i915_gem_execbuffer.c 32.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/*
 * Copyright © 2008,2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Chris Wilson <chris@chris-wilson.co.uk>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"

struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
};

/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
static void
i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
{
	uint32_t invalidate_domains = 0, flush_domains = 0;

	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
	if (obj->base.pending_write_domain == 0)
		obj->base.pending_read_domains |= obj->base.read_domains;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
	if (obj->base.write_domain &&
	    (((obj->base.write_domain != obj->base.pending_read_domains ||
	       obj->ring != ring)) ||
	     (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
		flush_domains |= obj->base.write_domain;
		invalidate_domains |=
			obj->base.pending_read_domains & ~obj->base.write_domain;
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
	invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
		i915_gem_clflush_object(obj);

	/* blow away mappings if mapped through GTT */
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
		i915_gem_release_mmap(obj);

	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->base.pending_write_domain == 0)
		obj->base.pending_write_domain = obj->base.write_domain;

	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
	if (flush_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= obj->ring->id;
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
		cd->flush_rings |= ring->id;
}

static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
				   struct drm_file *file_priv,
				   struct drm_i915_gem_exec_object2 *entry,
				   struct drm_i915_gem_relocation_entry *reloc)
{
	struct drm_device *dev = obj->base.dev;
	struct drm_gem_object *target_obj;
	uint32_t target_offset;
	int ret = -EINVAL;

	target_obj = drm_gem_object_lookup(dev, file_priv,
					   reloc->target_handle);
	if (target_obj == NULL)
		return -ENOENT;

	target_offset = to_intel_bo(target_obj)->gtt_offset;

#if WATCH_RELOC
	DRM_INFO("%s: obj %p offset %08x target %d "
		 "read %08x write %08x gtt %08x "
		 "presumed %08x delta %08x\n",
		 __func__,
		 obj,
		 (int) reloc->offset,
		 (int) reloc->target_handle,
		 (int) reloc->read_domains,
		 (int) reloc->write_domain,
		 (int) target_offset,
		 (int) reloc->presumed_offset,
		 reloc->delta);
#endif

	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
	if (target_offset == 0) {
		DRM_ERROR("No GTT space found for object %d\n",
			  reloc->target_handle);
		goto err;
	}

	/* Validate that the target is in a valid r/w GPU domain */
	if (reloc->write_domain & (reloc->write_domain - 1)) {
		DRM_ERROR("reloc with multiple write domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
		goto err;
	}
	if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
	    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
		DRM_ERROR("reloc with read/write CPU domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
		goto err;
	}
	if (reloc->write_domain && target_obj->pending_write_domain &&
	    reloc->write_domain != target_obj->pending_write_domain) {
		DRM_ERROR("Write domain conflict: "
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
		goto err;
	}

	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;

	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
		goto out;

	/* Check that the relocation address is valid... */
	if (reloc->offset > obj->base.size - 4) {
		DRM_ERROR("Relocation beyond object bounds: "
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
		goto err;
	}
	if (reloc->offset & 3) {
		DRM_ERROR("Relocation not 4-byte aligned: "
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
		goto err;
	}

	/* and points to somewhere within the target object. */
	if (reloc->delta >= target_obj->size) {
		DRM_ERROR("Relocation beyond target object bounds: "
			  "obj %p target %d delta %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->delta,
			  (int) target_obj->size);
		goto err;
	}

	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;

		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto err;

		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}

	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;

out:
	ret = 0;
err:
	drm_gem_object_unreference(target_obj);
	return ret;
}

static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
				    struct drm_file *file_priv,
				    struct drm_i915_gem_exec_object2 *entry)
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

		ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
		if (ret)
			return ret;

		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
					 struct drm_file *file_priv,
					 struct drm_i915_gem_exec_object2 *entry,
					 struct drm_i915_gem_relocation_entry *relocs)
{
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
		ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
		if (ret)
			return ret;
	}

	return 0;
}

static int
i915_gem_execbuffer_relocate(struct drm_device *dev,
			     struct drm_file *file,
409 410
			     struct list_head *objects,
			     struct drm_i915_gem_exec_object2 *exec)
411
{
412 413
	struct drm_i915_gem_object *obj;
	int ret;
414

415
	list_for_each_entry(obj, objects, exec_list) {
416 417
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
418
		ret = i915_gem_execbuffer_relocate_object(obj, file, exec++);
419 420 421 422 423 424 425 426
		if (ret)
			return ret;
	}

	return 0;
}

static int
427
i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
428
			    struct drm_file *file,
429 430
			    struct list_head *objects,
			    struct drm_i915_gem_exec_object2 *exec)
431
{
432 433 434
	struct drm_i915_gem_object *obj;
	struct drm_i915_gem_exec_object2 *entry;
	int ret, retry;
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452

