arm-smmu-v3.c 97.0 KB
Newer Older
A
Andrew Murray 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

12 13
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
14
#include <linux/bitops.h>
15
#include <linux/crash_dump.h>
16
#include <linux/delay.h>
17
#include <linux/dma-iommu.h>
18 19
#include <linux/err.h>
#include <linux/interrupt.h>
20
#include <linux/io-pgtable.h>
21
#include <linux/iopoll.h>
22
#include <linux/module.h>
23
#include <linux/msi.h>
24 25
#include <linux/of.h>
#include <linux/of_address.h>
26
#include <linux/of_iommu.h>
27
#include <linux/of_platform.h>
28
#include <linux/pci.h>
29
#include <linux/pci-ats.h>
30 31
#include <linux/platform_device.h>

32 33
#include <linux/amba/bus.h>

34
#include "arm-smmu-v3.h"
35

36
static bool disable_bypass = true;
37
module_param(disable_bypass, bool, 0444);
38 39 40
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

41 42 43 44 45
static bool disable_msipolling;
module_param(disable_msipolling, bool, 0444);
MODULE_PARM_DESC(disable_msipolling,
	"Disable MSI-based polling for CMD_SYNC completion.");

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

71 72 73 74 75
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

76 77
DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa);
DEFINE_MUTEX(arm_smmu_asid_lock);
78

79 80 81 82 83 84
/*
 * Special value used by SVA when a process dies, to quiesce a CD without
 * disabling it.
 */
struct arm_smmu_ctx_desc quiet_cd = { 0 };

85 86
static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
87
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
	{ 0, NULL},
};

static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

105
/* Low-level queue manipulation functions */
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
{
	u32 space, prod, cons;

	prod = Q_IDX(q, q->prod);
	cons = Q_IDX(q, q->cons);

	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
		space = (1 << q->max_n_shift) - (prod - cons);
	else
		space = cons - prod;

	return space >= n;
}

121
static bool queue_full(struct arm_smmu_ll_queue *q)
122 123 124 125 126
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

127
static bool queue_empty(struct arm_smmu_ll_queue *q)
128 129 130 131 132
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

133
static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
134
{
135 136 137 138
	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
139 140
}

141
static void queue_sync_cons_out(struct arm_smmu_queue *q)
142
{
143 144 145 146
	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
147
	__iomb();
148
	writel_relaxed(q->llq.cons, q->cons_reg);
149 150
}

151
static void queue_inc_cons(struct arm_smmu_ll_queue *q)
152
{
153 154
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
155 156
}

157
static int queue_sync_prod_in(struct arm_smmu_queue *q)
158
{
159
	u32 prod;
160
	int ret = 0;
161 162 163 164 165 166 167

	/*
	 * We can't use the _relaxed() variant here, as we must prevent
	 * speculative reads of the queue before we have determined that
	 * prod has indeed moved.
	 */
	prod = readl(q->prod_reg);
168

169
	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
170 171
		ret = -EOVERFLOW;

172
	q->llq.prod = prod;
173 174 175
	return ret;
}

176
static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
177
{
178 179
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
180 181
}

182 183
static void queue_poll_init(struct arm_smmu_device *smmu,
			    struct arm_smmu_queue_poll *qp)
184
{
185 186 187 188
	qp->delay = 1;
	qp->spin_cnt = 0;
	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
189 190
}

191
static int queue_poll(struct arm_smmu_queue_poll *qp)
192
{
193 194
	if (ktime_compare(ktime_get(), qp->timeout) > 0)
		return -ETIMEDOUT;
195

196 197 198 199 200 201 202 203
	if (qp->wfe) {
		wfe();
	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
		cpu_relax();
	} else {
		udelay(qp->delay);
		qp->delay *= 2;
		qp->spin_cnt = 0;
204 205 206 207 208 209 210 211 212 213 214 215 216
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

217
static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
218 219 220 221 222 223 224 225 226
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
227
	if (queue_empty(&q->llq))
228 229
		return -EAGAIN;

230
	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
231
	queue_inc_cons(&q->llq);
232
	queue_sync_cons_out(q);
233 234 235 236 237 238
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
239
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
240
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
241 242 243 244 245 246

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
247 248
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
249 250
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
251 252
	case CMDQ_OP_CFGI_CD:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
253
		fallthrough;
254
	case CMDQ_OP_CFGI_STE:
255 256
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
257
		break;
258 259 260
	case CMDQ_OP_CFGI_CD_ALL:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		break;
261 262
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
263
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
264 265
		break;
	case CMDQ_OP_TLBI_NH_VA:
266 267 268
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		fallthrough;
	case CMDQ_OP_TLBI_EL2_VA:
269 270
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
271 272
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
273 274
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
275 276
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
277
	case CMDQ_OP_TLBI_S2_IPA:
278 279
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
280 281
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
282 283
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
284
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
285 286
		break;
	case CMDQ_OP_TLBI_NH_ASID:
287
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
288
		fallthrough;
289
	case CMDQ_OP_TLBI_S12_VMALL:
290
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
291
		break;
292 293 294
	case CMDQ_OP_TLBI_EL2_ASID:
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		break;
295 296 297 298 299 300 301 302
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
303
	case CMDQ_OP_PRI_RESP:
304 305 306 307
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
308 309 310 311 312 313 314 315
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
316
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
317 318
		break;
	case CMDQ_OP_CMD_SYNC:
319
		if (ent->sync.msiaddr) {
320
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
321 322
			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		} else {
323
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
324
		}
325 326
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
327 328 329 330 331 332 333 334
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

335 336 337 338 339 340 341 342 343 344 345 346
static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
					 u32 prod)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	/*
	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
	 * payload, so the write will zero the entire command on that platform.
	 */
347
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
348 349 350 351 352 353 354
		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
				   q->ent_dwords * 8;
	}

	arm_smmu_cmdq_build_cmd(cmd, &ent);
}

355 356 357 358 359 360
static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
361
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
362 363 364 365 366 367
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
368
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
369 370 371 372 373
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
374
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
375 376 377 378 379 380

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
381 382 383 384 385 386 387 388
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
389 390 391
	case CMDQ_ERR_CERROR_ILL_IDX:
	default:
		break;
392 393 394 395 396 397
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
398
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
399 400 401 402 403 404 405 406 407 408
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

409
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
410 411
}

412 413 414 415 416 417 418 419 420 421 422 423 424
/*
 * Command queue locking.
 * This is a form of bastardised rwlock with the following major changes:
 *
 * - The only LOCK routines are exclusive_trylock() and shared_lock().
 *   Neither have barrier semantics, and instead provide only a control
 *   dependency.
 *
 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
 *   fails if the caller appears to be the last lock holder (yes, this is
 *   racy). All successful UNLOCK routines have RELEASE semantics.
 */
static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
425
{
426
	int val;
427

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	/*
	 * We can try to avoid the cmpxchg() loop by simply incrementing the
	 * lock counter. When held in exclusive state, the lock counter is set
	 * to INT_MIN so these increments won't hurt as the value will remain
	 * negative.
	 */
	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
		return;

	do {
		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
}

static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
{
	(void)atomic_dec_return_release(&cmdq->lock);
}

static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
{
	if (atomic_read(&cmdq->lock) == 1)
		return false;

	arm_smmu_cmdq_shared_unlock(cmdq);
	return true;
}

#define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
({									\
	bool __ret;							\
	local_irq_save(flags);						\
	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
	if (!__ret)							\
		local_irq_restore(flags);				\
	__ret;								\
})

#define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
({									\
	atomic_set_release(&cmdq->lock, 0);				\
	local_irq_restore(flags);					\
})


