arm-smmu-v3.c 93.1 KB
Newer Older
A
Andrew Murray 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

12 13
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
14
#include <linux/bitops.h>
15
#include <linux/crash_dump.h>
16
#include <linux/delay.h>
17
#include <linux/dma-iommu.h>
18 19
#include <linux/err.h>
#include <linux/interrupt.h>
20
#include <linux/io-pgtable.h>
21
#include <linux/iopoll.h>
22
#include <linux/module.h>
23
#include <linux/msi.h>
24 25
#include <linux/of.h>
#include <linux/of_address.h>
26
#include <linux/of_iommu.h>
27
#include <linux/of_platform.h>
28
#include <linux/pci.h>
29
#include <linux/pci-ats.h>
30 31
#include <linux/platform_device.h>

32 33
#include <linux/amba/bus.h>

34
#include "arm-smmu-v3.h"
35

36
static bool disable_bypass = 1;
37
module_param(disable_bypass, bool, 0444);
38 39 40
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

41 42 43 44 45
static bool disable_msipolling;
module_param(disable_msipolling, bool, 0444);
MODULE_PARM_DESC(disable_msipolling,
	"Disable MSI-based polling for CMD_SYNC completion.");

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

71 72 73 74 75
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

76 77
DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa);
DEFINE_MUTEX(arm_smmu_asid_lock);
78

79 80
static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
81
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
82 83 84
	{ 0, NULL},
};

85 86 87
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
88 89
	if (offset > SZ_64K)
		return smmu->page1 + offset - SZ_64K;
90 91 92 93

	return smmu->base + offset;
}

94 95 96 97 98
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

113
/* Low-level queue manipulation functions */
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
{
	u32 space, prod, cons;

	prod = Q_IDX(q, q->prod);
	cons = Q_IDX(q, q->cons);

	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
		space = (1 << q->max_n_shift) - (prod - cons);
	else
		space = cons - prod;

	return space >= n;
}

129
static bool queue_full(struct arm_smmu_ll_queue *q)
130 131 132 133 134
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

135
static bool queue_empty(struct arm_smmu_ll_queue *q)
136 137 138 139 140
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

141
static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
142
{
143 144 145 146
	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
147 148
}

149
static void queue_sync_cons_out(struct arm_smmu_queue *q)
150
{
151 152 153 154
	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
155
	__iomb();
156
	writel_relaxed(q->llq.cons, q->cons_reg);
157 158
}

159
static void queue_inc_cons(struct arm_smmu_ll_queue *q)
160
{
161 162
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
163 164
}

165
static int queue_sync_prod_in(struct arm_smmu_queue *q)
166
{
167
	u32 prod;
168
	int ret = 0;
169 170 171 172 173 174 175

	/*
	 * We can't use the _relaxed() variant here, as we must prevent
	 * speculative reads of the queue before we have determined that
	 * prod has indeed moved.
	 */
	prod = readl(q->prod_reg);
176

177
	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
178 179
		ret = -EOVERFLOW;

180
	q->llq.prod = prod;
181 182 183
	return ret;
}

184
static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
185
{
186 187
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
188 189
}

190 191
static void queue_poll_init(struct arm_smmu_device *smmu,
			    struct arm_smmu_queue_poll *qp)
192
{
193 194 195 196
	qp->delay = 1;
	qp->spin_cnt = 0;
	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
197 198
}

199
static int queue_poll(struct arm_smmu_queue_poll *qp)
200
{
201 202
	if (ktime_compare(ktime_get(), qp->timeout) > 0)
		return -ETIMEDOUT;
203

204 205 206 207 208 209 210 211
	if (qp->wfe) {
		wfe();
	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
		cpu_relax();
	} else {
		udelay(qp->delay);
		qp->delay *= 2;
		qp->spin_cnt = 0;
212 213 214 215 216 217 218 219 220 221 222 223 224
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

225
static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
226 227 228 229 230 231 232 233 234
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
235
	if (queue_empty(&q->llq))
236 237
		return -EAGAIN;

238
	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
239
	queue_inc_cons(&q->llq);
240
	queue_sync_cons_out(q);
241 242 243 244 245 246
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
247
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
248
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
249 250 251 252 253 254

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
255 256
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
257 258
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
259 260
	case CMDQ_OP_CFGI_CD:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
261
		fallthrough;
262
	case CMDQ_OP_CFGI_STE:
263 264
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
265
		break;
266 267 268
	case CMDQ_OP_CFGI_CD_ALL:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		break;
269 270
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
271
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
272 273
		break;
	case CMDQ_OP_TLBI_NH_VA:
274 275
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
276
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
277 278
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
279 280
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
281 282
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
283
	case CMDQ_OP_TLBI_S2_IPA:
284 285
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
286 287
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
288 289
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
290
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
291 292
		break;
	case CMDQ_OP_TLBI_NH_ASID:
293
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
294
		fallthrough;
295
	case CMDQ_OP_TLBI_S12_VMALL:
296
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
297
		break;
298 299 300 301 302 303 304 305
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
306
	case CMDQ_OP_PRI_RESP:
307 308 309 310
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
311 312 313 314 315 316 317 318
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
319
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
320 321
		break;
	case CMDQ_OP_CMD_SYNC:
322
		if (ent->sync.msiaddr) {
323
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
324 325
			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		} else {
326
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
327
		}
328 329
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
330 331 332 333 334 335 336 337
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

