ret;
742 743 744 745

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

746 747 748
	if (flush_domains & I915_GEM_DOMAIN_GTT)
		wmb();

749
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
750
		for (i = 0; i < I915_NUM_RINGS; i++)
751 752 753 754 755 756 757 758
			if (flush_rings & (1 << i)) {
				ret = i915_gem_flush_ring(dev,
							  &dev_priv->ring[i],
							  invalidate_domains,
							  flush_domains);
				if (ret)
					return ret;
			}
759
	}
760 761

	return 0;
762 763
}

764 765 766 767 768 769 770 771 772 773 774
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
			       struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

775 776
	/* XXX gpu semaphores are currently causing hard hangs on SNB mobile */
	if (INTEL_INFO(obj->base.dev)->gen < 6 || IS_MOBILE(obj->base.dev))
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		return i915_gem_object_wait_rendering(obj, true);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(obj->base.dev, NULL, request, from);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}

	from->sync_seqno[idx] = seqno;
	return intel_ring_sync(to, from, seqno - 1);
}
804 805

static int
806 807
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
808
{
809
	struct drm_i915_gem_object *obj;
810
	struct change_domains cd;
811
	int ret;
812 813 814 815

	cd.invalidate_domains = 0;
	cd.flush_domains = 0;
	cd.flush_rings = 0;
816 817
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
818 819 820 821 822 823 824 825

	if (cd.invalidate_domains | cd.flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 cd.invalidate_domains,
			 cd.flush_domains);
#endif
826 827 828 829 830 831
		ret = i915_gem_execbuffer_flush(ring->dev,
						cd.invalidate_domains,
						cd.flush_domains,
						cd.flush_rings);
		if (ret)
			return ret;
832 833
	}

834
	list_for_each_entry(obj, objects, exec_list) {
835 836 837
		ret = i915_gem_execbuffer_sync_rings(obj, ring);
		if (ret)
			return ret;
838 839 840 841 842
	}

	return 0;
}

843 844
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
845
{
846
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
	}

	return 0;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring,
				   struct list_head *objects)
{
	struct drm_i915_gem_object *obj;
	int flips;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	list_for_each_entry(obj, objects, exec_list) {
		if (obj->base.write_domain)
			flips |= atomic_read(&obj->pending_flip);
	}
	if (flips) {
		int plane, flip_mask, ret;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			ret = intel_ring_begin(ring, 2);
			if (ret)
				return ret;

			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
		}
	}

	return 0;
}

static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
923 924
				   struct intel_ring_buffer *ring,
				   u32 seqno)
925 926 927 928 929 930 931 932
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

933
		i915_gem_object_move_to_active(obj, ring, seqno);
934 935
		if (obj->base.write_domain) {
			obj->dirty = 1;
936
			obj->pending_gpu_write = true;
937 938 939 940 941 942 943 944 945 946 947
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

		trace_i915_gem_object_change_domain(obj,
						    obj->base.read_domains,
						    obj->base.write_domain);
	}
}

948 949
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
950
				    struct drm_file *file,
951 952
				    struct intel_ring_buffer *ring)
{
953
	struct drm_i915_gem_request *request;
954
	u32 invalidate;
955

956 957 958 959 960 961
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
962
	invalidate = I915_GEM_DOMAIN_COMMAND;
963
	if (INTEL_INFO(dev)->gen >= 4)
964 965 966 967 968
		invalidate |= I915_GEM_DOMAIN_SAMPLER;
	if (ring->flush(ring, invalidate, 0)) {
		i915_gem_next_request_seqno(dev, ring);
		return;
	}
969

970 971 972 973 974 975 976
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL || i915_add_request(dev, file, request, ring)) {
		i915_gem_next_request_seqno(dev, ring);
		kfree(request);
	}
}
977 978 979 980 981

static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
982
		       struct drm_i915_gem_exec_object2 *exec)
983 984
{
	drm_i915_private_t *dev_priv = dev->dev_private;
985
	struct list_head objects;
986
	struct eb_objects *eb;
987 988 989
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
990
	u32 exec_start, exec_len;
991
	u32 seqno;
992
	int ret, mode, i;
993