	/* Attempt to pin all of the buffers into the GTT.
	 * This is done in 3 phases:
	 *
	 * 1a. Unbind all objects that do not match the GTT constraints for
	 *     the execbuffer (fenceable, mappable, alignment etc).
	 * 1b. Increment pin count for already bound objects.
	 * 2.  Bind new objects.
	 * 3.  Decrement pin count.
	 *
	 * This avoid unnecessary unbinding of later objects in order to makr
	 * room for the earlier objects *unless* we need to defragment.
	 */
	retry = 0;
	do {
		ret = 0;

		/* Unbind any ill-fitting objects or pin. */
453 454
		entry = exec;
		list_for_each_entry(obj, objects, exec_list) {
455 456
			bool need_fence, need_mappable;

457 458
			if (!obj->gtt_space) {
				entry++;
459
				continue;
460
			}
461 462 463 464 465 466 467 468 469 470 471 472 473 474

			need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;
			need_mappable =
				entry->relocation_count ? true : need_fence;

			if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
			    (need_mappable && !obj->map_and_fenceable))
				ret = i915_gem_object_unbind(obj);
			else
				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
475
			if (ret)
476
				goto err;
477 478

			entry++;
479 480 481
		}

		/* Bind fresh objects */
482 483
		entry = exec;
		list_for_each_entry(obj, objects, exec_list) {
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
			bool need_fence;

			need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

			if (!obj->gtt_space) {
				bool need_mappable =
					entry->relocation_count ? true : need_fence;

				ret = i915_gem_object_pin(obj,
							  entry->alignment,
							  need_mappable);
				if (ret)
					break;
			}

			if (need_fence) {
502 503 504 505 506 507 508
				ret = i915_gem_object_get_fence(obj, ring, 1);
				if (ret)
					break;
			} else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				   obj->tiling_mode == I915_TILING_NONE) {
				/* XXX pipelined! */
				ret = i915_gem_object_put_fence(obj);
509 510 511
				if (ret)
					break;
			}
512
			obj->pending_fenced_gpu_access = need_fence;
513 514

			entry->offset = obj->gtt_offset;
515
			entry++;
516 517
		}

518 519
		/* Decrement pin count for bound objects */
		list_for_each_entry(obj, objects, exec_list) {
520 521 522 523 524 525 526 527 528 529
			if (obj->gtt_space)
				i915_gem_object_unpin(obj);
		}

		if (ret != -ENOSPC || retry > 1)
			return ret;

		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
530
		ret = i915_gem_evict_everything(ring->dev, retry == 0);
531 532 533 534 535
		if (ret)
			return ret;

		retry++;
	} while (1);
536 537

err:
538 539 540
	obj = list_entry(obj->exec_list.prev,
			 struct drm_i915_gem_object,
			 exec_list);
541 542 543 544 545 546 547 548 549 550
	while (objects != &obj->exec_list) {
		if (obj->gtt_space)
			i915_gem_object_unpin(obj);

		obj = list_entry(obj->exec_list.prev,
				 struct drm_i915_gem_object,
				 exec_list);
	}

	return ret;
551 552 553 554 555
}

static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
556
				  struct intel_ring_buffer *ring,
557 558
				  struct list_head *objects,
				  struct drm_i915_gem_exec_object2 *exec,
559 560 561
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
562
	struct drm_i915_gem_object *obj;
563 564 565 566 567 568
	int i, total, ret;

	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
569
		total += exec[i].relocation_count;
570 571 572 573 574 575 576 577 578 579 580

	reloc = drm_malloc_ab(total, sizeof(*reloc));
	if (reloc == NULL) {
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

581
		user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
582 583

		if (copy_from_user(reloc+total, user_relocs,
584
				   exec[i].relocation_count * sizeof(*reloc))) {
585 586 587 588 589
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

590
		total += exec[i].relocation_count;
591 592 593 594 595 596 597 598
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

599
	ret = i915_gem_execbuffer_reserve(ring, file, objects, exec);
600 601 602 603
	if (ret)
		goto err;

	total = 0;
604
	list_for_each_entry(obj, objects, exec_list) {
605 606 607
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
608
							       exec,
609 610 611 612
							       reloc + total);
		if (ret)
			goto err;

613 614
		total += exec->relocation_count;
		exec++;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
	return ret;
}

static void
i915_gem_execbuffer_flush(struct drm_device *dev,
			  uint32_t invalidate_domains,
			  uint32_t flush_domains,
			  uint32_t flush_rings)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
635
	int i;
636 637 638 639 640

	if (flush_domains & I915_GEM_DOMAIN_CPU)
		intel_gtt_chipset_flush();

