remoteproc_core.c 42.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Remote Processor Framework
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <ohad@wizery.com>
 * Brian Swetland <swetland@google.com>
 * Mark Grosen <mgrosen@ti.com>
 * Fernando Guzman Lugo <fernando.lugo@ti.com>
 * Suman Anna <s-anna@ti.com>
 * Robert Tivy <rtivy@ti.com>
 * Armando Uribe De Leon <x0095078@ti.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt)    "%s: " fmt, __func__

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/string.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/iommu.h>
38
#include <linux/idr.h>
39
#include <linux/elf.h>
40
#include <linux/crc32.h>
41 42
#include <linux/virtio_ids.h>
#include <linux/virtio_ring.h>
43
#include <asm/byteorder.h>
44 45 46

#include "remoteproc_internal.h"

47 48 49
static DEFINE_MUTEX(rproc_list_mutex);
static LIST_HEAD(rproc_list);

50
typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
51
				struct resource_table *table, int len);
52 53
typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
				 void *, int offset, int avail);
54

55 56 57
/* Unique indices for remoteproc devices */
static DEFINE_IDA(rproc_dev_index);

58 59
static const char * const rproc_crash_names[] = {
	[RPROC_MMUFAULT]	= "mmufault",
60 61
	[RPROC_WATCHDOG]	= "watchdog",
	[RPROC_FATAL_ERROR]	= "fatal error",
62 63 64 65 66 67 68
};

/* translate rproc_crash_type to string */
static const char *rproc_crash_to_string(enum rproc_crash_type type)
{
	if (type < ARRAY_SIZE(rproc_crash_names))
		return rproc_crash_names[type];
69
	return "unknown";
70 71
}

72 73 74 75 76 77 78 79 80
/*
 * This is the IOMMU fault handler we register with the IOMMU API
 * (when relevant; not all remote processors access memory through
 * an IOMMU).
 *
 * IOMMU core will invoke this handler whenever the remote processor
 * will try to access an unmapped device address.
 */
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
81
			     unsigned long iova, int flags, void *token)
82
{
83 84
	struct rproc *rproc = token;

85 86
	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);

87 88
	rproc_report_crash(rproc, RPROC_MMUFAULT);

89 90
	/*
	 * Let the iommu core know we're not really handling this fault;
91
	 * we just used it as a recovery trigger.
92 93 94 95 96 97 98
	 */
	return -ENOSYS;
}

static int rproc_enable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain;
99
	struct device *dev = rproc->dev.parent;
100 101
	int ret;

102 103
	if (!rproc->has_iommu) {
		dev_dbg(dev, "iommu not present\n");
104
		return 0;
105 106 107 108 109 110 111 112
	}

	domain = iommu_domain_alloc(dev->bus);
	if (!domain) {
		dev_err(dev, "can't alloc iommu domain\n");
		return -ENOMEM;
	}

113
	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

	ret = iommu_attach_device(domain, dev);
	if (ret) {
		dev_err(dev, "can't attach iommu device: %d\n", ret);
		goto free_domain;
	}

	rproc->domain = domain;

	return 0;

free_domain:
	iommu_domain_free(domain);
	return ret;
}

static void rproc_disable_iommu(struct rproc *rproc)
{
	struct iommu_domain *domain = rproc->domain;
133
	struct device *dev = rproc->dev.parent;
134 135 136 137 138 139 140 141

	if (!domain)
		return;

	iommu_detach_device(domain, dev);
	iommu_domain_free(domain);
}

142 143 144 145 146 147
/**
 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
 * @rproc: handle of a remote processor
 * @da: remoteproc device address to translate
 * @len: length of the memory region @da is pointing to
 *
148 149
 * Some remote processors will ask us to allocate them physically contiguous
 * memory regions (which we call "carveouts"), and map them to specific
150 151 152
 * device addresses (which are hardcoded in the firmware). They may also have
 * dedicated memory regions internal to the processors, and use them either
 * exclusively or alongside carveouts.
153 154 155 156 157
 *
 * They may then ask us to copy objects into specific device addresses (e.g.
 * code/data sections) or expose us certain symbols in other device address
 * (e.g. their trace buffer).
 *
158 159 160 161 162 163 164
 * This function is a helper function with which we can go over the allocated
 * carveouts and translate specific device addresses to kernel virtual addresses
 * so we can access the referenced memory. This function also allows to perform
 * translations on the internal remoteproc memory regions through a platform
 * implementation specific da_to_va ops, if present.
 *
 * The function returns a valid kernel address on success or NULL on failure.
165 166 167
 *
 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
 * but only on kernel direct mapped RAM memory. Instead, we're just using
168 169
 * here the output of the DMA API for the carveouts, which should be more
 * correct.
170
 */
171
void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
172 173 174 175
{
	struct rproc_mem_entry *carveout;
	void *ptr = NULL;

176 177 178 179 180 181
	if (rproc->ops->da_to_va) {
		ptr = rproc->ops->da_to_va(rproc, da, len);
		if (ptr)
			goto out;
	}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	list_for_each_entry(carveout, &rproc->carveouts, node) {
		int offset = da - carveout->da;

		/* try next carveout if da is too small */
		if (offset < 0)
			continue;

		/* try next carveout if da is too large */
		if (offset + len > carveout->len)
			continue;

		ptr = carveout->va + offset;

		break;
	}

198
out:
199 200
	return ptr;
}
201
EXPORT_SYMBOL(rproc_da_to_va);
202

203
int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
204
{
205
	struct rproc *rproc = rvdev->rproc;
206
	struct device *dev = &rproc->dev;
207
	struct rproc_vring *rvring = &rvdev->vring[i];
208
	struct fw_rsc_vdev *rsc;
209 210 211
	dma_addr_t dma;
	void *va;
	int ret, size, notifyid;
212

213
	/* actual size of vring (in bytes) */
214
	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
215 216 217 218 219

	/*
	 * Allocate non-cacheable memory for the vring. In the future
	 * this call will also configure the IOMMU for us
	 */
220
	va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
221
	if (!va) {
222
		dev_err(dev->parent, "dma_alloc_coherent failed\n");
223 224 225
		return -EINVAL;
	}