994 995 996 997 998 999
	if (!i915_gem_check_execbuffer(args)) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	if (ret)
		return ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
1010
		ring = &dev_priv->ring[RCS];
1011 1012 1013 1014 1015 1016
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
			return -EINVAL;
		}
1017
		ring = &dev_priv->ring[VCS];
1018 1019 1020 1021 1022 1023
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
1024
		ring = &dev_priv->ring[BCS];
1025 1026 1027 1028 1029 1030 1031
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	mode = args->flags & I915_EXEC_CONSTANTS_MASK;
	switch (mode) {
	case I915_EXEC_CONSTANTS_REL_GENERAL:
	case I915_EXEC_CONSTANTS_ABSOLUTE:
	case I915_EXEC_CONSTANTS_REL_SURFACE:
		if (ring == &dev_priv->ring[RCS] &&
		    mode != dev_priv->relative_constants_mode) {
			if (INTEL_INFO(dev)->gen < 4)
				return -EINVAL;

			if (INTEL_INFO(dev)->gen > 5 &&
			    mode == I915_EXEC_CONSTANTS_REL_SURFACE)
				return -EINVAL;

			ret = intel_ring_begin(ring, 4);
			if (ret)
				return ret;

			intel_ring_emit(ring, MI_NOOP);
			intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
			intel_ring_emit(ring, INSTPM);
			intel_ring_emit(ring,
					I915_EXEC_CONSTANTS_MASK << 16 | mode);
			intel_ring_advance(ring);

			dev_priv->relative_constants_mode = mode;
		}
		break;
	default:
		DRM_ERROR("execbuf with unknown constants: %d\n", mode);
		return -EINVAL;
	}

1065 1066 1067 1068 1069 1070
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
1071
		if (ring != &dev_priv->ring[RCS]) {
1072 1073 1074 1075
			DRM_ERROR("clip rectangles are only valid with the render ring\n");
			return -EINVAL;
		}

1076
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1077 1078 1079 1080 1081 1082
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

1083 1084 1085 1086
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

1102 1103 1104 1105 1106 1107 1108
	eb = eb_create(args->buffer_count);
	if (eb == NULL) {
		mutex_unlock(&dev->struct_mutex);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

1109
	/* Look up object handles */
1110
	INIT_LIST_HEAD(&objects);
1111 1112 1113
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

1114 1115
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
1116 1117
		if (obj == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
1118
				   exec[i].handle, i);
1119 1120 1121 1122 1123
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

1124 1125 1126
		if (!list_empty(&obj->exec_list)) {
			DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
				   obj, exec[i].handle, i);
1127 1128 1129
			ret = -EINVAL;
			goto err;
		}
1130 1131

		list_add_tail(&obj->exec_list, &objects);
1132
		obj->exec_handle = exec[i].handle;
1133
		obj->exec_entry = &exec[i];
1134
		eb_add_object(eb, obj);
1135 1136
	}

1137 1138 1139 1140 1141
	/* take note of the batch buffer before we might reorder the lists */
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);

1142
	/* Move the objects en-masse into the GTT, evicting if necessary. */
1143
	ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1144 1145 1146 1147
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
1148
	ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1149 1150
	if (ret) {
		if (ret == -EFAULT) {
1151
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1152 1153
								&objects, eb,
								exec,
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	if (batch_obj->base.pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1169 1170
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1171 1172
		goto err;

1173
	ret = i915_gem_execbuffer_wait_for_flips(ring, &objects);
1174 1175 1176
	if (ret)
		goto err;

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	seqno = i915_gem_next_request_seqno(dev, ring);
	for (i = 0; i < I915_NUM_RINGS-1; i++) {
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
			ret = i915_gpu_idle(dev);
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1211

1212
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1213
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1214 1215

err:
1216
	eb_destroy(eb);
1217 1218 1219 1220 1221 1222 1223 1224
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}