/*
 * Command queue insertion.
 * This is made fiddly by our attempts to achieve some sort of scalability
 * since there is one queue shared amongst all of the CPUs in the system.  If
 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
 * then you'll *love* this monstrosity.
 *
 * The basic idea is to split the queue up into ranges of commands that are
 * owned by a given CPU; the owner may not have written all of the commands
 * itself, but is responsible for advancing the hardware prod pointer when
 * the time comes. The algorithm is roughly:
 *
 * 	1. Allocate some space in the queue. At this point we also discover
 *	   whether the head of the queue is currently owned by another CPU,
 *	   or whether we are the owner.
 *
 *	2. Write our commands into our allocated slots in the queue.
 *
 *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
 *
 *	4. If we are an owner:
 *		a. Wait for the previous owner to finish.
 *		b. Mark the queue head as unowned, which tells us the range
 *		   that we are responsible for publishing.
 *		c. Wait for all commands in our owned range to become valid.
 *		d. Advance the hardware prod pointer.
 *		e. Tell the next owner we've finished.
 *
 *	5. If we are inserting a CMD_SYNC (we may or may not have been an
 *	   owner), then we need to stick around until it has completed:
 *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
 *		   to clear the first 4 bytes.
 *		b. Otherwise, we spin waiting for the hardware cons pointer to
 *		   advance past our command.
 *
 * The devil is in the details, particularly the use of locking for handling
 * SYNC completion and freeing up space in the queue before we think that it is
 * full.
 */
static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
					       u32 sprod, u32 eprod, bool set)
{
	u32 swidx, sbidx, ewidx, ebidx;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= sprod,
	};
520

521 522
	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
523

524 525 526 527
	while (llq.prod != eprod) {
		unsigned long mask;
		atomic_long_t *ptr;
		u32 limit = BITS_PER_LONG;
528

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;

		ptr = &cmdq->valid_map[swidx];

		if ((swidx == ewidx) && (sbidx < ebidx))
			limit = ebidx;

		mask = GENMASK(limit - 1, sbidx);

		/*
		 * The valid bit is the inverse of the wrap bit. This means
		 * that a zero-initialised queue is invalid and, after marking
		 * all entries as valid, they become invalid again when we
		 * wrap.
		 */
		if (set) {
			atomic_long_xor(mask, ptr);
		} else { /* Poll */
			unsigned long valid;

			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
		}

		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
555 556 557
	}
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/* Mark all entries in the range [sprod, eprod) as valid */
static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
					u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
}

/* Wait for all entries in the range [sprod, eprod) to become valid */
static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
					 u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
}

/* Wait for the command queue to become non-full */
static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
					     struct arm_smmu_ll_queue *llq)
575
{
576
	unsigned long flags;
577 578 579
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	int ret = 0;
580

581 582 583 584 585 586 587 588 589
	/*
	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
	 * that fails, spin until somebody else updates it for us.
	 */
	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
		llq->val = READ_ONCE(cmdq->q.llq.val);
		return 0;
590 591
	}

592 593 594 595 596 597 598 599 600 601
	queue_poll_init(smmu, &qp);
	do {
		llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
		if (!queue_full(llq))
			break;

		ret = queue_poll(&qp);
	} while (!ret);

	return ret;
602
}
603

604
/*
605 606
 * Wait until the SMMU signals a CMD_SYNC completion MSI.
 * Must be called with the cmdq lock held in some capacity.
607
 */
608 609
static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
					  struct arm_smmu_ll_queue *llq)
610
{
611 612 613 614
	int ret = 0;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
615

616
	queue_poll_init(smmu, &qp);
617

618 619 620 621 622 623 624 625
	/*
	 * The MSI won't generate an event, since it's being written back
	 * into the command queue.
	 */
	qp.wfe = false;
	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
	return ret;
626 627
}

628 629 630 631 632 633
/*
 * Wait until the SMMU cons index passes llq->prod.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
					       struct arm_smmu_ll_queue *llq)
634
{
635 636 637 638
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 prod = llq->prod;
	int ret = 0;
639

640 641 642 643 644
	queue_poll_init(smmu, &qp);
	llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
	do {
		if (queue_consumed(llq, prod))
			break;
645

646
		ret = queue_poll(&qp);
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
		/*
		 * This needs to be a readl() so that our subsequent call
		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
		 *
		 * Specifically, we need to ensure that we observe all
		 * shared_lock()s by other CMD_SYNCs that share our owner,
		 * so that a failing call to tryunlock() means that we're
		 * the last one out and therefore we can safely advance
		 * cmdq->q.llq.cons. Roughly speaking:
		 *
		 * CPU 0		CPU1			CPU2 (us)
		 *
		 * if (sync)
		 * 	shared_lock();
		 *
		 * dma_wmb();
		 * set_valid_map();
		 *
		 * 			if (owner) {
		 *				poll_valid_map();
		 *				<control dependency>
		 *				writel(prod_reg);
		 *
		 *						readl(cons_reg);
		 *						tryunlock();
		 *
		 * Requires us to see CPU 0's shared_lock() acquisition.
		 */
		llq->cons = readl(cmdq->q.cons_reg);
	} while (!ret);
678

679
	return ret;
680 681
}

682 683
static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
					 struct arm_smmu_ll_queue *llq)
684
{
685
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL)
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);

	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
}

static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
					u32 prod, int n)
{
	int i;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= prod,
	};

	for (i = 0; i < n; ++i) {
		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];

		prod = queue_inc_prod_n(&llq, i);
		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
	}
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/*
 * This is the actual insertion function, and provides the following
 * ordering guarantees to callers:
 *
 * - There is a dma_wmb() before publishing any commands to the queue.
 *   This can be relied upon to order prior writes to data structures
 *   in memory (such as a CD or an STE) before the command.
 *
 * - On completion of a CMD_SYNC, there is a control dependency.
 *   This can be relied upon to order subsequent writes to memory (e.g.
 *   freeing an IOVA) after completion of the CMD_SYNC.
 *
 * - Command insertion is totally ordered, so if two CPUs each race to
 *   insert their own list of commands then all of the commands from one
 *   CPU will appear before any of the commands from the other CPU.
 */
724 725 726 727 728
static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
				       u64 *cmds, int n, bool sync)
{
	u64 cmd_sync[CMDQ_ENT_DWORDS];
	u32 prod;
729
	unsigned long flags;
730 731 732 733 734 735
	bool owner;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift = cmdq->q.llq.max_n_shift,
	}, head = llq;
	int ret = 0;
736

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	/* 1. Allocate some space in the queue */
	local_irq_save(flags);
	llq.val = READ_ONCE(cmdq->q.llq.val);
	do {
		u64 old;

		while (!queue_has_space(&llq, n + sync)) {
			local_irq_restore(flags);
			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
			local_irq_save(flags);
		}

		head.cons = llq.cons;
		head.prod = queue_inc_prod_n(&llq, n + sync) |
					     CMDQ_PROD_OWNED_FLAG;

		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
		if (old == llq.val)
			break;

		llq.val = old;
	} while (1);
	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;

	/*
	 * 2. Write our commands into the queue
	 * Dependency ordering from the cmpxchg() loop above.
	 */
	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
	if (sync) {
		prod = queue_inc_prod_n(&llq, n);
		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, prod);
		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);

		/*
		 * In order to determine completion of our CMD_SYNC, we must
		 * ensure that the queue can't wrap twice without us noticing.
		 * We achieve that by taking the cmdq lock as shared before
		 * marking our slot as valid.
		 */
		arm_smmu_cmdq_shared_lock(cmdq);
	}
782

783 784 785
	/* 3. Mark our slots as valid, ensuring commands are visible first */
	dma_wmb();
	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	/* 4. If we are the owner, take control of the SMMU hardware */
	if (owner) {
		/* a. Wait for previous owner to finish */
		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);

		/* b. Stop gathering work by clearing the owned flag */
		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
						   &cmdq->q.llq.atomic.prod);
		prod &= ~CMDQ_PROD_OWNED_FLAG;

		/*
		 * c. Wait for any gathered work to be written to the queue.
		 * Note that we read our own entries so that we have the control
		 * dependency required by (d).
		 */
		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);

		/*
		 * d. Advance the hardware prod pointer
		 * Control dependency ordering from the entries becoming valid.
		 */
		writel_relaxed(prod, cmdq->q.prod_reg);

		/*
		 * e. Tell the next owner we're done
		 * Make sure we've updated the hardware first, so that we don't
		 * race to update prod and potentially move it backwards.
		 */
		atomic_set_release(&cmdq->owner_prod, prod);
	}

	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
	if (sync) {
		llq.prod = queue_inc_prod_n(&llq, n);
		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
		if (ret) {
			dev_err_ratelimited(smmu->dev,
					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
					    llq.prod,
					    readl_relaxed(cmdq->q.prod_reg),
					    readl_relaxed(cmdq->q.cons_reg));
		}
829