226 227 228 229 230
	/*
	 * Assign an rproc-wide unique index for this vring
	 * TODO: assign a notifyid for rvdev updates as well
	 * TODO: support predefined notifyids (via resource table)
	 */
T
Tejun Heo 已提交
231
	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
232
	if (ret < 0) {
T
Tejun Heo 已提交
233
		dev_err(dev, "idr_alloc failed: %d\n", ret);
234
		dma_free_coherent(dev->parent, size, va, dma);
235 236
		return ret;
	}
T
Tejun Heo 已提交
237
	notifyid = ret;
238

239 240 241 242
	/* Potentially bump max_notifyid */
	if (notifyid > rproc->max_notifyid)
		rproc->max_notifyid = notifyid;

243
	dev_dbg(dev, "vring%d: va %p dma %pad size 0x%x idr %d\n",
244
		i, va, &dma, size, notifyid);
245

246 247 248
	rvring->va = va;
	rvring->dma = dma;
	rvring->notifyid = notifyid;
249

250 251 252 253 254 255 256 257 258
	/*
	 * Let the rproc know the notifyid and da of this vring.
	 * Not all platforms use dma_alloc_coherent to automatically
	 * set up the iommu. In this case the device address (da) will
	 * hold the physical address and not the device address.
	 */
	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
	rsc->vring[i].da = dma;
	rsc->vring[i].notifyid = notifyid;
259 260 261
	return 0;
}

262 263
static int
rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
264 265
{
	struct rproc *rproc = rvdev->rproc;
266
	struct device *dev = &rproc->dev;
267 268
	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
	struct rproc_vring *rvring = &rvdev->vring[i];
269

270
	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
271
		i, vring->da, vring->num, vring->align);
272

273 274 275
	/* verify queue size and vring alignment are sane */
	if (!vring->num || !vring->align) {
		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
276
			vring->num, vring->align);
277
		return -EINVAL;
278
	}
279 280 281 282 283 284 285 286 287 288 289 290

	rvring->len = vring->num;
	rvring->align = vring->align;
	rvring->rvdev = rvdev;

	return 0;
}

void rproc_free_vring(struct rproc_vring *rvring)
{
	int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
	struct rproc *rproc = rvring->rvdev->rproc;
291 292
	int idx = rvring->rvdev->vring - rvring;
	struct fw_rsc_vdev *rsc;
293

294
	dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
295
	idr_remove(&rproc->notifyids, rvring->notifyid);
296

297 298 299 300
	/* reset resource entry info */
	rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
	rsc->vring[idx].da = 0;
	rsc->vring[idx].notifyid = -1;
301 302
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316
static int rproc_vdev_do_probe(struct rproc_subdev *subdev)
{
	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);

	return rproc_add_virtio_dev(rvdev, rvdev->id);
}

static void rproc_vdev_do_remove(struct rproc_subdev *subdev)
{
	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);

	rproc_remove_virtio_dev(rvdev);
}

317
/**
318
 * rproc_handle_vdev() - handle a vdev fw resource
319 320
 * @rproc: the remote processor
 * @rsc: the vring resource descriptor
321
 * @avail: size of available data (for sanity checking the image)
322
 *
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
 * This resource entry requests the host to statically register a virtio
 * device (vdev), and setup everything needed to support it. It contains
 * everything needed to make it possible: the virtio device id, virtio
 * device features, vrings information, virtio config space, etc...
 *
 * Before registering the vdev, the vrings are allocated from non-cacheable
 * physically contiguous memory. Currently we only support two vrings per
 * remote processor (temporary limitation). We might also want to consider
 * doing the vring allocation only later when ->find_vqs() is invoked, and
 * then release them upon ->del_vqs().
 *
 * Note: @da is currently not really handled correctly: we dynamically
 * allocate it using the DMA API, ignoring requested hard coded addresses,
 * and we don't take care of any required IOMMU programming. This is all
 * going to be taken care of when the generic iommu-based DMA API will be
 * merged. Meanwhile, statically-addressed iommu-based firmware images should
 * use RSC_DEVMEM resource entries to map their required @da to the physical
 * address of their base CMA region (ouch, hacky!).
341 342 343
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
344
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
345
			     int offset, int avail)
346
{
347
	struct device *dev = &rproc->dev;
348 349
	struct rproc_vdev *rvdev;
	int i, ret;
350

351 352 353
	/* make sure resource isn't truncated */
	if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
			+ rsc->config_len > avail) {
354
		dev_err(dev, "vdev rsc is truncated\n");
355 356 357
		return -EINVAL;
	}

358 359 360
	/* make sure reserved bytes are zeroes */
	if (rsc->reserved[0] || rsc->reserved[1]) {
		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
361 362 363
		return -EINVAL;
	}

364
	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
365 366
		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);

367 368
	/* we currently support only two vrings per rvdev */
	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
369
		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
370 371 372
		return -EINVAL;
	}

373
	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
374 375
	if (!rvdev)
		return -ENOMEM;
376

377 378
	kref_init(&rvdev->refcount);

379
	rvdev->id = rsc->id;
380
	rvdev->rproc = rproc;
381

382
	/* parse the vrings */
383
	for (i = 0; i < rsc->num_of_vrings; i++) {
384
		ret = rproc_parse_vring(rvdev, rsc, i);
385
		if (ret)
386
			goto free_rvdev;
387
	}
388

389 390
	/* remember the resource offset*/
	rvdev->rsc_offset = offset;
391

392 393 394 395 396 397 398
	/* allocate the vring resources */
	for (i = 0; i < rsc->num_of_vrings; i++) {
		ret = rproc_alloc_vring(rvdev, i);
		if (ret)
			goto unwind_vring_allocations;
	}

399 400 401
	/* track the rvdevs list reference */
	kref_get(&rvdev->refcount);