	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
641 642 643 644 645
		for (i = 0; i < I915_NUM_RINGS; i++)
			if (flush_rings & (1 << i))
				i915_gem_flush_ring(dev, &dev_priv->ring[i],
						    invalidate_domains,
						    flush_domains);
646 647 648
	}
}

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
static int
i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
			       struct intel_ring_buffer *to)
{
	struct intel_ring_buffer *from = obj->ring;
	u32 seqno;
	int ret, idx;

	if (from == NULL || to == from)
		return 0;

	if (INTEL_INFO(obj->base.dev)->gen < 6)
		return i915_gem_object_wait_rendering(obj, true);

	idx = intel_ring_sync_index(from, to);

	seqno = obj->last_rendering_seqno;
	if (seqno <= from->sync_seqno[idx])
		return 0;

	if (seqno == from->outstanding_lazy_request) {
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return -ENOMEM;

		ret = i915_add_request(obj->base.dev, NULL, request, from);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
	}

	from->sync_seqno[idx] = seqno;
	return intel_ring_sync(to, from, seqno - 1);
}
688 689

static int
690 691
i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
				struct list_head *objects)
692
{
693
	struct drm_i915_gem_object *obj;
694
	struct change_domains cd;
695
	int ret;
696 697 698 699

	cd.invalidate_domains = 0;
	cd.flush_domains = 0;
	cd.flush_rings = 0;
700 701
	list_for_each_entry(obj, objects, exec_list)
		i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
702 703 704 705 706 707 708 709

	if (cd.invalidate_domains | cd.flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 cd.invalidate_domains,
			 cd.flush_domains);
#endif
710
		i915_gem_execbuffer_flush(ring->dev,
711 712 713 714 715
					  cd.invalidate_domains,
					  cd.flush_domains,
					  cd.flush_rings);
	}

716
	list_for_each_entry(obj, objects, exec_list) {
717 718 719
		ret = i915_gem_execbuffer_sync_rings(obj, ring);
		if (ret)
			return ret;
720 721 722 723 724
	}

	return 0;
}

725 726
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
727
{
728
	return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
}

static int
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
{
	int i;

	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
		int length; /* limited by fault_in_pages_readable() */

		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;

		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;

		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
	}

	return 0;
}

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static int
i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring,
				   struct list_head *objects)
{
	struct drm_i915_gem_object *obj;
	int flips;

	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	list_for_each_entry(obj, objects, exec_list) {
		if (obj->base.write_domain)
			flips |= atomic_read(&obj->pending_flip);
	}
	if (flips) {
		int plane, flip_mask, ret;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

			ret = intel_ring_begin(ring, 2);
			if (ret)
				return ret;

			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
		}
	}

	return 0;
}

static void
i915_gem_execbuffer_move_to_active(struct list_head *objects,
805 806
				   struct intel_ring_buffer *ring,
				   u32 seqno)
807 808 809 810 811 812 813 814
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, objects, exec_list) {
		obj->base.read_domains = obj->base.pending_read_domains;
		obj->base.write_domain = obj->base.pending_write_domain;
		obj->fenced_gpu_access = obj->pending_fenced_gpu_access;

815
		i915_gem_object_move_to_active(obj, ring, seqno);
816 817
		if (obj->base.write_domain) {
			obj->dirty = 1;
818
			obj->pending_gpu_write = true;
819 820 821 822 823 824 825 826 827 828 829
			list_move_tail(&obj->gpu_write_list,
				       &ring->gpu_write_list);
			intel_mark_busy(ring->dev, obj);
		}

		trace_i915_gem_object_change_domain(obj,
						    obj->base.read_domains,
						    obj->base.write_domain);
	}
}

830 831
static void
i915_gem_execbuffer_retire_commands(struct drm_device *dev,
832
				    struct drm_file *file,
833 834
				    struct intel_ring_buffer *ring)
{
835 836
	struct drm_i915_gem_request *request;
	u32 flush_domains;
837

838 839 840 841 842 843 844
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires.
	 *
	 * The sampler always gets flushed on i965 (sigh).
	 */
	flush_domains = 0;
845 846 847 848 849
	if (INTEL_INFO(dev)->gen >= 4)
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;

	ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);

850 851 852 853 854 855 856
	/* Add a breadcrumb for the completion of the batch buffer */
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL || i915_add_request(dev, file, request, ring)) {
		i915_gem_next_request_seqno(dev, ring);
		kfree(request);
	}
}
857 858 859 860 861

static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file,
		       struct drm_i915_gem_execbuffer2 *args,
862
		       struct drm_i915_gem_exec_object2 *exec)
863 864
{
	drm_i915_private_t *dev_priv = dev->dev_private;
865
	struct list_head objects;
866 867 868
	struct drm_i915_gem_object *batch_obj;
	struct drm_clip_rect *cliprects = NULL;
	struct intel_ring_buffer *ring;
869
	u32 exec_start, exec_len;
870
	u32 seqno;
871
	int ret, i;
872