830
		/*
J
John Garry 已提交
831
		 * Try to unlock the cmdq lock. This will fail if we're the last
832 833 834 835 836 837 838
		 * reader, in which case we can safely update cmdq->q.llq.cons
		 */
		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
			arm_smmu_cmdq_shared_unlock(cmdq);
		}
	}
839

840
	local_irq_restore(flags);
841 842 843
	return ret;
}

844 845
static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				   struct arm_smmu_cmdq_ent *ent)
846
{
847
	u64 cmd[CMDQ_ENT_DWORDS];
848

849 850 851 852 853 854 855 856 857 858 859 860
	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return -EINVAL;
	}

	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, false);
}

static int arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, NULL, 0, true);
861 862
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_batch *cmds,
				    struct arm_smmu_cmdq_ent *cmd)
{
	if (cmds->num == CMDQ_BATCH_ENTRIES) {
		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false);
		cmds->num = 0;
	}
	arm_smmu_cmdq_build_cmd(&cmds->cmds[cmds->num * CMDQ_ENT_DWORDS], cmd);
	cmds->num++;
}

static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
				      struct arm_smmu_cmdq_batch *cmds)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
}

881
/* Context descriptor manipulation functions */
882 883 884
void arm_smmu_tlb_inv_asid(struct arm_smmu_device *smmu, u16 asid)
{
	struct arm_smmu_cmdq_ent cmd = {
885 886
		.opcode	= smmu->features & ARM_SMMU_FEAT_E2H ?
			CMDQ_OP_TLBI_EL2_ASID : CMDQ_OP_TLBI_NH_ASID,
887 888 889 890 891 892 893
		.tlbi.asid = asid,
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	arm_smmu_cmdq_issue_sync(smmu);
}

894 895
static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
			     int ssid, bool leaf)
896
{
897 898 899
	size_t i;
	unsigned long flags;
	struct arm_smmu_master *master;
900
	struct arm_smmu_cmdq_batch cmds = {};
901 902 903 904 905 906 907 908 909 910 911 912 913
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_CD,
		.cfgi	= {
			.ssid	= ssid,
			.leaf	= leaf,
		},
	};

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		for (i = 0; i < master->num_sids; i++) {
			cmd.cfgi.sid = master->sids[i];
914
			arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
915 916 917
		}
	}
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
918

919
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
920
}
921

922 923 924 925
static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
					struct arm_smmu_l1_ctx_desc *l1_desc)
{
	size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
926

927 928 929 930 931 932 933 934
	l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
					     &l1_desc->l2ptr_dma, GFP_KERNEL);
	if (!l1_desc->l2ptr) {
		dev_warn(smmu->dev,
			 "failed to allocate context descriptor table\n");
		return -ENOMEM;
	}
	return 0;
935 936
}

937 938
static void arm_smmu_write_cd_l1_desc(__le64 *dst,
				      struct arm_smmu_l1_ctx_desc *l1_desc)
939
{
940 941 942
	u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
		  CTXDESC_L1_DESC_V;

943
	/* See comment in arm_smmu_write_ctx_desc() */
944 945 946 947 948 949 950 951 952 953 954
	WRITE_ONCE(*dst, cpu_to_le64(val));
}

static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain,
				   u32 ssid)
{
	__le64 *l1ptr;
	unsigned int idx;
	struct arm_smmu_l1_ctx_desc *l1_desc;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
955

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
	if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
		return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS;

	idx = ssid >> CTXDESC_SPLIT;
	l1_desc = &cdcfg->l1_desc[idx];
	if (!l1_desc->l2ptr) {
		if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
			return NULL;

		l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
		arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
		/* An invalid L1CD can be cached */
		arm_smmu_sync_cd(smmu_domain, ssid, false);
	}
	idx = ssid & (CTXDESC_L2_ENTRIES - 1);
	return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS;
}

974 975
int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain, int ssid,
			    struct arm_smmu_ctx_desc *cd)
976
{
977
	/*
978 979 980 981 982 983
	 * This function handles the following cases:
	 *
	 * (1) Install primary CD, for normal DMA traffic (SSID = 0).
	 * (2) Install a secondary CD, for SID+SSID traffic.
	 * (3) Update ASID of a CD. Atomically write the first 64 bits of the
	 *     CD, then invalidate the old entry and mappings.
984 985 986
	 * (4) Quiesce the context without clearing the valid bit. Disable
	 *     translation, and ignore any translation fault.
	 * (5) Remove a secondary CD.
987
	 */
988 989
	u64 val;
	bool cd_live;
990
	__le64 *cdptr;
991
	struct arm_smmu_device *smmu = smmu_domain->smmu;
992 993 994 995 996 997 998

	if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax)))
		return -E2BIG;

	cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid);
	if (!cdptr)
		return -ENOMEM;
999 1000 1001

	val = le64_to_cpu(cdptr[0]);
	cd_live = !!(val & CTXDESC_CD_0_V);
1002

1003
	if (!cd) { /* (5) */
1004
		val = 0;
1005 1006
	} else if (cd == &quiet_cd) { /* (4) */
		val |= CTXDESC_CD_0_TCR_EPD0;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	} else if (cd_live) { /* (3) */
		val &= ~CTXDESC_CD_0_ASID;
		val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
		/*
		 * Until CD+TLB invalidation, both ASIDs may be used for tagging
		 * this substream's traffic
		 */
	} else { /* (1) and (2) */
		cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
		cdptr[2] = 0;
		cdptr[3] = cpu_to_le64(cd->mair);
1018

1019 1020 1021 1022 1023 1024
		/*
		 * STE is live, and the SMMU might read dwords of this CD in any
		 * order. Ensure that it observes valid values before reading
		 * V=1.
		 */
		arm_smmu_sync_cd(smmu_domain, ssid, true);
1025

1026
		val = cd->tcr |
1027
#ifdef __BIG_ENDIAN
1028
			CTXDESC_CD_0_ENDI |
1029
#endif
1030 1031
			CTXDESC_CD_0_R | CTXDESC_CD_0_A |
			(cd->mm ? 0 : CTXDESC_CD_0_ASET) |
1032 1033 1034
			CTXDESC_CD_0_AA64 |
			FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
			CTXDESC_CD_0_V;
1035

1036 1037 1038 1039
		/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
		if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
			val |= CTXDESC_CD_0_S;
	}
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	/*
	 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3
	 * "Configuration structures and configuration invalidation completion"
	 *
	 *   The size of single-copy atomic reads made by the SMMU is
	 *   IMPLEMENTATION DEFINED but must be at least 64 bits. Any single
	 *   field within an aligned 64-bit span of a structure can be altered
	 *   without first making the structure invalid.
	 */
	WRITE_ONCE(cdptr[0], cpu_to_le64(val));
	arm_smmu_sync_cd(smmu_domain, ssid, true);
	return 0;
1053 1054
}

1055 1056
static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1057
	int ret;
1058
	size_t l1size;
1059
	size_t max_contexts;
1060 1061 1062 1063
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;

1064 1065 1066 1067 1068 1069
	max_contexts = 1 << cfg->s1cdmax;

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
	    max_contexts <= CTXDESC_L2_ENTRIES) {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
		cdcfg->num_l1_ents = max_contexts;
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
	} else {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
		cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts,
						  CTXDESC_L2_ENTRIES);

		cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents,
					      sizeof(*cdcfg->l1_desc),
					      GFP_KERNEL);
		if (!cdcfg->l1_desc)
			return -ENOMEM;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	}
1085

1086 1087 1088 1089
	cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
					   GFP_KERNEL);
	if (!cdcfg->cdtab) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1090 1091
		ret = -ENOMEM;
		goto err_free_l1;
1092
	}
1093

1094
	return 0;
1095

1096 1097 1098 1099 1100 1101
err_free_l1:
	if (cdcfg->l1_desc) {
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;
	}
	return ret;
1102 1103 1104 1105
}

static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1106 1107
	int i;
	size_t size, l1size;
1108 1109
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128

	if (cdcfg->l1_desc) {
		size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);

		for (i = 0; i < cdcfg->num_l1_ents; i++) {
			if (!cdcfg->l1_desc[i].l2ptr)
				continue;

			dmam_free_coherent(smmu->dev, size,
					   cdcfg->l1_desc[i].l2ptr,
					   cdcfg->l1_desc[i].l2ptr_dma);
		}
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	} else {
		l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
	}
1129 1130 1131 1132

	dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma);
	cdcfg->cdtab_dma = 0;
	cdcfg->cdtab = NULL;
1133 1134
}