402
	list_add_tail(&rvdev->node, &rproc->rvdevs);
403

404 405
	rproc_add_subdev(rproc, &rvdev->subdev,
			 rproc_vdev_do_probe, rproc_vdev_do_remove);
406 407

	return 0;
408

409 410 411
unwind_vring_allocations:
	for (i--; i >= 0; i--)
		rproc_free_vring(&rvdev->vring[i]);
412
free_rvdev:
413 414
	kfree(rvdev);
	return ret;
415 416
}

417 418 419
void rproc_vdev_release(struct kref *ref)
{
	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
420
	struct rproc_vring *rvring;
421
	struct rproc *rproc = rvdev->rproc;
422 423 424 425 426 427 428 429 430
	int id;

	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
		rvring = &rvdev->vring[id];
		if (!rvring->va)
			continue;

		rproc_free_vring(rvring);
	}
431

432
	rproc_remove_subdev(rproc, &rvdev->subdev);
433 434 435 436
	list_del(&rvdev->node);
	kfree(rvdev);
}

437 438 439 440
/**
 * rproc_handle_trace() - handle a shared trace buffer resource
 * @rproc: the remote processor
 * @rsc: the trace resource descriptor
441
 * @avail: size of available data (for sanity checking the image)
442 443 444 445 446 447 448 449 450 451 452
 *
 * In case the remote processor dumps trace logs into memory,
 * export it via debugfs.
 *
 * Currently, the 'da' member of @rsc should contain the device address
 * where the remote processor is dumping the traces. Later we could also
 * support dynamically allocating this address using the generic
 * DMA API (but currently there isn't a use case for that).
 *
 * Returns 0 on success, or an appropriate error code otherwise
 */
453
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
454
			      int offset, int avail)
455 456
{
	struct rproc_mem_entry *trace;
457
	struct device *dev = &rproc->dev;
458 459 460
	void *ptr;
	char name[15];

461
	if (sizeof(*rsc) > avail) {
462
		dev_err(dev, "trace rsc is truncated\n");
463 464 465 466 467 468 469 470 471
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "trace rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

472 473 474 475 476 477 478 479
	/* what's the kernel address of this resource ? */
	ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
	if (!ptr) {
		dev_err(dev, "erroneous trace resource entry\n");
		return -EINVAL;
	}

	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
480
	if (!trace)
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
		return -ENOMEM;

	/* set the trace buffer dma properties */
	trace->len = rsc->len;
	trace->va = ptr;

	/* make sure snprintf always null terminates, even if truncating */
	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);

	/* create the debugfs entry */
	trace->priv = rproc_create_trace_file(name, rproc, trace);
	if (!trace->priv) {
		trace->va = NULL;
		kfree(trace);
		return -EINVAL;
	}

	list_add_tail(&trace->node, &rproc->traces);

	rproc->num_traces++;

502 503
	dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n",
		name, ptr, rsc->da, rsc->len);
504 505 506 507 508 509 510 511

	return 0;
}

/**
 * rproc_handle_devmem() - handle devmem resource entry
 * @rproc: remote processor handle
 * @rsc: the devmem resource entry
512
 * @avail: size of available data (for sanity checking the image)
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 *
 * Remote processors commonly need to access certain on-chip peripherals.
 *
 * Some of these remote processors access memory via an iommu device,
 * and might require us to configure their iommu before they can access
 * the on-chip peripherals they need.
 *
 * This resource entry is a request to map such a peripheral device.
 *
 * These devmem entries will contain the physical address of the device in
 * the 'pa' member. If a specific device address is expected, then 'da' will
 * contain it (currently this is the only use case supported). 'len' will
 * contain the size of the physical region we need to map.
 *
 * Currently we just "trust" those devmem entries to contain valid physical
 * addresses, but this is going to change: we want the implementations to
 * tell us ranges of physical addresses the firmware is allowed to request,
 * and not allow firmwares to request access to physical addresses that
 * are outside those ranges.
 */
533
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
534
			       int offset, int avail)
535 536
{
	struct rproc_mem_entry *mapping;
537
	struct device *dev = &rproc->dev;
538 539 540 541 542 543
	int ret;

	/* no point in handling this resource without a valid iommu domain */
	if (!rproc->domain)
		return -EINVAL;

544
	if (sizeof(*rsc) > avail) {
545
		dev_err(dev, "devmem rsc is truncated\n");
546 547 548 549 550
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
551
		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
552 553 554
		return -EINVAL;
	}

555
	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
556
	if (!mapping)
557 558 559 560
		return -ENOMEM;

	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
	if (ret) {
561
		dev_err(dev, "failed to map devmem: %d\n", ret);
562 563 564 565 566 567 568 569 570 571 572 573 574 575
		goto out;
	}

	/*
	 * We'll need this info later when we'll want to unmap everything
	 * (e.g. on shutdown).
	 *
	 * We can't trust the remote processor not to change the resource
	 * table, so we must maintain this info independently.
	 */
	mapping->da = rsc->da;
	mapping->len = rsc->len;
	list_add_tail(&mapping->node, &rproc->mappings);

576
	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
577
		rsc->pa, rsc->da, rsc->len);
578 579 580 581 582 583 584 585 586 587 588 589

	return 0;

out:
	kfree(mapping);
	return ret;
}

/**
 * rproc_handle_carveout() - handle phys contig memory allocation requests
 * @rproc: rproc handle
 * @rsc: the resource entry
590
 * @avail: size of available data (for image validation)
591 592 593 594 595 596 597 598 599 600 601 602 603
 *
 * This function will handle firmware requests for allocation of physically
 * contiguous memory regions.
 *
 * These request entries should come first in the firmware's resource table,
 * as other firmware entries might request placing other data objects inside
 * these memory regions (e.g. data/code segments, trace resource entries, ...).
 *
 * Allocating memory this way helps utilizing the reserved physical memory
 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
 * pressure is important; it may have a substantial impact on performance.
 */
604
static int rproc_handle_carveout(struct rproc *rproc,
605 606
				 struct fw_rsc_carveout *rsc,
				 int offset, int avail)
607 608
{
	struct rproc_mem_entry *carveout, *mapping;
609
	struct device *dev = &rproc->dev;
610 611 612 613
	dma_addr_t dma;
	void *va;
	int ret;