338 339 340 341 342 343 344 345 346 347 348 349
static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
					 u32 prod)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	/*
	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
	 * payload, so the write will zero the entire command on that platform.
	 */
350
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
351 352 353 354 355 356 357
		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
				   q->ent_dwords * 8;
	}

	arm_smmu_cmdq_build_cmd(cmd, &ent);
}

358 359 360 361 362 363
static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
364
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
365 366 367 368 369 370
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
371
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
372 373 374 375 376
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
377
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
378 379 380 381 382 383

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
384 385 386 387 388 389 390 391
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
392 393 394
	case CMDQ_ERR_CERROR_ILL_IDX:
	default:
		break;
395 396 397 398 399 400
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
401
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
402 403 404 405 406 407 408 409 410 411
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

412
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
413 414
}

415 416 417 418 419 420 421 422 423 424 425 426 427
/*
 * Command queue locking.
 * This is a form of bastardised rwlock with the following major changes:
 *
 * - The only LOCK routines are exclusive_trylock() and shared_lock().
 *   Neither have barrier semantics, and instead provide only a control
 *   dependency.
 *
 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
 *   fails if the caller appears to be the last lock holder (yes, this is
 *   racy). All successful UNLOCK routines have RELEASE semantics.
 */
static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
428
{
429
	int val;
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
	/*
	 * We can try to avoid the cmpxchg() loop by simply incrementing the
	 * lock counter. When held in exclusive state, the lock counter is set
	 * to INT_MIN so these increments won't hurt as the value will remain
	 * negative.
	 */
	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
		return;

	do {
		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
}

static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
{
	(void)atomic_dec_return_release(&cmdq->lock);
}

static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
{
	if (atomic_read(&cmdq->lock) == 1)
		return false;

	arm_smmu_cmdq_shared_unlock(cmdq);
	return true;
}

#define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
({									\
	bool __ret;							\
	local_irq_save(flags);						\
	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
	if (!__ret)							\
		local_irq_restore(flags);				\
	__ret;								\
})

#define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
({									\
	atomic_set_release(&cmdq->lock, 0);				\
	local_irq_restore(flags);					\
})


/*
 * Command queue insertion.
 * This is made fiddly by our attempts to achieve some sort of scalability
 * since there is one queue shared amongst all of the CPUs in the system.  If
 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
 * then you'll *love* this monstrosity.
 *
 * The basic idea is to split the queue up into ranges of commands that are
 * owned by a given CPU; the owner may not have written all of the commands
 * itself, but is responsible for advancing the hardware prod pointer when
 * the time comes. The algorithm is roughly:
 *
 * 	1. Allocate some space in the queue. At this point we also discover
 *	   whether the head of the queue is currently owned by another CPU,
 *	   or whether we are the owner.
 *
 *	2. Write our commands into our allocated slots in the queue.
 *
 *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
 *
 *	4. If we are an owner:
 *		a. Wait for the previous owner to finish.
 *		b. Mark the queue head as unowned, which tells us the range
 *		   that we are responsible for publishing.
 *		c. Wait for all commands in our owned range to become valid.
 *		d. Advance the hardware prod pointer.
 *		e. Tell the next owner we've finished.
 *
 *	5. If we are inserting a CMD_SYNC (we may or may not have been an
 *	   owner), then we need to stick around until it has completed:
 *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
 *		   to clear the first 4 bytes.
 *		b. Otherwise, we spin waiting for the hardware cons pointer to
 *		   advance past our command.
 *
 * The devil is in the details, particularly the use of locking for handling
 * SYNC completion and freeing up space in the queue before we think that it is
 * full.
 */
static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
					       u32 sprod, u32 eprod, bool set)
{
	u32 swidx, sbidx, ewidx, ebidx;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= sprod,
	};
523

524 525
	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
526

527 528 529 530
	while (llq.prod != eprod) {
		unsigned long mask;
		atomic_long_t *ptr;
		u32 limit = BITS_PER_LONG;
531

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;

		ptr = &cmdq->valid_map[swidx];

		if ((swidx == ewidx) && (sbidx < ebidx))
			limit = ebidx;

		mask = GENMASK(limit - 1, sbidx);

		/*
		 * The valid bit is the inverse of the wrap bit. This means
		 * that a zero-initialised queue is invalid and, after marking
		 * all entries as valid, they become invalid again when we
		 * wrap.
		 */
		if (set) {
			atomic_long_xor(mask, ptr);
		} else { /* Poll */
			unsigned long valid;