1135
bool arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd)
1136
{
1137 1138 1139
	bool free;
	struct arm_smmu_ctx_desc *old_cd;

1140
	if (!cd->asid)
1141
		return false;
1142

1143 1144 1145 1146 1147 1148
	free = refcount_dec_and_test(&cd->refs);
	if (free) {
		old_cd = xa_erase(&arm_smmu_asid_xa, cd->asid);
		WARN_ON(old_cd != cd);
	}
	return free;
1149 1150
}

1151 1152 1153 1154 1155 1156
/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1157
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1158
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1159

1160 1161
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(*dst, cpu_to_le64(val));
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1175
	arm_smmu_cmdq_issue_sync(smmu);
1176 1177
}

1178 1179
static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
1180 1181 1182 1183 1184
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1185 1186 1187
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
1199 1200 1201 1202
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
1203 1204 1205 1206 1207 1208 1209
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

1229
	if (val & STRTAB_STE_0_V) {
1230
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1231 1232 1233 1234 1235 1236
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1237
		case STRTAB_STE_0_CFG_ABORT:
1238 1239
			BUG_ON(!disable_bypass);
			break;
1240 1241 1242 1243 1244
		default:
			BUG(); /* STE corruption */
		}
	}

1245
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1246 1247 1248
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
1249 1250
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
1251
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1252
		else
1253
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1254 1255

		dst[0] = cpu_to_le64(val);
1256 1257
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1258
		dst[2] = 0; /* Nuke the VMID */
1259 1260 1261 1262 1263
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1264 1265 1266 1267
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

1268
	if (s1_cfg) {
1269 1270 1271
		u64 strw = smmu->features & ARM_SMMU_FEAT_E2H ?
			STRTAB_STE_1_STRW_EL2 : STRTAB_STE_1_STRW_NSEL1;

1272 1273
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1274
			 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
1275 1276 1277
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
1278
			 FIELD_PREP(STRTAB_STE_1_STRW, strw));
1279

1280 1281
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1282 1283
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1284
		val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1285 1286 1287
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
			FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
			FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
1288 1289
	}

1290
	if (s2_cfg) {
1291 1292
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1293 1294
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1295 1296 1297 1298 1299 1300
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1301
		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1302

1303
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1304 1305
	}

1306 1307 1308 1309
	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

1310
	arm_smmu_sync_ste_for_sid(smmu, sid);
1311 1312
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(dst[0], cpu_to_le64(val));
1313 1314 1315
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1316 1317
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1318 1319
}

1320
static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent)
1321 1322 1323 1324
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
1325
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1341
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1342 1343

	desc->span = STRTAB_SPLIT + 1;
1344
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1345
					  GFP_KERNEL);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
1364
	struct arm_smmu_ll_queue *llq = &q->llq;
1365 1366
	u64 evt[EVTQ_ENT_DWORDS];

1367 1368
	do {
		while (!queue_remove_raw(q, evt)) {
1369
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
1382
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1383
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1384
	} while (!queue_empty(llq));
1385 1386

	/* Sync our overflow flag, as we believe we're up to speed */
1387 1388
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		    Q_IDX(llq, llq->cons);
1389 1390 1391
	return IRQ_HANDLED;
}

1392 1393 1394 1395 1396 1397
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1398 1399 1400 1401 1402
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1403 1404 1405 1406 1407 1408 1409 1410 1411

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1412
		 evt[1] & PRIQ_1_ADDR_MASK);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1425

1426 1427
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1428 1429 1430 1431 1432 1433
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
1434
	struct arm_smmu_ll_queue *llq = &q->llq;
1435 1436
	u64 evt[PRIQ_ENT_DWORDS];

1437 1438 1439
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1440

1441
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1442
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1443
	} while (!queue_empty(llq));
1444 1445

	/* Sync our overflow flag, as we believe we're up to speed */
1446 1447 1448
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		      Q_IDX(llq, llq->cons);
	queue_sync_cons_out(q);
1449 1450 1451 1452 1453 1454 1455
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1456
	u32 gerror, gerrorn, active;
1457 1458 1459 1460 1461
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1462 1463
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1464 1465 1466 1467
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1468
		 active);
1469

1470
	if (active & GERROR_SFM_ERR) {
1471 1472 1473 1474
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1475
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1476 1477
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1478
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1479 1480
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1481
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1482 1483
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1484
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1485 1486
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1487
	if (active & GERROR_PRIQ_ABT_ERR)
1488 1489
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1490
	if (active & GERROR_EVTQ_ABT_ERR)
1491 1492
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1493
	if (active & GERROR_CMDQ_ERR)
1494 1495 1496 1497 1498 1499
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	/*
	 * ATS and PASID:
	 *
	 * If substream_valid is clear, the PCIe TLP is sent without a PASID
	 * prefix. In that case all ATC entries within the address range are
	 * invalidated, including those that were requested with a PASID! There
	 * is no way to invalidate only entries without PASID.
	 *
	 * When using STRTAB_STE_1_S1DSS_SSID0 (reserving CD 0 for non-PASID
	 * traffic), translation requests without PASID create ATC entries
	 * without PASID, which must be invalidated with substream_valid clear.
	 * This has the unpleasant side-effect of invalidating all PASID-tagged
	 * ATC entries within the address range.
	 */
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= !!ssid,
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

1584
static int arm_smmu_atc_inv_master(struct arm_smmu_master *master)
1585 1586
{
	int i;
1587
	struct arm_smmu_cmdq_ent cmd;
1588

1589
	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
1590 1591

	for (i = 0; i < master->num_sids; i++) {
1592 1593
		cmd.atc.sid = master->sids[i];
		arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
1594 1595 1596 1597 1598
	}

	return arm_smmu_cmdq_issue_sync(master->smmu);
}

1599 1600
int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain, int ssid,
			    unsigned long iova, size_t size)
1601
{
1602
	int i;
1603 1604 1605
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_master *master;
1606
	struct arm_smmu_cmdq_batch cmds = {};
1607 1608 1609 1610

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	/*
	 * Ensure that we've completed prior invalidation of the main TLBs
	 * before we read 'nr_ats_masters' in case of a concurrent call to
	 * arm_smmu_enable_ats():
	 *
	 *	// unmap()			// arm_smmu_enable_ats()
	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
	 *	smp_mb();			[...]
	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
	 *
	 * Ensures that we always see the incremented 'nr_ats_masters' count if
	 * ATS was enabled at the PCI device before completion of the TLBI.
	 */
	smp_mb();
	if (!atomic_read(&smmu_domain->nr_ats_masters))
		return 0;

1628 1629 1630
	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
1631 1632 1633 1634 1635 1636 1637 1638 1639
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		if (!master->ats_enabled)
			continue;

		for (i = 0; i < master->num_sids; i++) {
			cmd.atc.sid = master->sids[i];
			arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
		}
	}
1640 1641
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

1642
	return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
1643 1644
}

1645 1646 1647 1648 1649 1650 1651
/* IO_PGTABLE API */
static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

1652 1653 1654
	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
1655 1656 1657
	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
	 * insertion to guarantee those are observed before the TLBI. Do be
	 * careful, 007.
1658
	 */
1659 1660 1661 1662 1663 1664 1665 1666
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		arm_smmu_tlb_inv_asid(smmu, smmu_domain->s1_cfg.cd.asid);
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
		arm_smmu_cmdq_issue_sync(smmu);
	}
1667
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
1668 1669
}

1670 1671 1672 1673
static void __arm_smmu_tlb_inv_range(struct arm_smmu_cmdq_ent *cmd,
				     unsigned long iova, size_t size,
				     size_t granule,
				     struct arm_smmu_domain *smmu_domain)
1674 1675
{
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1676
	unsigned long end = iova + size, num_pages = 0, tg = 0;
1677
	size_t inv_range = granule;
1678
	struct arm_smmu_cmdq_batch cmds = {};
1679

1680 1681 1682
	if (!size)
		return;

1683 1684 1685 1686 1687
	if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
		/* Get the leaf page size */
		tg = __ffs(smmu_domain->domain.pgsize_bitmap);