614
	if (sizeof(*rsc) > avail) {
615
		dev_err(dev, "carveout rsc is truncated\n");
616 617 618 619 620 621 622 623 624
		return -EINVAL;
	}

	/* make sure reserved bytes are zeroes */
	if (rsc->reserved) {
		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
		return -EINVAL;
	}

625
	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
626
		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
627

628
	carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
629
	if (!carveout)
630
		return -ENOMEM;
631

632
	va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
633
	if (!va) {
634 635
		dev_err(dev->parent,
			"failed to allocate dma memory: len 0x%x\n", rsc->len);
636 637 638 639
		ret = -ENOMEM;
		goto free_carv;
	}

640 641
	dev_dbg(dev, "carveout va %p, dma %pad, len 0x%x\n",
		va, &dma, rsc->len);
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

	/*
	 * Ok, this is non-standard.
	 *
	 * Sometimes we can't rely on the generic iommu-based DMA API
	 * to dynamically allocate the device address and then set the IOMMU
	 * tables accordingly, because some remote processors might
	 * _require_ us to use hard coded device addresses that their
	 * firmware was compiled with.
	 *
	 * In this case, we must use the IOMMU API directly and map
	 * the memory to the device address as expected by the remote
	 * processor.
	 *
	 * Obviously such remote processor devices should not be configured
	 * to use the iommu-based DMA API: we expect 'dma' to contain the
	 * physical address in this case.
	 */
	if (rproc->domain) {
661 662 663 664 665 666
		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
		if (!mapping) {
			ret = -ENOMEM;
			goto dma_free;
		}

667
		ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
668
				rsc->flags);
669 670
		if (ret) {
			dev_err(dev, "iommu_map failed: %d\n", ret);
671
			goto free_mapping;
672 673 674 675 676 677 678 679 680 681 682 683 684
		}

		/*
		 * We'll need this info later when we'll want to unmap
		 * everything (e.g. on shutdown).
		 *
		 * We can't trust the remote processor not to change the
		 * resource table, so we must maintain this info independently.
		 */
		mapping->da = rsc->da;
		mapping->len = rsc->len;
		list_add_tail(&mapping->node, &rproc->mappings);

685 686
		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
			rsc->da, &dma);
687 688
	}

689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	/*
	 * Some remote processors might need to know the pa
	 * even though they are behind an IOMMU. E.g., OMAP4's
	 * remote M3 processor needs this so it can control
	 * on-chip hardware accelerators that are not behind
	 * the IOMMU, and therefor must know the pa.
	 *
	 * Generally we don't want to expose physical addresses
	 * if we don't have to (remote processors are generally
	 * _not_ trusted), so we might want to do this only for
	 * remote processor that _must_ have this (e.g. OMAP4's
	 * dual M3 subsystem).
	 *
	 * Non-IOMMU processors might also want to have this info.
	 * In this case, the device address and the physical address
	 * are the same.
	 */
	rsc->pa = dma;

708 709 710 711 712 713 714 715 716
	carveout->va = va;
	carveout->len = rsc->len;
	carveout->dma = dma;
	carveout->da = rsc->da;

	list_add_tail(&carveout->node, &rproc->carveouts);

	return 0;

717 718
free_mapping:
	kfree(mapping);
719
dma_free:
720
	dma_free_coherent(dev->parent, rsc->len, va, dma);
721 722 723 724 725
free_carv:
	kfree(carveout);
	return ret;
}

726 727 728 729
/*
 * A lookup table for resource handlers. The indices are defined in
 * enum fw_resource_type.
 */
730
static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
731 732 733
	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
734 735 736
	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
};

737
/* handle firmware resource entries before booting the remote processor */
738
static int rproc_handle_resources(struct rproc *rproc, int len,
739
				  rproc_handle_resource_t handlers[RSC_LAST])
740
{
741
	struct device *dev = &rproc->dev;
742
	rproc_handle_resource_t handler;
743 744
	int ret = 0, i;

745 746 747
	for (i = 0; i < rproc->table_ptr->num; i++) {
		int offset = rproc->table_ptr->offset[i];
		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
748 749 750 751 752 753 754 755
		int avail = len - offset - sizeof(*hdr);
		void *rsc = (void *)hdr + sizeof(*hdr);

		/* make sure table isn't truncated */
		if (avail < 0) {
			dev_err(dev, "rsc table is truncated\n");
			return -EINVAL;
		}
756

757
		dev_dbg(dev, "rsc: type %d\n", hdr->type);
758

759 760
		if (hdr->type >= RSC_LAST) {
			dev_warn(dev, "unsupported resource %d\n", hdr->type);
761
			continue;
762 763
		}

764
		handler = handlers[hdr->type];
765 766 767
		if (!handler)
			continue;

768
		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
769
		if (ret)
770
			break;
771
	}
772 773 774 775

	return ret;
}

B
Bjorn Andersson 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static int rproc_probe_subdevices(struct rproc *rproc)
{
	struct rproc_subdev *subdev;
	int ret;

	list_for_each_entry(subdev, &rproc->subdevs, node) {
		ret = subdev->probe(subdev);
		if (ret)
			goto unroll_registration;
	}

	return 0;

unroll_registration:
	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node)
		subdev->remove(subdev);

	return ret;
}

static void rproc_remove_subdevices(struct rproc *rproc)
{
	struct rproc_subdev *subdev;

	list_for_each_entry(subdev, &rproc->subdevs, node)
		subdev->remove(subdev);
}

804 805 806 807 808
/**
 * rproc_resource_cleanup() - clean up and free all acquired resources
 * @rproc: rproc handle
 *
 * This function will free all resources acquired for @rproc, and it
809
 * is called whenever @rproc either shuts down or fails to boot.
810 811 812 813
 */
static void rproc_resource_cleanup(struct rproc *rproc)
{
	struct rproc_mem_entry *entry, *tmp;
814
	struct rproc_vdev *rvdev, *rvtmp;
815
	struct device *dev = &rproc->dev;
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	/* clean up debugfs trace entries */
	list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
		rproc_remove_trace_file(entry->priv);
		rproc->num_traces--;
		list_del(&entry->node);
		kfree(entry);
	}