			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
		}

		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
558 559 560
	}
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
/* Mark all entries in the range [sprod, eprod) as valid */
static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
					u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
}

/* Wait for all entries in the range [sprod, eprod) to become valid */
static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
					 u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
}

/* Wait for the command queue to become non-full */
static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
					     struct arm_smmu_ll_queue *llq)
578
{
579
	unsigned long flags;
580 581 582
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	int ret = 0;
583

584 585 586 587 588 589 590 591 592
	/*
	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
	 * that fails, spin until somebody else updates it for us.
	 */
	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
		llq->val = READ_ONCE(cmdq->q.llq.val);
		return 0;
593 594
	}

595 596 597 598 599 600 601 602 603 604
	queue_poll_init(smmu, &qp);
	do {
		llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
		if (!queue_full(llq))
			break;

		ret = queue_poll(&qp);
	} while (!ret);

	return ret;
605
}
606

607
/*
608 609
 * Wait until the SMMU signals a CMD_SYNC completion MSI.
 * Must be called with the cmdq lock held in some capacity.
610
 */
611 612
static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
					  struct arm_smmu_ll_queue *llq)
613
{
614 615 616 617
	int ret = 0;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
618

619
	queue_poll_init(smmu, &qp);
620

621 622 623 624 625 626 627 628
	/*
	 * The MSI won't generate an event, since it's being written back
	 * into the command queue.
	 */
	qp.wfe = false;
	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
	return ret;
629 630
}

631 632 633 634 635 636
/*
 * Wait until the SMMU cons index passes llq->prod.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
					       struct arm_smmu_ll_queue *llq)
637
{
638 639 640 641
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 prod = llq->prod;
	int ret = 0;
642

643 644 645 646 647
	queue_poll_init(smmu, &qp);
	llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
	do {
		if (queue_consumed(llq, prod))
			break;
648

649
		ret = queue_poll(&qp);
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		/*
		 * This needs to be a readl() so that our subsequent call
		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
		 *
		 * Specifically, we need to ensure that we observe all
		 * shared_lock()s by other CMD_SYNCs that share our owner,
		 * so that a failing call to tryunlock() means that we're
		 * the last one out and therefore we can safely advance
		 * cmdq->q.llq.cons. Roughly speaking:
		 *
		 * CPU 0		CPU1			CPU2 (us)
		 *
		 * if (sync)
		 * 	shared_lock();
		 *
		 * dma_wmb();
		 * set_valid_map();
		 *
		 * 			if (owner) {
		 *				poll_valid_map();
		 *				<control dependency>
		 *				writel(prod_reg);
		 *
		 *						readl(cons_reg);
		 *						tryunlock();
		 *
		 * Requires us to see CPU 0's shared_lock() acquisition.
		 */
		llq->cons = readl(cmdq->q.cons_reg);
	} while (!ret);
681

682
	return ret;
683 684
}

685 686
static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
					 struct arm_smmu_ll_queue *llq)
687
{
688
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL)
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);

	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
}

static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
					u32 prod, int n)
{
	int i;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= prod,
	};

	for (i = 0; i < n; ++i) {
		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];

		prod = queue_inc_prod_n(&llq, i);
		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
	}
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/*
 * This is the actual insertion function, and provides the following
 * ordering guarantees to callers:
 *
 * - There is a dma_wmb() before publishing any commands to the queue.
 *   This can be relied upon to order prior writes to data structures
 *   in memory (such as a CD or an STE) before the command.
 *
 * - On completion of a CMD_SYNC, there is a control dependency.
 *   This can be relied upon to order subsequent writes to memory (e.g.
 *   freeing an IOVA) after completion of the CMD_SYNC.
 *
 * - Command insertion is totally ordered, so if two CPUs each race to
 *   insert their own list of commands then all of the commands from one
 *   CPU will appear before any of the commands from the other CPU.
 */
727 728 729 730 731
static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
				       u64 *cmds, int n, bool sync)
{
	u64 cmd_sync[CMDQ_ENT_DWORDS];
	u32 prod;
732
	unsigned long flags;
733 734 735 736 737 738
	bool owner;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift = cmdq->q.llq.max_n_shift,
	}, head = llq;
	int ret = 0;
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	/* 1. Allocate some space in the queue */
	local_irq_save(flags);
	llq.val = READ_ONCE(cmdq->q.llq.val);
	do {
		u64 old;

		while (!queue_has_space(&llq, n + sync)) {
			local_irq_restore(flags);
			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
			local_irq_save(flags);
		}

		head.cons = llq.cons;
		head.prod = queue_inc_prod_n(&llq, n + sync) |
					     CMDQ_PROD_OWNED_FLAG;

		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
		if (old == llq.val)
			break;

		llq.val = old;
	} while (1);
	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;