		/* Convert page size of 12,14,16 (log2) to 1,2,3 */
1688
		cmd->tlbi.tg = (tg - 10) / 2;
1689 1690

		/* Determine what level the granule is at */
1691
		cmd->tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));
1692 1693 1694 1695

		num_pages = size >> tg;
	}

1696
	while (iova < end) {
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
		if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
			/*
			 * On each iteration of the loop, the range is 5 bits
			 * worth of the aligned size remaining.
			 * The range in pages is:
			 *
			 * range = (num_pages & (0x1f << __ffs(num_pages)))
			 */
			unsigned long scale, num;

			/* Determine the power of 2 multiple number of pages */
			scale = __ffs(num_pages);
1709
			cmd->tlbi.scale = scale;
1710 1711 1712

			/* Determine how many chunks of 2^scale size we have */
			num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
1713
			cmd->tlbi.num = num - 1;
1714 1715 1716 1717 1718 1719

			/* range is num * 2^scale * pgsize */
			inv_range = num << (scale + tg);

			/* Clear out the lower order bits for the next iteration */
			num_pages -= num << scale;
1720 1721
		}

1722 1723
		cmd->tlbi.addr = iova;
		arm_smmu_cmdq_batch_add(smmu, &cmds, cmd);
1724
		iova += inv_range;
1725
	}
1726
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
}

static void arm_smmu_tlb_inv_range_domain(unsigned long iova, size_t size,
					  size_t granule, bool leaf,
					  struct arm_smmu_domain *smmu_domain)
{
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
		},
	};

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1740 1741
		cmd.opcode	= smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
				  CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA;
1742 1743 1744 1745 1746 1747
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}
	__arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
1748 1749 1750 1751 1752

	/*
	 * Unfortunately, this can't be leaf-only since we may have
	 * zapped an entire table.
	 */
1753
	arm_smmu_atc_inv_domain(smmu_domain, 0, iova, size);
1754 1755
}

1756 1757 1758 1759 1760
void arm_smmu_tlb_inv_range_asid(unsigned long iova, size_t size, int asid,
				 size_t granule, bool leaf,
				 struct arm_smmu_domain *smmu_domain)
{
	struct arm_smmu_cmdq_ent cmd = {
1761 1762
		.opcode	= smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
			  CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA,
1763 1764 1765 1766 1767 1768 1769 1770 1771
		.tlbi = {
			.asid	= asid,
			.leaf	= leaf,
		},
	};

	__arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
}

1772 1773
static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
					 unsigned long iova, size_t granule,
1774 1775
					 void *cookie)
{
1776 1777 1778 1779
	struct arm_smmu_domain *smmu_domain = cookie;
	struct iommu_domain *domain = &smmu_domain->domain;

	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
1780 1781
}

1782 1783 1784
static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
1785
	arm_smmu_tlb_inv_range_domain(iova, size, granule, false, cookie);
1786 1787
}

1788
static const struct iommu_flush_ops arm_smmu_flush_ops = {
1789
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
1790
	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
1791
	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

1811 1812 1813
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

1825 1826 1827 1828 1829 1830
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1831
	mutex_init(&smmu_domain->init_mutex);
1832 1833
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);
1834
	INIT_LIST_HEAD(&smmu_domain->mmu_notifiers);
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1862
	iommu_put_dma_cookie(domain);
1863
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1864 1865 1866 1867 1868

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

1869 1870
		/* Prevent SVA from touching the CD while we're freeing it */
		mutex_lock(&arm_smmu_asid_lock);
1871
		if (cfg->cdcfg.cdtab)
1872
			arm_smmu_free_cd_tables(smmu_domain);
1873
		arm_smmu_free_asid(&cfg->cd);
1874
		mutex_unlock(&arm_smmu_asid_lock);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1885
				       struct arm_smmu_master *master,
1886 1887 1888
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
1889
	u32 asid;
1890 1891
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1892
	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1893

1894 1895 1896 1897 1898
	refcount_set(&cfg->cd.refs, 1);

	/* Prevent SVA from modifying the ASID until it is written to the CD */
	mutex_lock(&arm_smmu_asid_lock);
	ret = xa_alloc(&arm_smmu_asid_xa, &asid, &cfg->cd,
1899 1900
		       XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
	if (ret)
1901
		goto out_unlock;
1902

1903 1904
	cfg->s1cdmax = master->ssid_bits;

1905 1906
	ret = arm_smmu_alloc_cd_tables(smmu_domain);
	if (ret)
1907 1908
		goto out_free_asid;

1909
	cfg->cd.asid	= (u16)asid;
1910
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
1911 1912 1913 1914 1915 1916 1917
	cfg->cd.tcr	= FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
			  CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
1918
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair;
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928

	/*
	 * Note that this will end up calling arm_smmu_sync_cd() before
	 * the master has been added to the devices list for this domain.
	 * This isn't an issue because the STE hasn't been installed yet.
	 */
	ret = arm_smmu_write_ctx_desc(smmu_domain, 0, &cfg->cd);
	if (ret)
		goto out_free_cd_tables;

1929
	mutex_unlock(&arm_smmu_asid_lock);
1930 1931
	return 0;

1932 1933
out_free_cd_tables:
	arm_smmu_free_cd_tables(smmu_domain);
1934
out_free_asid:
1935
	arm_smmu_free_asid(&cfg->cd);
1936 1937
out_unlock:
	mutex_unlock(&arm_smmu_asid_lock);
1938 1939 1940 1941
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1942
				       struct arm_smmu_master *master,
1943 1944
				       struct io_pgtable_cfg *pgtbl_cfg)
{
1945
	int vmid;
1946 1947
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1948
	typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr;
1949 1950

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1951
	if (vmid < 0)
1952 1953
		return vmid;

1954
	vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1955
	cfg->vmid	= (u16)vmid;
1956
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1957 1958 1959 1960 1961 1962 1963
	cfg->vtcr	= FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
1964 1965 1966
	return 0;
}

1967 1968
static int arm_smmu_domain_finalise(struct iommu_domain *domain,
				    struct arm_smmu_master *master)
1969 1970 1971 1972 1973 1974 1975
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
1976
				 struct arm_smmu_master *,
1977 1978 1979 1980
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1981 1982 1983 1984 1985
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

1986 1987 1988 1989 1990 1991 1992 1993
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
1994 1995
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
2012
		.pgsize_bitmap	= smmu->pgsize_bitmap,
2013 2014
		.ias		= ias,
		.oas		= oas,
2015
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
2016
		.tlb		= &arm_smmu_flush_ops,
2017
		.iommu_dev	= smmu->dev,
2018 2019
	};

2020 2021 2022
	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;

2023 2024 2025 2026
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

2027
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2028
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2029
	domain->geometry.force_aperture = true;
2030

2031
	ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
2032
	if (ret < 0) {
2033
		free_io_pgtable_ops(pgtbl_ops);
2034 2035
		return ret;
	}
2036

2037 2038
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

2063
static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2064
{
2065
	int i, j;
2066
	struct arm_smmu_device *smmu = master->smmu;
2067

2068 2069
	for (i = 0; i < master->num_sids; ++i) {
		u32 sid = master->sids[i];
2070 2071
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

2072 2073
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
2074
			if (master->sids[j] == sid)
2075 2076 2077 2078
				break;
		if (j < i)
			continue;

2079
		arm_smmu_write_strtab_ent(master, sid, step);
2080 2081 2082
	}
}

2083
static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2084
{
2085
	struct device *dev = master->dev;
2086
	struct arm_smmu_device *smmu = master->smmu;
2087
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2088

2089
	if (!(smmu->features & ARM_SMMU_FEAT_ATS))
2090
		return false;
2091

2092 2093 2094 2095
	if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
		return false;

	return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
2096
}
2097

2098 2099 2100 2101 2102
static void arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
2103
	struct arm_smmu_domain *smmu_domain = master->domain;
2104

2105 2106 2107
	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
	if (!master->ats_enabled)
		return;
2108 2109 2110

	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);
2111
	pdev = to_pci_dev(master->dev);
2112

2113 2114
	atomic_inc(&smmu_domain->nr_ats_masters);
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2115 2116
	if (pci_enable_ats(pdev, stu))
		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2117 2118 2119 2120
}

static void arm_smmu_disable_ats(struct arm_smmu_master *master)
{
2121
	struct arm_smmu_domain *smmu_domain = master->domain;
2122