	/* clean up iommu mapping entries */
	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
		size_t unmapped;

		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
		if (unmapped != entry->len) {
			/* nothing much to do besides complaining */
832
			dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
833
				unmapped);
834 835 836 837 838
		}

		list_del(&entry->node);
		kfree(entry);
	}
839 840 841

	/* clean up carveout allocations */
	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
842 843
		dma_free_coherent(dev->parent, entry->len, entry->va,
				  entry->dma);
844 845 846
		list_del(&entry->node);
		kfree(entry);
	}
847 848

	/* clean up remote vdev entries */
849
	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
850
		kref_put(&rvdev->refcount, rproc_vdev_release);
851 852 853 854 855 856 857
}

/*
 * take a firmware and boot a remote processor with it.
 */
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
{
858
	struct device *dev = &rproc->dev;
859
	const char *name = rproc->firmware;
860
	struct resource_table *table, *loaded_table;
861
	int ret, tablesz;
862 863 864 865 866

	ret = rproc_fw_sanity_check(rproc, fw);
	if (ret)
		return ret;

867
	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
868 869 870 871 872 873 874 875 876 877 878

	/*
	 * if enabling an IOMMU isn't relevant for this rproc, this is
	 * just a nop
	 */
	ret = rproc_enable_iommu(rproc);
	if (ret) {
		dev_err(dev, "can't enable iommu: %d\n", ret);
		return ret;
	}

879
	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
880
	ret = -EINVAL;
881

882
	/* look for the resource table */
883
	table = rproc_find_rsc_table(rproc, fw, &tablesz);
884 885
	if (!table) {
		dev_err(dev, "Failed to find resource table\n");
886
		goto clean_up;
887
	}
888

889 890 891
	/*
	 * Create a copy of the resource table. When a virtio device starts
	 * and calls vring_new_virtqueue() the address of the allocated vring
892 893
	 * will be stored in the table_ptr. Before the device is started,
	 * table_ptr will be copied into device memory.
894
	 */
895 896
	rproc->table_ptr = kmemdup(table, tablesz, GFP_KERNEL);
	if (!rproc->table_ptr)
897
		goto clean_up;
898

899 900 901
	/* reset max_notifyid */
	rproc->max_notifyid = -1;

902
	/* handle fw resources which are required to boot rproc */
903
	ret = rproc_handle_resources(rproc, tablesz, rproc_loading_handlers);
904 905
	if (ret) {
		dev_err(dev, "Failed to process resources: %d\n", ret);
906
		goto clean_up_resources;
907 908 909
	}

	/* load the ELF segments to memory */
910
	ret = rproc_load_segments(rproc, fw);
911 912
	if (ret) {
		dev_err(dev, "Failed to load program segments: %d\n", ret);
913
		goto clean_up_resources;
914 915
	}

916
	/*
917
	 * The starting device has been given the rproc->table_ptr as the
918
	 * resource table. The address of the vring along with the other
919
	 * allocated resources (carveouts etc) is stored in table_ptr.
920 921 922
	 * In order to pass this information to the remote device we must copy
	 * this information to device memory. We also update the table_ptr so
	 * that any subsequent changes will be applied to the loaded version.
923 924
	 */
	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
925 926
	if (loaded_table)
		memcpy(loaded_table, rproc->table_ptr, tablesz);
927

928 929 930 931
	/* power up the remote processor */
	ret = rproc->ops->start(rproc);
	if (ret) {
		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
932
		goto clean_up_resources;
933 934
	}

B
Bjorn Andersson 已提交
935 936 937 938 939 940 941 942
	/* probe any subdevices for the remote processor */
	ret = rproc_probe_subdevices(rproc);
	if (ret) {
		dev_err(dev, "failed to probe subdevices for %s: %d\n",
			rproc->name, ret);
		goto stop_rproc;
	}

943 944 945 946 947 948
	rproc->state = RPROC_RUNNING;

	dev_info(dev, "remote processor %s is now up\n", rproc->name);

	return 0;

B
Bjorn Andersson 已提交
949 950
stop_rproc:
	rproc->ops->stop(rproc);
951 952
clean_up_resources:
	rproc_resource_cleanup(rproc);
953
clean_up:
954
	kfree(rproc->table_ptr);
955 956
	rproc->table_ptr = NULL;

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	rproc_disable_iommu(rproc);
	return ret;
}

/*
 * take a firmware and look for virtio devices to register.
 *
 * Note: this function is called asynchronously upon registration of the
 * remote processor (so we must wait until it completes before we try
 * to unregister the device. one other option is just to use kref here,
 * that might be cleaner).
 */
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
{
	struct rproc *rproc = context;
972

973 974 975 976
	/* if rproc is marked always-on, request it to boot */
	if (rproc->auto_boot)
		rproc_boot_nowait(rproc);

977
	release_firmware(fw);
978
	/* allow rproc_del() contexts, if any, to proceed */
979 980 981
	complete_all(&rproc->firmware_loading_complete);
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static int rproc_add_virtio_devices(struct rproc *rproc)
{
	int ret;

	/* rproc_del() calls must wait until async loader completes */
	init_completion(&rproc->firmware_loading_complete);

	/*
	 * We must retrieve early virtio configuration info from
	 * the firmware (e.g. whether to register a virtio device,
	 * what virtio features does it support, ...).
	 *
	 * We're initiating an asynchronous firmware loading, so we can
	 * be built-in kernel code, without hanging the boot process.
	 */
	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
				      rproc->firmware, &rproc->dev, GFP_KERNEL,
				      rproc, rproc_fw_config_virtio);
	if (ret < 0) {
		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
		complete_all(&rproc->firmware_loading_complete);
	}

	return ret;
}

/**
 * rproc_trigger_recovery() - recover a remoteproc
 * @rproc: the remote processor
 *
1012
 * The recovery is done by resetting all the virtio devices, that way all the
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
 * rpmsg drivers will be reseted along with the remote processor making the
 * remoteproc functional again.
 *
 * This function can sleep, so it cannot be called from atomic context.
 */
int rproc_trigger_recovery(struct rproc *rproc)
{
	dev_err(&rproc->dev, "recovering %s\n", rproc->name);

	init_completion(&rproc->crash_comp);