	/*
	 * 2. Write our commands into the queue
	 * Dependency ordering from the cmpxchg() loop above.
	 */
	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
	if (sync) {
		prod = queue_inc_prod_n(&llq, n);
		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, prod);
		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);

		/*
		 * In order to determine completion of our CMD_SYNC, we must
		 * ensure that the queue can't wrap twice without us noticing.
		 * We achieve that by taking the cmdq lock as shared before
		 * marking our slot as valid.
		 */
		arm_smmu_cmdq_shared_lock(cmdq);
	}
785

786 787 788
	/* 3. Mark our slots as valid, ensuring commands are visible first */
	dma_wmb();
	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	/* 4. If we are the owner, take control of the SMMU hardware */
	if (owner) {
		/* a. Wait for previous owner to finish */
		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);

		/* b. Stop gathering work by clearing the owned flag */
		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
						   &cmdq->q.llq.atomic.prod);
		prod &= ~CMDQ_PROD_OWNED_FLAG;

		/*
		 * c. Wait for any gathered work to be written to the queue.
		 * Note that we read our own entries so that we have the control
		 * dependency required by (d).
		 */
		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);

		/*
		 * d. Advance the hardware prod pointer
		 * Control dependency ordering from the entries becoming valid.
		 */
		writel_relaxed(prod, cmdq->q.prod_reg);

		/*
		 * e. Tell the next owner we're done
		 * Make sure we've updated the hardware first, so that we don't
		 * race to update prod and potentially move it backwards.
		 */
		atomic_set_release(&cmdq->owner_prod, prod);
	}

	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
	if (sync) {
		llq.prod = queue_inc_prod_n(&llq, n);
		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
		if (ret) {
			dev_err_ratelimited(smmu->dev,
					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
					    llq.prod,
					    readl_relaxed(cmdq->q.prod_reg),
					    readl_relaxed(cmdq->q.cons_reg));
		}
832

833
		/*
J
John Garry 已提交
834
		 * Try to unlock the cmdq lock. This will fail if we're the last
835 836 837 838 839 840 841
		 * reader, in which case we can safely update cmdq->q.llq.cons
		 */
		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
			arm_smmu_cmdq_shared_unlock(cmdq);
		}
	}
842

843
	local_irq_restore(flags);
844 845 846
	return ret;
}

847 848
static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				   struct arm_smmu_cmdq_ent *ent)
849
{
850
	u64 cmd[CMDQ_ENT_DWORDS];
851

852 853 854 855 856 857 858 859 860 861 862 863
	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return -EINVAL;
	}

	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, false);
}

static int arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, NULL, 0, true);
864 865
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_batch *cmds,
				    struct arm_smmu_cmdq_ent *cmd)
{
	if (cmds->num == CMDQ_BATCH_ENTRIES) {
		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false);
		cmds->num = 0;
	}
	arm_smmu_cmdq_build_cmd(&cmds->cmds[cmds->num * CMDQ_ENT_DWORDS], cmd);
	cmds->num++;
}

static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
				      struct arm_smmu_cmdq_batch *cmds)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
}

884
/* Context descriptor manipulation functions */
885 886
static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
			     int ssid, bool leaf)
887
{
888 889 890
	size_t i;
	unsigned long flags;
	struct arm_smmu_master *master;
891
	struct arm_smmu_cmdq_batch cmds = {};
892 893 894 895 896 897 898 899 900 901 902 903 904
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_CD,
		.cfgi	= {
			.ssid	= ssid,
			.leaf	= leaf,
		},
	};

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		for (i = 0; i < master->num_sids; i++) {
			cmd.cfgi.sid = master->sids[i];
905
			arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
906 907 908
		}
	}
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
909

910
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
911
}
912

913 914 915 916
static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
					struct arm_smmu_l1_ctx_desc *l1_desc)
{
	size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
917

918 919 920 921 922 923 924 925
	l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
					     &l1_desc->l2ptr_dma, GFP_KERNEL);
	if (!l1_desc->l2ptr) {
		dev_warn(smmu->dev,
			 "failed to allocate context descriptor table\n");
		return -ENOMEM;
	}
	return 0;
926 927
}

928 929
static void arm_smmu_write_cd_l1_desc(__le64 *dst,
				      struct arm_smmu_l1_ctx_desc *l1_desc)
930
{
931 932 933
	u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
		  CTXDESC_L1_DESC_V;

934
	/* See comment in arm_smmu_write_ctx_desc() */
935 936 937 938 939 940 941 942 943 944 945
	WRITE_ONCE(*dst, cpu_to_le64(val));
}

static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain,
				   u32 ssid)
{
	__le64 *l1ptr;
	unsigned int idx;
	struct arm_smmu_l1_ctx_desc *l1_desc;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
		return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS;

	idx = ssid >> CTXDESC_SPLIT;
	l1_desc = &cdcfg->l1_desc[idx];
	if (!l1_desc->l2ptr) {
		if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
			return NULL;

		l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
		arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
		/* An invalid L1CD can be cached */
		arm_smmu_sync_cd(smmu_domain, ssid, false);
	}
	idx = ssid & (CTXDESC_L2_ENTRIES - 1);
	return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS;
}