2123
	if (!master->ats_enabled)
2124 2125
		return;

2126 2127 2128 2129 2130 2131
	pci_disable_ats(to_pci_dev(master->dev));
	/*
	 * Ensure ATS is disabled at the endpoint before we issue the
	 * ATC invalidation via the SMMU.
	 */
	wmb();
2132
	arm_smmu_atc_inv_master(master);
2133
	atomic_dec(&smmu_domain->nr_ats_masters);
2134 2135
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
{
	int ret;
	int features;
	int num_pasids;
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return -ENODEV;

	pdev = to_pci_dev(master->dev);

	features = pci_pasid_features(pdev);
	if (features < 0)
		return features;

	num_pasids = pci_max_pasids(pdev);
	if (num_pasids <= 0)
		return num_pasids;

	ret = pci_enable_pasid(pdev, features);
	if (ret) {
		dev_err(&pdev->dev, "Failed to enable PASID\n");
		return ret;
	}

	master->ssid_bits = min_t(u8, ilog2(num_pasids),
				  master->smmu->ssid_bits);
	return 0;
}

static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return;

	pdev = to_pci_dev(master->dev);

	if (!pdev->pasid_enabled)
		return;

	master->ssid_bits = 0;
	pci_disable_pasid(pdev);
}

2183
static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2184
{
2185 2186 2187 2188
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
2189 2190
		return;

2191 2192
	arm_smmu_disable_ats(master);

2193 2194 2195 2196
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2197
	master->domain = NULL;
2198
	master->ats_enabled = false;
2199
	arm_smmu_install_ste_for_dev(master);
2200 2201
}

2202 2203 2204
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
2205
	unsigned long flags;
2206
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2207 2208
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2209
	struct arm_smmu_master *master;
2210

2211
	if (!fwspec)
2212 2213
		return -ENOENT;

2214
	master = dev_iommu_priv_get(dev);
2215 2216
	smmu = master->smmu;

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	/*
	 * Checking that SVA is disabled ensures that this device isn't bound to
	 * any mm, and can be safely detached from its old domain. Bonds cannot
	 * be removed concurrently since we're holding the group mutex.
	 */
	if (arm_smmu_master_sva_enabled(master)) {
		dev_err(dev, "cannot attach - SVA enabled\n");
		return -EBUSY;
	}

2227
	arm_smmu_detach_dev(master);
2228 2229 2230 2231 2232

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
2233
		ret = arm_smmu_domain_finalise(domain, master);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
2245 2246 2247 2248 2249 2250 2251
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
		   master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
		dev_err(dev,
			"cannot attach to incompatible domain (%u SSID bits != %u)\n",
			smmu_domain->s1_cfg.s1cdmax, master->ssid_bits);
		ret = -EINVAL;
		goto out_unlock;
2252 2253
	}

2254
	master->domain = smmu_domain;
2255

2256
	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2257
		master->ats_enabled = arm_smmu_ats_supported(master);
2258

2259
	arm_smmu_install_ste_for_dev(master);
2260 2261 2262 2263 2264

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2265
	arm_smmu_enable_ats(master);
2266

2267 2268 2269 2270 2271 2272
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
2273
			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2274
{
2275
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2276 2277 2278 2279

	if (!ops)
		return -ENODEV;

2280
	return ops->map(ops, iova, paddr, size, prot, gfp);
2281 2282
}

2283 2284
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size, struct iommu_iotlb_gather *gather)
2285
{
2286 2287
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2288 2289 2290 2291

	if (!ops)
		return 0;

2292
	return ops->unmap(ops, iova, size, gather);
2293 2294
}

2295 2296 2297 2298 2299 2300 2301 2302
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

2303 2304
static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
				struct iommu_iotlb_gather *gather)
2305
{
2306
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2307

2308 2309 2310
	arm_smmu_tlb_inv_range_domain(gather->start,
				      gather->end - gather->start,
				      gather->pgsize, true, smmu_domain);
2311 2312
}

2313 2314 2315
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
2316
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2317

2318 2319 2320
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

2321 2322 2323
	if (!ops)
		return 0;

2324
	return ops->iova_to_phys(ops, iova);
2325 2326
}

2327
static struct platform_driver arm_smmu_driver;
2328

2329 2330
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2331
{
2332 2333
	struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
							  fwnode);
2334 2335
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

2348 2349
static struct iommu_ops arm_smmu_ops;

2350
static struct iommu_device *arm_smmu_probe_device(struct device *dev)
2351 2352 2353
{
	int i, ret;
	struct arm_smmu_device *smmu;
2354
	struct arm_smmu_master *master;
2355
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2356

2357
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2358
		return ERR_PTR(-ENODEV);
2359

2360
	if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
2361
		return ERR_PTR(-EBUSY);
2362 2363 2364

	smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
	if (!smmu)
2365
		return ERR_PTR(-ENODEV);
2366 2367 2368

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master)
2369
		return ERR_PTR(-ENOMEM);
2370 2371 2372 2373 2374

	master->dev = dev;
	master->smmu = smmu;
	master->sids = fwspec->ids;
	master->num_sids = fwspec->num_ids;
2375
	INIT_LIST_HEAD(&master->bonds);
2376
	dev_iommu_priv_set(dev, master);
2377

2378
	/* Check the SIDs are in range of the SMMU and our stream table */
2379 2380
	for (i = 0; i < master->num_sids; i++) {
		u32 sid = master->sids[i];
2381

2382 2383 2384 2385
		if (!arm_smmu_sid_in_range(smmu, sid)) {
			ret = -ERANGE;
			goto err_free_master;
		}
2386

2387 2388 2389 2390
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
2391
				goto err_free_master;
2392
		}
2393 2394
	}

2395 2396
	master->ssid_bits = min(smmu->ssid_bits, fwspec->num_pasid_bits);

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	/*
	 * Note that PASID must be enabled before, and disabled after ATS:
	 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
	 *
	 *   Behavior is undefined if this bit is Set and the value of the PASID
	 *   Enable, Execute Requested Enable, or Privileged Mode Requested bits
	 *   are changed.
	 */
	arm_smmu_enable_pasid(master);

2407 2408 2409 2410
	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
		master->ssid_bits = min_t(u8, master->ssid_bits,
					  CTXDESC_LINEAR_CDMAX);

2411
	return &smmu->iommu;
2412

2413 2414
err_free_master:
	kfree(master);
2415
	dev_iommu_priv_set(dev, NULL);
2416
	return ERR_PTR(ret);
2417 2418
}

2419
static void arm_smmu_release_device(struct device *dev)
2420
{
2421
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2422
	struct arm_smmu_master *master;
2423 2424 2425 2426

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

2427
	master = dev_iommu_priv_get(dev);
2428
	WARN_ON(arm_smmu_master_sva_enabled(master));
2429
	arm_smmu_detach_dev(master);
2430
	arm_smmu_disable_pasid(master);
2431 2432
	kfree(master);
	iommu_fwspec_free(dev);
2433 2434
}

2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

2452 2453 2454 2455 2456
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
			return 0;
		default:
			return -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = smmu_domain->non_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
2476
	default:
2477
		return -EINVAL;
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			if (smmu_domain->smmu) {
				ret = -EPERM;
				goto out_unlock;
			}

			if (*(int *)data)
				smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
			else
				smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
			break;
		default:
			ret = -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch(attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			smmu_domain->non_strict = *(int *)data;
			break;
		default:
			ret = -ENODEV;
2514 2515 2516
		}
		break;
	default:
2517
		ret = -EINVAL;
2518 2519 2520 2521 2522 2523 2524
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