1024 1025 1026 1027
	/* shut down the remote */
	/* TODO: make sure this works with rproc->power > 1 */
	rproc_shutdown(rproc);

1028 1029 1030
	/* wait until there is no more rproc users */
	wait_for_completion(&rproc->crash_comp);

1031
	/*
1032
	 * boot the remote processor up again
1033
	 */
1034
	rproc_boot(rproc);
1035 1036

	return 0;
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
/**
 * rproc_crash_handler_work() - handle a crash
 *
 * This function needs to handle everything related to a crash, like cpu
 * registers and stack dump, information to help to debug the fatal error, etc.
 */
static void rproc_crash_handler_work(struct work_struct *work)
{
	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
	struct device *dev = &rproc->dev;

	dev_dbg(dev, "enter %s\n", __func__);

	mutex_lock(&rproc->lock);

	if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
		/* handle only the first crash detected */
		mutex_unlock(&rproc->lock);
		return;
	}

	rproc->state = RPROC_CRASHED;
	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
		rproc->name);

	mutex_unlock(&rproc->lock);

1066 1067
	if (!rproc->recovery_disabled)
		rproc_trigger_recovery(rproc);
1068 1069
}

1070
/**
1071
 * __rproc_boot() - boot a remote processor
1072
 * @rproc: handle of a remote processor
1073
 * @wait: wait for rproc registration completion
1074 1075 1076 1077 1078 1079 1080 1081
 *
 * Boot a remote processor (i.e. load its firmware, power it on, ...).
 *
 * If the remote processor is already powered on, this function immediately
 * returns (successfully).
 *
 * Returns 0 on success, and an appropriate error value otherwise.
 */
1082
static int __rproc_boot(struct rproc *rproc, bool wait)
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
{
	const struct firmware *firmware_p;
	struct device *dev;
	int ret;

	if (!rproc) {
		pr_err("invalid rproc handle\n");
		return -EINVAL;
	}

1093
	dev = &rproc->dev;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return ret;
	}

	/* skip the boot process if rproc is already powered up */
	if (atomic_inc_return(&rproc->power) > 1) {
		ret = 0;
		goto unlock_mutex;
	}

	dev_info(dev, "powering up %s\n", rproc->name);

	/* load firmware */
	ret = request_firmware(&firmware_p, rproc->firmware, dev);
	if (ret < 0) {
		dev_err(dev, "request_firmware failed: %d\n", ret);
		goto downref_rproc;
	}

1116 1117 1118 1119
	/* if rproc virtio is not yet configured, wait */
	if (wait)
		wait_for_completion(&rproc->firmware_loading_complete);

1120 1121 1122 1123 1124
	ret = rproc_fw_boot(rproc, firmware_p);

	release_firmware(firmware_p);

downref_rproc:
1125
	if (ret)
1126 1127 1128 1129 1130
		atomic_dec(&rproc->power);
unlock_mutex:
	mutex_unlock(&rproc->lock);
	return ret;
}
1131 1132 1133 1134 1135 1136 1137 1138 1139

/**
 * rproc_boot() - boot a remote processor
 * @rproc: handle of a remote processor
 */
int rproc_boot(struct rproc *rproc)
{
	return __rproc_boot(rproc, true);
}
1140 1141
EXPORT_SYMBOL(rproc_boot);

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/**
 * rproc_boot_nowait() - boot a remote processor
 * @rproc: handle of a remote processor
 *
 * Same as rproc_boot() but don't wait for rproc registration completion
 */
int rproc_boot_nowait(struct rproc *rproc)
{
	return __rproc_boot(rproc, false);
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
/**
 * rproc_shutdown() - power off the remote processor
 * @rproc: the remote processor
 *
 * Power off a remote processor (previously booted with rproc_boot()).
 *
 * In case @rproc is still being used by an additional user(s), then
 * this function will just decrement the power refcount and exit,
 * without really powering off the device.
 *
 * Every call to rproc_boot() must (eventually) be accompanied by a call
 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
 *
 * Notes:
 * - we're not decrementing the rproc's refcount, only the power refcount.
 *   which means that the @rproc handle stays valid even after rproc_shutdown()
 *   returns, and users can still use it with a subsequent rproc_boot(), if
 *   needed.
 */
void rproc_shutdown(struct rproc *rproc)
{
1174
	struct device *dev = &rproc->dev;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	int ret;

	ret = mutex_lock_interruptible(&rproc->lock);
	if (ret) {
		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
		return;
	}

	/* if the remote proc is still needed, bail out */
	if (!atomic_dec_and_test(&rproc->power))
		goto out;

B
Bjorn Andersson 已提交
1187 1188 1189
	/* remove any subdevices for the remote processor */
	rproc_remove_subdevices(rproc);

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	/* power off the remote processor */
	ret = rproc->ops->stop(rproc);
	if (ret) {
		atomic_inc(&rproc->power);
		dev_err(dev, "can't stop rproc: %d\n", ret);
		goto out;
	}

	/* clean up all acquired resources */
	rproc_resource_cleanup(rproc);

	rproc_disable_iommu(rproc);

1203
	/* Free the copy of the resource table */
1204
	kfree(rproc->table_ptr);
1205
	rproc->table_ptr = NULL;
1206

1207 1208 1209 1210
	/* if in crash state, unlock crash handler */
	if (rproc->state == RPROC_CRASHED)
		complete_all(&rproc->crash_comp);

1211 1212 1213 1214 1215 1216 1217 1218 1219
	rproc->state = RPROC_OFFLINE;

	dev_info(dev, "stopped remote processor %s\n", rproc->name);

out:
	mutex_unlock(&rproc->lock);
}
EXPORT_SYMBOL(rproc_shutdown);