965 966 967
static int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain,
				   int ssid, struct arm_smmu_ctx_desc *cd)
{
968
	/*
969 970 971 972 973 974 975
	 * This function handles the following cases:
	 *
	 * (1) Install primary CD, for normal DMA traffic (SSID = 0).
	 * (2) Install a secondary CD, for SID+SSID traffic.
	 * (3) Update ASID of a CD. Atomically write the first 64 bits of the
	 *     CD, then invalidate the old entry and mappings.
	 * (4) Remove a secondary CD.
976
	 */
977 978
	u64 val;
	bool cd_live;
979
	__le64 *cdptr;
980
	struct arm_smmu_device *smmu = smmu_domain->smmu;
981 982 983 984 985 986 987

	if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax)))
		return -E2BIG;

	cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid);
	if (!cdptr)
		return -ENOMEM;
988 989 990

	val = le64_to_cpu(cdptr[0]);
	cd_live = !!(val & CTXDESC_CD_0_V);
991

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	if (!cd) { /* (4) */
		val = 0;
	} else if (cd_live) { /* (3) */
		val &= ~CTXDESC_CD_0_ASID;
		val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
		/*
		 * Until CD+TLB invalidation, both ASIDs may be used for tagging
		 * this substream's traffic
		 */
	} else { /* (1) and (2) */
		cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
		cdptr[2] = 0;
		cdptr[3] = cpu_to_le64(cd->mair);
1005

1006 1007 1008 1009 1010 1011
		/*
		 * STE is live, and the SMMU might read dwords of this CD in any
		 * order. Ensure that it observes valid values before reading
		 * V=1.
		 */
		arm_smmu_sync_cd(smmu_domain, ssid, true);
1012

1013
		val = cd->tcr |
1014
#ifdef __BIG_ENDIAN
1015
			CTXDESC_CD_0_ENDI |
1016
#endif
1017 1018
			CTXDESC_CD_0_R | CTXDESC_CD_0_A |
			(cd->mm ? 0 : CTXDESC_CD_0_ASET) |
1019 1020 1021
			CTXDESC_CD_0_AA64 |
			FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
			CTXDESC_CD_0_V;
1022

1023 1024 1025 1026
		/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
		if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
			val |= CTXDESC_CD_0_S;
	}
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	/*
	 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3
	 * "Configuration structures and configuration invalidation completion"
	 *
	 *   The size of single-copy atomic reads made by the SMMU is
	 *   IMPLEMENTATION DEFINED but must be at least 64 bits. Any single
	 *   field within an aligned 64-bit span of a structure can be altered
	 *   without first making the structure invalid.
	 */
	WRITE_ONCE(cdptr[0], cpu_to_le64(val));
	arm_smmu_sync_cd(smmu_domain, ssid, true);
	return 0;
1040 1041
}

1042 1043
static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1044
	int ret;
1045
	size_t l1size;
1046
	size_t max_contexts;
1047 1048 1049 1050
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;

1051 1052 1053 1054 1055 1056
	max_contexts = 1 << cfg->s1cdmax;

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
	    max_contexts <= CTXDESC_L2_ENTRIES) {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
		cdcfg->num_l1_ents = max_contexts;
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
	} else {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
		cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts,
						  CTXDESC_L2_ENTRIES);

		cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents,
					      sizeof(*cdcfg->l1_desc),
					      GFP_KERNEL);
		if (!cdcfg->l1_desc)
			return -ENOMEM;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	}
1072

1073 1074 1075 1076
	cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
					   GFP_KERNEL);
	if (!cdcfg->cdtab) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1077 1078
		ret = -ENOMEM;
		goto err_free_l1;
1079
	}
1080

1081
	return 0;
1082

1083 1084 1085 1086 1087 1088
err_free_l1:
	if (cdcfg->l1_desc) {
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;
	}
	return ret;
1089 1090 1091 1092
}

static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1093 1094
	int i;
	size_t size, l1size;
1095 1096
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

	if (cdcfg->l1_desc) {
		size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);

		for (i = 0; i < cdcfg->num_l1_ents; i++) {
			if (!cdcfg->l1_desc[i].l2ptr)
				continue;

			dmam_free_coherent(smmu->dev, size,
					   cdcfg->l1_desc[i].l2ptr,
					   cdcfg->l1_desc[i].l2ptr_dma);
		}
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	} else {
		l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
	}
1116 1117 1118 1119

	dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma);
	cdcfg->cdtab_dma = 0;
	cdcfg->cdtab = NULL;
1120 1121
}

1122
bool arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd)
1123
{
1124 1125 1126
	bool free;
	struct arm_smmu_ctx_desc *old_cd;