2525 2526 2527 2528 2529
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

2530 2531 2532 2533 2534 2535 2536
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2537
					 prot, IOMMU_RESV_SW_MSI);
2538 2539 2540 2541
	if (!region)
		return;

	list_add_tail(&region->list, head);
2542 2543

	iommu_dma_get_resv_regions(dev, head);
2544 2545
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
static bool arm_smmu_dev_has_feature(struct device *dev,
				     enum iommu_dev_features feat)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);

	if (!master)
		return false;

	switch (feat) {
	case IOMMU_DEV_FEAT_SVA:
		return arm_smmu_master_sva_supported(master);
	default:
		return false;
	}
}

static bool arm_smmu_dev_feature_enabled(struct device *dev,
					 enum iommu_dev_features feat)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);

	if (!master)
		return false;

	switch (feat) {
	case IOMMU_DEV_FEAT_SVA:
		return arm_smmu_master_sva_enabled(master);
	default:
		return false;
	}
}

static int arm_smmu_dev_enable_feature(struct device *dev,
				       enum iommu_dev_features feat)
{
	if (!arm_smmu_dev_has_feature(dev, feat))
		return -ENODEV;

	if (arm_smmu_dev_feature_enabled(dev, feat))
		return -EBUSY;

	switch (feat) {
	case IOMMU_DEV_FEAT_SVA:
		return arm_smmu_master_enable_sva(dev_iommu_priv_get(dev));
	default:
		return -EINVAL;
	}
}

static int arm_smmu_dev_disable_feature(struct device *dev,
					enum iommu_dev_features feat)
{
	if (!arm_smmu_dev_feature_enabled(dev, feat))
		return -EINVAL;

	switch (feat) {
	case IOMMU_DEV_FEAT_SVA:
		return arm_smmu_master_disable_sva(dev_iommu_priv_get(dev));
	default:
		return -EINVAL;
	}
}

2609 2610 2611 2612 2613 2614 2615
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2616
	.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2617
	.iotlb_sync		= arm_smmu_iotlb_sync,
2618
	.iova_to_phys		= arm_smmu_iova_to_phys,
2619 2620
	.probe_device		= arm_smmu_probe_device,
	.release_device		= arm_smmu_release_device,
2621
	.device_group		= arm_smmu_device_group,
2622 2623
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2624
	.of_xlate		= arm_smmu_of_xlate,
2625
	.get_resv_regions	= arm_smmu_get_resv_regions,
2626
	.put_resv_regions	= generic_iommu_put_resv_regions,
2627 2628 2629 2630
	.dev_has_feat		= arm_smmu_dev_has_feature,
	.dev_feat_enabled	= arm_smmu_dev_feature_enabled,
	.dev_enable_feat	= arm_smmu_dev_enable_feature,
	.dev_disable_feat	= arm_smmu_dev_disable_feature,
2631 2632 2633
	.sva_bind		= arm_smmu_sva_bind,
	.sva_unbind		= arm_smmu_sva_unbind,
	.sva_get_pasid		= arm_smmu_sva_get_pasid,
2634 2635 2636 2637 2638 2639
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
2640
				   void __iomem *page,
2641 2642
				   unsigned long prod_off,
				   unsigned long cons_off,
2643
				   size_t dwords, const char *name)
2644
{
2645 2646 2647
	size_t qsz;

	do {
2648
		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2649 2650 2651 2652 2653
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

2654
		q->llq.max_n_shift--;
2655
	} while (1);
2656 2657

	if (!q->base) {
2658 2659 2660
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
2661 2662 2663
		return -ENOMEM;
	}

2664 2665
	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
2666
			 1 << q->llq.max_n_shift, name);
2667 2668
	}

2669 2670
	q->prod_reg	= page + prod_off;
	q->cons_reg	= page + cons_off;
2671 2672 2673
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2674
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2675
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2676

2677
	q->llq.prod = q->llq.cons = 0;
2678 2679 2680
	return 0;
}

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
static void arm_smmu_cmdq_free_bitmap(void *data)
{
	unsigned long *bitmap = data;
	bitmap_free(bitmap);
}

static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
{
	int ret = 0;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
	atomic_long_t *bitmap;

	atomic_set(&cmdq->owner_prod, 0);
	atomic_set(&cmdq->lock, 0);

	bitmap = (atomic_long_t *)bitmap_zalloc(nents, GFP_KERNEL);
	if (!bitmap) {
		dev_err(smmu->dev, "failed to allocate cmdq bitmap\n");
		ret = -ENOMEM;
	} else {
		cmdq->valid_map = bitmap;
		devm_add_action(smmu->dev, arm_smmu_cmdq_free_bitmap, bitmap);
	}

	return ret;
}

2709 2710 2711 2712 2713
static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
2714 2715 2716
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, smmu->base,
				      ARM_SMMU_CMDQ_PROD, ARM_SMMU_CMDQ_CONS,
				      CMDQ_ENT_DWORDS, "cmdq");
2717
	if (ret)
2718
		return ret;
2719

2720 2721 2722 2723
	ret = arm_smmu_cmdq_init(smmu);
	if (ret)
		return ret;

2724
	/* evtq */
2725 2726 2727
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, smmu->page1,
				      ARM_SMMU_EVTQ_PROD, ARM_SMMU_EVTQ_CONS,
				      EVTQ_ENT_DWORDS, "evtq");
2728
	if (ret)
2729
		return ret;
2730 2731 2732 2733 2734

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2735 2736 2737
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, smmu->page1,
				       ARM_SMMU_PRIQ_PROD, ARM_SMMU_PRIQ_CONS,
				       PRIQ_ENT_DWORDS, "priq");
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2765
	u32 size, l1size;
2766 2767
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2768 2769 2770
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2771 2772 2773 2774
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2775 2776
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2777
			 size, smmu->sid_bits);
2778

2779
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2780
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2781
				     GFP_KERNEL);
2782 2783 2784
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
2785
			l1size);
2786 2787 2788 2789 2790
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
2791 2792 2793
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2794 2795
	cfg->strtab_base_cfg = reg;

2796
	return arm_smmu_init_l1_strtab(smmu);
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2807
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2808
				     GFP_KERNEL);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2819 2820
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
2841
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

2858
	return arm_smmu_init_strtab(smmu);
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
2885 2886 2887 2888 2889 2890
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
2891 2892
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2907
	doorbell &= MSI_CFG0_ADDR_MASK;
2908 2909 2910

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
2911
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

2932 2933 2934 2935 2936
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

2937 2938 2939
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
2940
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

2964
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2965
{
2966
	int irq, ret;
2967

2968
	arm_smmu_setup_msis(smmu);
2969

2970
	/* Request interrupt lines */
2971 2972
	irq = smmu->evtq.q.irq;
	if (irq) {
2973
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2974
						arm_smmu_evtq_thread,
2975 2976
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
2977
		if (ret < 0)
2978
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
2979 2980
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
2981 2982 2983 2984 2985 2986
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
2987
		if (ret < 0)
2988
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
2989 2990
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
2991 2992 2993 2994 2995
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
2996
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2997
							arm_smmu_priq_thread,
2998 2999
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
3000
							smmu);
3001
			if (ret < 0)
3002 3003
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
3004 3005
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
3006 3007
		}
	}
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
3026 3027
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
3041 3042

	/* Enable interrupt generation on the SMMU */
3043
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

3062
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
3063 3064 3065 3066 3067 3068 3069
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
3070
	if (reg & CR0_SMMUEN) {
3071
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
3072 3073
		WARN_ON(is_kdump_kernel() && !disable_bypass);
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
3074
	}
3075 3076 3077 3078 3079 3080

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
3081 3082 3083 3084 3085 3086
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
3087 3088 3089
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
3090 3091 3092 3093 3094
	reg = CR2_PTM | CR2_RECINVSID;

	if (smmu->features & ARM_SMMU_FEAT_E2H)
		reg |= CR2_E2H;

3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
3105 3106
	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3119
	arm_smmu_cmdq_issue_sync(smmu);
3120 3121 3122 3123 3124 3125 3126 3127 3128

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3129
	arm_smmu_cmdq_issue_sync(smmu);
3130 3131 3132

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
3133 3134
	writel_relaxed(smmu->evtq.q.llq.prod, smmu->page1 + ARM_SMMU_EVTQ_PROD);
	writel_relaxed(smmu->evtq.q.llq.cons, smmu->page1 + ARM_SMMU_EVTQ_CONS);
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
3148
		writel_relaxed(smmu->priq.q.llq.prod,
3149
			       smmu->page1 + ARM_SMMU_PRIQ_PROD);
3150
		writel_relaxed(smmu->priq.q.llq.cons,
3151
			       smmu->page1 + ARM_SMMU_PRIQ_CONS);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

3172 3173 3174 3175 3176 3177
	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

3178 3179
	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3180 3181 3182 3183 3184 3185

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3186
		if (ret)
3187 3188
			return ret;
	}
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

3199
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3200 3201
{
	u32 reg;
3202
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3203 3204 3205 3206 3207