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
/**
 * rproc_get_by_phandle() - find a remote processor by phandle
 * @phandle: phandle to the rproc
 *
 * Finds an rproc handle using the remote processor's phandle, and then
 * return a handle to the rproc.
 *
 * This function increments the remote processor's refcount, so always
 * use rproc_put() to decrement it back once rproc isn't needed anymore.
 *
 * Returns the rproc handle on success, and NULL on failure.
 */
1232
#ifdef CONFIG_OF
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
struct rproc *rproc_get_by_phandle(phandle phandle)
{
	struct rproc *rproc = NULL, *r;
	struct device_node *np;

	np = of_find_node_by_phandle(phandle);
	if (!np)
		return NULL;

	mutex_lock(&rproc_list_mutex);
	list_for_each_entry(r, &rproc_list, node) {
		if (r->dev.parent && r->dev.parent->of_node == np) {
1245 1246 1247 1248 1249 1250
			/* prevent underlying implementation from being removed */
			if (!try_module_get(r->dev.parent->driver->owner)) {
				dev_err(&r->dev, "can't get owner\n");
				break;
			}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			rproc = r;
			get_device(&rproc->dev);
			break;
		}
	}
	mutex_unlock(&rproc_list_mutex);

	of_node_put(np);

	return rproc;
}
1262 1263 1264 1265 1266 1267
#else
struct rproc *rproc_get_by_phandle(phandle phandle)
{
	return NULL;
}
#endif
1268 1269
EXPORT_SYMBOL(rproc_get_by_phandle);

1270
/**
1271
 * rproc_add() - register a remote processor
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
 * @rproc: the remote processor handle to register
 *
 * Registers @rproc with the remoteproc framework, after it has been
 * allocated with rproc_alloc().
 *
 * This is called by the platform-specific rproc implementation, whenever
 * a new remote processor device is probed.
 *
 * Returns 0 on success and an appropriate error code otherwise.
 *
 * Note: this function initiates an asynchronous firmware loading
 * context, which will look for virtio devices supported by the rproc's
 * firmware.
 *
 * If found, those virtio devices will be created and added, so as a result
1287
 * of registering this remote processor, additional virtio drivers might be
1288 1289
 * probed.
 */
1290
int rproc_add(struct rproc *rproc)
1291
{
1292
	struct device *dev = &rproc->dev;
1293
	int ret;
1294

1295 1296 1297
	ret = device_add(dev);
	if (ret < 0)
		return ret;
1298

1299
	dev_info(dev, "%s is available\n", rproc->name);
1300 1301 1302

	/* create debugfs entries */
	rproc_create_debug_dir(rproc);
1303 1304 1305
	ret = rproc_add_virtio_devices(rproc);
	if (ret < 0)
		return ret;
1306

1307 1308 1309 1310 1311 1312
	/* expose to rproc_get_by_phandle users */
	mutex_lock(&rproc_list_mutex);
	list_add(&rproc->node, &rproc_list);
	mutex_unlock(&rproc_list_mutex);

	return 0;
1313
}
1314
EXPORT_SYMBOL(rproc_add);
1315

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/**
 * rproc_type_release() - release a remote processor instance
 * @dev: the rproc's device
 *
 * This function should _never_ be called directly.
 *
 * It will be called by the driver core when no one holds a valid pointer
 * to @dev anymore.
 */
static void rproc_type_release(struct device *dev)
{
	struct rproc *rproc = container_of(dev, struct rproc, dev);

1329 1330 1331 1332
	dev_info(&rproc->dev, "releasing %s\n", rproc->name);

	rproc_delete_debug_dir(rproc);

1333 1334 1335 1336 1337
	idr_destroy(&rproc->notifyids);

	if (rproc->index >= 0)
		ida_simple_remove(&rproc_dev_index, rproc->index);

1338
	kfree(rproc->firmware);
1339 1340 1341 1342 1343 1344 1345
	kfree(rproc);
}

static struct device_type rproc_type = {
	.name		= "remoteproc",
	.release	= rproc_type_release,
};
1346 1347 1348 1349 1350 1351

/**
 * rproc_alloc() - allocate a remote processor handle
 * @dev: the underlying device
 * @name: name of this remote processor
 * @ops: platform-specific handlers (mainly start/stop)
1352
 * @firmware: name of firmware file to load, can be NULL
1353 1354 1355
 * @len: length of private data needed by the rproc driver (in bytes)
 *
 * Allocates a new remote processor handle, but does not register
1356
 * it yet. if @firmware is NULL, a default name is used.
1357 1358 1359 1360 1361
 *
 * This function should be used by rproc implementations during initialization
 * of the remote processor.
 *
 * After creating an rproc handle using this function, and when ready,
1362
 * implementations should then call rproc_add() to complete
1363 1364 1365 1366 1367
 * the registration of the remote processor.
 *
 * On success the new rproc is returned, and on failure, NULL.
 *
 * Note: _never_ directly deallocate @rproc, even if it was not registered
1368
 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1369 1370
 */
struct rproc *rproc_alloc(struct device *dev, const char *name,
1371 1372
			  const struct rproc_ops *ops,
			  const char *firmware, int len)
1373 1374
{
	struct rproc *rproc;
1375
	char *p, *template = "rproc-%s-fw";
1376
	int name_len;
1377 1378 1379 1380

	if (!dev || !name || !ops)
		return NULL;

1381
	if (!firmware) {
1382 1383
		/*
		 * If the caller didn't pass in a firmware name then
1384
		 * construct a default name.
1385 1386
		 */
		name_len = strlen(name) + strlen(template) - 2 + 1;
1387 1388 1389
		p = kmalloc(name_len, GFP_KERNEL);
		if (!p)
			return NULL;
1390 1391
		snprintf(p, name_len, template, name);
	} else {
1392 1393 1394 1395 1396 1397 1398 1399 1400
		p = kstrdup(firmware, GFP_KERNEL);
		if (!p)
			return NULL;
	}

	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
	if (!rproc) {
		kfree(p);
		return NULL;
1401 1402 1403
	}

	rproc->firmware = p;
1404 1405 1406
	rproc->name = name;
	rproc->ops = ops;
	rproc->priv = &rproc[1];
1407
	rproc->auto_boot = true;
1408