1127
	if (!cd->asid)
1128
		return false;
1129

1130 1131 1132 1133 1134 1135
	free = refcount_dec_and_test(&cd->refs);
	if (free) {
		old_cd = xa_erase(&arm_smmu_asid_xa, cd->asid);
		WARN_ON(old_cd != cd);
	}
	return free;
1136 1137
}

1138 1139 1140 1141 1142 1143
/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1144
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1145
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1146

1147 1148
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(*dst, cpu_to_le64(val));
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1162
	arm_smmu_cmdq_issue_sync(smmu);
1163 1164
}

1165 1166
static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
1167 1168 1169 1170 1171
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1172 1173 1174
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
1186 1187 1188 1189
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
1190 1191 1192 1193 1194 1195 1196
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

1216
	if (val & STRTAB_STE_0_V) {
1217
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1218 1219 1220 1221 1222 1223
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1224
		case STRTAB_STE_0_CFG_ABORT:
1225 1226
			BUG_ON(!disable_bypass);
			break;
1227 1228 1229 1230 1231
		default:
			BUG(); /* STE corruption */
		}
	}

1232
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1233 1234 1235
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
1236 1237
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
1238
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1239
		else
1240
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1241 1242

		dst[0] = cpu_to_le64(val);
1243 1244
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1245
		dst[2] = 0; /* Nuke the VMID */
1246 1247 1248 1249 1250
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1251 1252 1253 1254
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

1255
	if (s1_cfg) {
1256 1257
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1258
			 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
1259 1260 1261 1262
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1263

1264 1265
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1266 1267
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1268
		val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1269 1270 1271
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
			FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
			FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
1272 1273
	}

1274
	if (s2_cfg) {
1275 1276
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1277 1278
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1279 1280 1281 1282 1283 1284
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1285
		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1286

1287
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1288 1289
	}

1290 1291 1292 1293
	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

1294
	arm_smmu_sync_ste_for_sid(smmu, sid);
1295 1296
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(dst[0], cpu_to_le64(val));
1297 1298 1299
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1300 1301
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1302 1303
}

1304
static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent)
1305 1306 1307 1308
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
1309
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1325
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1326 1327

	desc->span = STRTAB_SPLIT + 1;
1328
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1329
					  GFP_KERNEL);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
1348
	struct arm_smmu_ll_queue *llq = &q->llq;
1349 1350
	u64 evt[EVTQ_ENT_DWORDS];

1351 1352
	do {
		while (!queue_remove_raw(q, evt)) {
1353
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
1366
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1367
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1368
	} while (!queue_empty(llq));
1369 1370

	/* Sync our overflow flag, as we believe we're up to speed */
1371 1372
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		    Q_IDX(llq, llq->cons);
1373 1374 1375
	return IRQ_HANDLED;
}

1376 1377 1378 1379 1380 1381
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1382 1383 1384 1385 1386
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1387 1388 1389 1390 1391 1392 1393 1394 1395

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1396
		 evt[1] & PRIQ_1_ADDR_MASK);
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1409

1410 1411
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1412 1413 1414 1415 1416 1417
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
1418
	struct arm_smmu_ll_queue *llq = &q->llq;
1419 1420
	u64 evt[PRIQ_ENT_DWORDS];

1421 1422 1423
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1424

1425
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1426
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1427
	} while (!queue_empty(llq));
1428 1429

	/* Sync our overflow flag, as we believe we're up to speed */
1430 1431 1432
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		      Q_IDX(llq, llq->cons);
	queue_sync_cons_out(q);
1433 1434 1435 1436 1437 1438 1439
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1440
	u32 gerror, gerrorn, active;
1441 1442 1443 1444 1445
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1446 1447
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1448 1449 1450 1451
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1452
		 active);
1453

1454
	if (active & GERROR_SFM_ERR) {
1455 1456 1457 1458
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1459
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1460 1461
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1462
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1463 1464
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1465
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1466 1467
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1468
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1469 1470
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1471
	if (active & GERROR_PRIQ_ABT_ERR)
1472 1473
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1474
	if (active & GERROR_EVTQ_ABT_ERR)
1475 1476
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1477
	if (active & GERROR_CMDQ_ERR)
1478 1479 1480 1481 1482 1483
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= !!ssid,
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

1554
static int arm_smmu_atc_inv_master(struct arm_smmu_master *master)
1555 1556
{
	int i;
1557
	struct arm_smmu_cmdq_ent cmd;
1558

1559
	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
1560 1561

	for (i = 0; i < master->num_sids; i++) {
1562 1563
		cmd.atc.sid = master->sids[i];
		arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
1564 1565 1566 1567 1568 1569 1570 1571
	}

	return arm_smmu_cmdq_issue_sync(master->smmu);
}

static int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain,
				   int ssid, unsigned long iova, size_t size)
{
1572
	int i;
1573 1574 1575
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_master *master;
1576
	struct arm_smmu_cmdq_batch cmds = {};
1577 1578 1579 1580