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
3208
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
3219
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

3247
	if (reg & IDR0_MSI) {
3248
		smmu->features |= ARM_SMMU_FEAT_MSI;
3249 3250 3251
		if (coherent && !disable_msipolling)
			smmu->options |= ARM_SMMU_OPT_MSIPOLL;
	}
3252

3253
	if (reg & IDR0_HYP) {
3254
		smmu->features |= ARM_SMMU_FEAT_HYP;
3255 3256 3257
		if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
			smmu->features |= ARM_SMMU_FEAT_E2H;
	}
3258 3259

	/*
3260
	 * The coherency feature as set by FW is used in preference to the ID
3261 3262 3263
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
3264
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3265 3266
			 coherent ? "true" : "false");

3267
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3268
	case IDR0_STALL_MODEL_FORCE:
3269
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
3270
		fallthrough;
3271
	case IDR0_STALL_MODEL_STALL:
3272
		smmu->features |= ARM_SMMU_FEAT_STALLS;
3273
	}
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
3287
	switch (FIELD_GET(IDR0_TTF, reg)) {
3288 3289
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
3290
		fallthrough;
3291 3292 3293
	case IDR0_TTF_AARCH64:
		break;
	default:
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

3309
	/* Queue sizes, capped to ensure natural alignment */
3310 3311
	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_CMDQS, reg));
3312
	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3313
		/*
3314 3315 3316 3317
		 * We don't support splitting up batches, so one batch of
		 * commands plus an extra sync needs to fit inside the command
		 * queue. There's also no way we can handle the weird alignment
		 * restrictions on the base pointer for a unit-length queue.
3318
		 */
3319 3320
		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
			CMDQ_BATCH_ENTRIES);
3321 3322 3323
		return -ENXIO;
	}

3324 3325 3326 3327
	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_PRIQS, reg));
3328 3329

	/* SID/SSID sizes */
3330 3331
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3332

3333 3334 3335 3336 3337 3338 3339
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

3340 3341 3342 3343 3344
	/* IDR3 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
	if (FIELD_GET(IDR3_RIL, reg))
		smmu->features |= ARM_SMMU_FEAT_RANGE_INV;

3345 3346 3347 3348
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
3349
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3350 3351 3352

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
3353
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3354
	if (reg & IDR5_GRAN16K)
3355
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3356
	if (reg & IDR5_GRAN4K)
3357
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3358

3359 3360 3361 3362
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

3363
	/* Output address size */
3364
	switch (FIELD_GET(IDR5_OAS, reg)) {
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
3380 3381 3382 3383
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
3384 3385 3386
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
3387
		fallthrough;
3388 3389 3390 3391
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

3392 3393 3394 3395 3396
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

3397 3398 3399 3400 3401
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

3402
	smmu->ias = max(smmu->ias, smmu->oas);
3403

3404 3405 3406
	if (arm_smmu_sva_supported(smmu))
		smmu->features |= ARM_SMMU_FEAT_SVA;

3407 3408 3409 3410 3411
	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

3412
#ifdef CONFIG_ACPI
3413 3414
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
3415 3416
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3417
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3418
		break;
3419
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3420 3421 3422
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
3423 3424 3425 3426

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

3439 3440
	acpi_smmu_get_options(iort_smmu->model, smmu);

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

3454 3455
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
3456 3457
{
	struct device *dev = &pdev->dev;
3458
	u32 cells;
3459
	int ret = -EINVAL;
3460 3461 3462 3463 3464 3465

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

3476 3477 3478 3479 3480 3481 3482 3483
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
static int arm_smmu_set_bus_ops(struct iommu_ops *ops)
{
	int err;

#ifdef CONFIG_PCI
	if (pci_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&pci_bus_type, ops);
		if (err)
			return err;
	}
#endif
#ifdef CONFIG_ARM_AMBA
	if (amba_bustype.iommu_ops != ops) {
		err = bus_set_iommu(&amba_bustype, ops);
		if (err)
			goto err_reset_pci_ops;
	}
#endif
	if (platform_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&platform_bus_type, ops);
		if (err)
			goto err_reset_amba_ops;
	}

	return 0;

err_reset_amba_ops:
#ifdef CONFIG_ARM_AMBA
	bus_set_iommu(&amba_bustype, NULL);
#endif
err_reset_pci_ops: __maybe_unused;
#ifdef CONFIG_PCI
	bus_set_iommu(&pci_bus_type, NULL);
#endif
	return err;
}

3521 3522 3523
static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
				      resource_size_t size)
{
3524
	struct resource res = DEFINE_RES_MEM(start, size);
3525 3526 3527 3528

	return devm_ioremap_resource(dev, &res);
}

3529 3530 3531 3532
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
3533
	resource_size_t ioaddr;
3534 3535 3536
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
3537 3538 3539 3540 3541 3542 3543 3544

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

3556 3557
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3558
	if (resource_size(res) < arm_smmu_resource_size(smmu)) {
3559 3560 3561
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
3562
	ioaddr = res->start;
3563

3564 3565 3566 3567 3568
	/*
	 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain
	 * the PMCG registers which are reserved by the PMU driver.
	 */
	smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
3569 3570 3571
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

3572 3573 3574 3575 3576 3577 3578 3579 3580
	if (arm_smmu_resource_size(smmu) > SZ_64K) {
		smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
					       ARM_SMMU_REG_SZ);
		if (IS_ERR(smmu->page1))
			return PTR_ERR(smmu->page1);
	} else {
		smmu->page1 = smmu->base;
	}

3581 3582
	/* Interrupt lines */

3583
	irq = platform_get_irq_byname_optional(pdev, "combined");
3584
	if (irq > 0)
3585 3586
		smmu->combined_irq = irq;
	else {
3587
		irq = platform_get_irq_byname_optional(pdev, "eventq");
3588 3589
		if (irq > 0)
			smmu->evtq.q.irq = irq;
3590

3591
		irq = platform_get_irq_byname_optional(pdev, "priq");
3592 3593
		if (irq > 0)
			smmu->priq.q.irq = irq;
3594

3595
		irq = platform_get_irq_byname_optional(pdev, "gerror");
3596 3597 3598
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
3599
	/* Probe the h/w */
3600
	ret = arm_smmu_device_hw_probe(smmu);
3601 3602 3603 3604 3605 3606 3607 3608
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

3609 3610 3611
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

3612
	/* Reset the device */
3613 3614 3615 3616 3617
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
3618 3619
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
3620 3621
	if (ret)
		return ret;
3622 3623 3624 3625 3626

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
3627 3628 3629 3630
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
3631

3632
	return arm_smmu_set_bus_ops(&arm_smmu_ops);
3633 3634
}

3635
static int arm_smmu_device_remove(struct platform_device *pdev)
3636
{
3637
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3638

3639 3640 3641
	arm_smmu_set_bus_ops(NULL);
	iommu_device_unregister(&smmu->iommu);
	iommu_device_sysfs_remove(&smmu->iommu);
3642
	arm_smmu_device_disable(smmu);
3643 3644 3645 3646 3647 3648 3649

	return 0;
}

static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
3650 3651
}

3652
static const struct of_device_id arm_smmu_of_match[] = {
3653 3654 3655
	{ .compatible = "arm,smmu-v3", },
	{ },
};
3656
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
3657

3658 3659 3660 3661 3662 3663
static void arm_smmu_driver_unregister(struct platform_driver *drv)
{
	arm_smmu_sva_notifier_synchronize();
	platform_driver_unregister(drv);
}

3664 3665
static struct platform_driver arm_smmu_driver = {
	.driver	= {
3666
		.name			= "arm-smmu-v3",
3667
		.of_match_table		= arm_smmu_of_match,
3668
		.suppress_bind_attrs	= true,
3669
	},
3670
	.probe	= arm_smmu_device_probe,
3671
	.remove	= arm_smmu_device_remove,
3672
	.shutdown = arm_smmu_device_shutdown,
3673
};
3674 3675
module_driver(arm_smmu_driver, platform_driver_register,
	      arm_smmu_driver_unregister);
3676 3677

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
3678
MODULE_AUTHOR("Will Deacon <will@kernel.org>");
3679
MODULE_ALIAS("platform:arm-smmu-v3");
3680
MODULE_LICENSE("GPL v2");