1409 1410 1411
	device_initialize(&rproc->dev);
	rproc->dev.parent = dev;
	rproc->dev.type = &rproc_type;
1412
	rproc->dev.class = &rproc_class;
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	/* Assign a unique device index and name */
	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
	if (rproc->index < 0) {
		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
		put_device(&rproc->dev);
		return NULL;
	}

	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);

1424 1425
	atomic_set(&rproc->power, 0);

1426 1427
	/* Set ELF as the default fw_ops handler */
	rproc->fw_ops = &rproc_elf_fw_ops;
1428 1429 1430

	mutex_init(&rproc->lock);

1431 1432
	idr_init(&rproc->notifyids);

1433 1434 1435
	INIT_LIST_HEAD(&rproc->carveouts);
	INIT_LIST_HEAD(&rproc->mappings);
	INIT_LIST_HEAD(&rproc->traces);
1436
	INIT_LIST_HEAD(&rproc->rvdevs);
B
Bjorn Andersson 已提交
1437
	INIT_LIST_HEAD(&rproc->subdevs);
1438

1439
	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1440
	init_completion(&rproc->crash_comp);
1441

1442 1443 1444 1445 1446 1447 1448
	rproc->state = RPROC_OFFLINE;

	return rproc;
}
EXPORT_SYMBOL(rproc_alloc);

/**
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
 * rproc_free() - unroll rproc_alloc()
 * @rproc: the remote processor handle
 *
 * This function decrements the rproc dev refcount.
 *
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
 */
void rproc_free(struct rproc *rproc)
{
	put_device(&rproc->dev);
}
EXPORT_SYMBOL(rproc_free);

/**
 * rproc_put() - release rproc reference
1465 1466
 * @rproc: the remote processor handle
 *
1467
 * This function decrements the rproc dev refcount.
1468
 *
1469 1470
 * If no one holds any reference to rproc anymore, then its refcount would
 * now drop to zero, and it would be freed.
1471
 */
1472
void rproc_put(struct rproc *rproc)
1473
{
1474
	module_put(rproc->dev.parent->driver->owner);
1475
	put_device(&rproc->dev);
1476
}
1477
EXPORT_SYMBOL(rproc_put);
1478 1479

/**
1480
 * rproc_del() - unregister a remote processor
1481 1482 1483 1484
 * @rproc: rproc handle to unregister
 *
 * This function should be called when the platform specific rproc
 * implementation decides to remove the rproc device. it should
1485
 * _only_ be called if a previous invocation of rproc_add()
1486 1487
 * has completed successfully.
 *
1488
 * After rproc_del() returns, @rproc isn't freed yet, because
1489
 * of the outstanding reference created by rproc_alloc. To decrement that
1490
 * one last refcount, one still needs to call rproc_free().
1491 1492 1493
 *
 * Returns 0 on success and -EINVAL if @rproc isn't valid.
 */
1494
int rproc_del(struct rproc *rproc)
1495 1496 1497 1498 1499 1500 1501
{
	if (!rproc)
		return -EINVAL;

	/* if rproc is just being registered, wait */
	wait_for_completion(&rproc->firmware_loading_complete);

1502 1503 1504 1505 1506
	/* if rproc is marked always-on, rproc_add() booted it */
	/* TODO: make sure this works with rproc->power > 1 */
	if (rproc->auto_boot)
		rproc_shutdown(rproc);

1507 1508 1509 1510 1511
	/* the rproc is downref'ed as soon as it's removed from the klist */
	mutex_lock(&rproc_list_mutex);
	list_del(&rproc->node);
	mutex_unlock(&rproc_list_mutex);

1512
	device_del(&rproc->dev);
1513 1514 1515

	return 0;
}
1516
EXPORT_SYMBOL(rproc_del);
1517

B
Bjorn Andersson 已提交
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
/**
 * rproc_add_subdev() - add a subdevice to a remoteproc
 * @rproc: rproc handle to add the subdevice to
 * @subdev: subdev handle to register
 * @probe: function to call when the rproc boots
 * @remove: function to call when the rproc shuts down
 */
void rproc_add_subdev(struct rproc *rproc,
		      struct rproc_subdev *subdev,
		      int (*probe)(struct rproc_subdev *subdev),
		      void (*remove)(struct rproc_subdev *subdev))
{
	subdev->probe = probe;
	subdev->remove = remove;

	list_add_tail(&subdev->node, &rproc->subdevs);
}
EXPORT_SYMBOL(rproc_add_subdev);

/**
 * rproc_remove_subdev() - remove a subdevice from a remoteproc
 * @rproc: rproc handle to remove the subdevice from
 * @subdev: subdev handle, previously registered with rproc_add_subdev()
 */
void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
{
	list_del(&subdev->node);
}
EXPORT_SYMBOL(rproc_remove_subdev);

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/**
 * rproc_report_crash() - rproc crash reporter function
 * @rproc: remote processor
 * @type: crash type
 *
 * This function must be called every time a crash is detected by the low-level
 * drivers implementing a specific remoteproc. This should not be called from a
 * non-remoteproc driver.
 *
 * This function can be called from atomic/interrupt context.
 */
void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
{
	if (!rproc) {
		pr_err("NULL rproc pointer\n");
		return;
	}

	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
		rproc->name, rproc_crash_to_string(type));

	/* create a new task to handle the error */
	schedule_work(&rproc->crash_handler);
}
EXPORT_SYMBOL(rproc_report_crash);

1574 1575
static int __init remoteproc_init(void)
{
1576
	rproc_init_sysfs();
1577
	rproc_init_debugfs();
1578

1579 1580 1581 1582 1583 1584
	return 0;
}
module_init(remoteproc_init);

static void __exit remoteproc_exit(void)
{
1585 1586
	ida_destroy(&rproc_dev_index);

1587
	rproc_exit_debugfs();
1588
	rproc_exit_sysfs();
1589 1590 1591 1592 1593
}
module_exit(remoteproc_exit);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Generic Remote Processor Framework");