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	/*
	 * Ensure that we've completed prior invalidation of the main TLBs
	 * before we read 'nr_ats_masters' in case of a concurrent call to
	 * arm_smmu_enable_ats():
	 *
	 *	// unmap()			// arm_smmu_enable_ats()
	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
	 *	smp_mb();			[...]
	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
	 *
	 * Ensures that we always see the incremented 'nr_ats_masters' count if
	 * ATS was enabled at the PCI device before completion of the TLBI.
	 */
	smp_mb();
	if (!atomic_read(&smmu_domain->nr_ats_masters))
		return 0;

1598 1599 1600
	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
1601 1602 1603 1604 1605 1606 1607 1608 1609
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		if (!master->ats_enabled)
			continue;

		for (i = 0; i < master->num_sids; i++) {
			cmd.atc.sid = master->sids[i];
			arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
		}
	}
1610 1611
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

1612
	return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
1613 1614
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
/* IO_PGTABLE API */
static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1631 1632 1633
	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
1634 1635 1636
	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
	 * insertion to guarantee those are observed before the TLBI. Do be
	 * careful, 007.
1637
	 */
1638
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1639
	arm_smmu_cmdq_issue_sync(smmu);
1640
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
1641 1642
}

1643 1644 1645
static void arm_smmu_tlb_inv_range(unsigned long iova, size_t size,
				   size_t granule, bool leaf,
				   struct arm_smmu_domain *smmu_domain)
1646 1647
{
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1648 1649
	unsigned long start = iova, end = iova + size, num_pages = 0, tg = 0;
	size_t inv_range = granule;
1650
	struct arm_smmu_cmdq_batch cmds = {};
1651 1652 1653 1654 1655 1656
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
		},
	};

1657 1658 1659
	if (!size)
		return;

1660 1661 1662 1663 1664 1665 1666 1667
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
	if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
		/* Get the leaf page size */
		tg = __ffs(smmu_domain->domain.pgsize_bitmap);

		/* Convert page size of 12,14,16 (log2) to 1,2,3 */
		cmd.tlbi.tg = (tg - 10) / 2;

		/* Determine what level the granule is at */
		cmd.tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));

		num_pages = size >> tg;
	}

1681
	while (iova < end) {
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
			/*
			 * On each iteration of the loop, the range is 5 bits
			 * worth of the aligned size remaining.
			 * The range in pages is:
			 *
			 * range = (num_pages & (0x1f << __ffs(num_pages)))
			 */
			unsigned long scale, num;

			/* Determine the power of 2 multiple number of pages */
			scale = __ffs(num_pages);
			cmd.tlbi.scale = scale;

			/* Determine how many chunks of 2^scale size we have */
			num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
			cmd.tlbi.num = num - 1;

			/* range is num * 2^scale * pgsize */
			inv_range = num << (scale + tg);

			/* Clear out the lower order bits for the next iteration */
			num_pages -= num << scale;
1705 1706 1707
		}

		cmd.tlbi.addr = iova;
1708
		arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
1709
		iova += inv_range;
1710
	}
1711
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
1712 1713 1714 1715 1716 1717

	/*
	 * Unfortunately, this can't be leaf-only since we may have
	 * zapped an entire table.
	 */
	arm_smmu_atc_inv_domain(smmu_domain, 0, start, size);
1718 1719
}

1720 1721
static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
					 unsigned long iova, size_t granule,
1722 1723
					 void *cookie)
{
1724 1725 1726 1727
	struct arm_smmu_domain *smmu_domain = cookie;
	struct iommu_domain *domain = &smmu_domain->domain;

	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
1728 1729
}

1730 1731 1732
static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
1733
	arm_smmu_tlb_inv_range(iova, size, granule, false, cookie);
1734 1735 1736 1737 1738
}

static void arm_smmu_tlb_inv_leaf(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
1739
	arm_smmu_tlb_inv_range(iova, size, granule, true, cookie);
1740 1741
}

1742
static const struct iommu_flush_ops arm_smmu_flush_ops = {
1743
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
1744 1745
	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
	.tlb_flush_leaf = arm_smmu_tlb_inv_leaf,
1746
	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

1766 1767 1768
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

1780 1781 1782 1783 1784 1785
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1786
	mutex_init(&smmu_domain->init_mutex);
1787 1788 1789
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1816
	iommu_put_dma_cookie(domain);
1817
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1818 1819 1820 1821 1822

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

1823 1824
		/* Prevent SVA from touching the CD while we're freeing it */
		mutex_lock(&arm_smmu_asid_lock);
1825
		if (cfg->cdcfg.cdtab)
1826
			arm_smmu_free_cd_tables(smmu_domain);
1827
		arm_smmu_free_asid(&cfg->cd);
1828
		mutex_unlock(&arm_smmu_asid_lock);
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1839
				       struct arm_smmu_master *master,
1840 1841 1842
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
1843
	u32 asid;
1844 1845
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1846
	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1847