873 874 875 876 877 878
	if (!i915_gem_check_execbuffer(args)) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		return -EINVAL;
	}

	ret = validate_exec_list(exec, args->buffer_count);
879 880 881 882 883 884 885 886 887 888
	if (ret)
		return ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
889
		ring = &dev_priv->ring[RCS];
890 891 892 893 894 895
		break;
	case I915_EXEC_BSD:
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
			return -EINVAL;
		}
896
		ring = &dev_priv->ring[VCS];
897 898 899 900 901 902
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
903
		ring = &dev_priv->ring[BCS];
904 905 906 907 908 909 910 911 912 913 914 915 916
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
	}

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	if (args->num_cliprects != 0) {
917
		if (ring != &dev_priv->ring[RCS]) {
918 919 920 921
			DRM_ERROR("clip rectangles are only valid with the render ring\n");
			return -EINVAL;
		}

922
		cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
923 924 925 926 927 928
				    GFP_KERNEL);
		if (cliprects == NULL) {
			ret = -ENOMEM;
			goto pre_mutex_err;
		}

929 930 931 932
		if (copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)(uintptr_t)
				     args->cliprects_ptr,
				     sizeof(*cliprects)*args->num_cliprects)) {
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
			ret = -EFAULT;
			goto pre_mutex_err;
		}
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
		ret = -EBUSY;
		goto pre_mutex_err;
	}

	/* Look up object handles */
949
	INIT_LIST_HEAD(&objects);
950 951 952
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_i915_gem_object *obj;

953 954
		obj = to_intel_bo(drm_gem_object_lookup(dev, file,
							exec[i].handle));
955 956
		if (obj == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
957
				   exec[i].handle, i);
958 959 960 961 962
			/* prevent error path from reading uninitialized data */
			ret = -ENOENT;
			goto err;
		}

963 964 965
		if (!list_empty(&obj->exec_list)) {
			DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
				   obj, exec[i].handle, i);
966 967 968
			ret = -EINVAL;
			goto err;
		}
969 970

		list_add_tail(&obj->exec_list, &objects);
971 972 973
	}

	/* Move the objects en-masse into the GTT, evicting if necessary. */
974
	ret = i915_gem_execbuffer_reserve(ring, file, &objects, exec);
975 976 977 978
	if (ret)
		goto err;

	/* The objects are in their final locations, apply the relocations. */
979
	ret = i915_gem_execbuffer_relocate(dev, file, &objects, exec);
980 981
	if (ret) {
		if (ret == -EFAULT) {
982
			ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
983
								&objects, exec,
984 985 986 987 988 989 990 991
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
		if (ret)
			goto err;
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
992 993 994
	batch_obj = list_entry(objects.prev,
			       struct drm_i915_gem_object,
			       exec_list);
995 996 997 998 999 1000 1001
	if (batch_obj->base.pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;

1002 1003
	ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
	if (ret)
1004 1005
		goto err;

1006
	ret = i915_gem_execbuffer_wait_for_flips(ring, &objects);
1007 1008 1009
	if (ret)
		goto err;

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	seqno = i915_gem_next_request_seqno(dev, ring);
	for (i = 0; i < I915_NUM_RINGS-1; i++) {
		if (seqno < ring->sync_seqno[i]) {
			/* The GPU can not handle its semaphore value wrapping,
			 * so every billion or so execbuffers, we need to stall
			 * the GPU in order to reset the counters.
			 */
			ret = i915_gpu_idle(dev);
			if (ret)
				goto err;

			BUG_ON(ring->sync_seqno[i]);
		}
	}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	exec_start = batch_obj->gtt_offset + args->batch_start_offset;
	exec_len = args->batch_len;
	if (cliprects) {
		for (i = 0; i < args->num_cliprects; i++) {
			ret = i915_emit_box(dev, &cliprects[i],
					    args->DR1, args->DR4);
			if (ret)
				goto err;

			ret = ring->dispatch_execbuffer(ring,
							exec_start, exec_len);
			if (ret)
				goto err;
		}
	} else {
		ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
		if (ret)
			goto err;
	}
1044

1045
	i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1046
	i915_gem_execbuffer_retire_commands(dev, file, ring);
1047 1048

err:
1049 1050 1051 1052 1053 1054 1055 1056
	while (!list_empty(&objects)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&objects,
				       struct drm_i915_gem_object,
				       exec_list);
		list_del_init(&obj->exec_list);
		drm_gem_object_unreference(&obj->base);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	}

	mutex_unlock(&dev->struct_mutex);

pre_mutex_err:
	kfree(cliprects);
	return ret;
}

/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (INTEL_INFO(dev)->gen < 4)
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
	exec2.flags = I915_EXEC_RENDER;

	ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}