1848 1849 1850 1851 1852
	refcount_set(&cfg->cd.refs, 1);

	/* Prevent SVA from modifying the ASID until it is written to the CD */
	mutex_lock(&arm_smmu_asid_lock);
	ret = xa_alloc(&arm_smmu_asid_xa, &asid, &cfg->cd,
1853 1854
		       XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
	if (ret)
1855
		goto out_unlock;
1856

1857 1858
	cfg->s1cdmax = master->ssid_bits;

1859 1860
	ret = arm_smmu_alloc_cd_tables(smmu_domain);
	if (ret)
1861 1862
		goto out_free_asid;

1863
	cfg->cd.asid	= (u16)asid;
1864
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
1865 1866 1867 1868 1869 1870 1871
	cfg->cd.tcr	= FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
			  CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
1872
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair;
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882

	/*
	 * Note that this will end up calling arm_smmu_sync_cd() before
	 * the master has been added to the devices list for this domain.
	 * This isn't an issue because the STE hasn't been installed yet.
	 */
	ret = arm_smmu_write_ctx_desc(smmu_domain, 0, &cfg->cd);
	if (ret)
		goto out_free_cd_tables;

1883
	mutex_unlock(&arm_smmu_asid_lock);
1884 1885
	return 0;

1886 1887
out_free_cd_tables:
	arm_smmu_free_cd_tables(smmu_domain);
1888
out_free_asid:
1889
	arm_smmu_free_asid(&cfg->cd);
1890 1891
out_unlock:
	mutex_unlock(&arm_smmu_asid_lock);
1892 1893 1894 1895
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1896
				       struct arm_smmu_master *master,
1897 1898
				       struct io_pgtable_cfg *pgtbl_cfg)
{
1899
	int vmid;
1900 1901
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1902
	typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr;
1903 1904

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1905
	if (vmid < 0)
1906 1907
		return vmid;

1908
	vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1909
	cfg->vmid	= (u16)vmid;
1910
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1911 1912 1913 1914 1915 1916 1917
	cfg->vtcr	= FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
1918 1919 1920
	return 0;
}

1921 1922
static int arm_smmu_domain_finalise(struct iommu_domain *domain,
				    struct arm_smmu_master *master)
1923 1924 1925 1926 1927 1928 1929
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
1930
				 struct arm_smmu_master *,
1931 1932 1933 1934
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1935 1936 1937 1938 1939
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

1940 1941 1942 1943 1944 1945 1946 1947
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
1948 1949
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
1966
		.pgsize_bitmap	= smmu->pgsize_bitmap,
1967 1968
		.ias		= ias,
		.oas		= oas,
1969
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
1970
		.tlb		= &arm_smmu_flush_ops,
1971
		.iommu_dev	= smmu->dev,
1972 1973
	};

1974 1975 1976
	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;

1977 1978 1979 1980
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

1981
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1982
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
1983
	domain->geometry.force_aperture = true;
1984

1985
	ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
1986
	if (ret < 0) {
1987
		free_io_pgtable_ops(pgtbl_ops);
1988 1989
		return ret;
	}
1990

1991 1992
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

2017
static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2018
{
2019
	int i, j;
2020
	struct arm_smmu_device *smmu = master->smmu;
2021

2022 2023
	for (i = 0; i < master->num_sids; ++i) {
		u32 sid = master->sids[i];
2024 2025
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

2026 2027
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
2028
			if (master->sids[j] == sid)
2029 2030 2031 2032
				break;
		if (j < i)
			continue;

2033
		arm_smmu_write_strtab_ent(master, sid, step);
2034 2035 2036
	}
}

2037
static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2038
{
2039
	struct device *dev = master->dev;
2040
	struct arm_smmu_device *smmu = master->smmu;
2041
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2042

2043
	if (!(smmu->features & ARM_SMMU_FEAT_ATS))
2044
		return false;
2045

2046 2047 2048 2049
	if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
		return false;

	return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
2050
}
2051

2052 2053 2054 2055 2056
static void arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
2057
	struct arm_smmu_domain *smmu_domain = master->domain;
2058

2059 2060 2061
	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
	if (!master->ats_enabled)
		return;
2062 2063 2064

	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);
2065
	pdev = to_pci_dev(master->dev);
2066

2067 2068
	atomic_inc(&smmu_domain->nr_ats_masters);
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2069 2070
	if (pci_enable_ats(pdev, stu))
		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2071 2072 2073 2074
}

static void arm_smmu_disable_ats(struct arm_smmu_master *master)
{
2075
	struct arm_smmu_domain *smmu_domain = master->domain;
2076

2077
	if (!master->ats_enabled)
2078 2079
		return;

2080 2081 2082 2083 2084 2085
	pci_disable_ats(to_pci_dev(master->dev));
	/*
	 * Ensure ATS is disabled at the endpoint before we issue the
	 * ATC invalidation via the SMMU.
	 */
	wmb();
2086
	arm_smmu_atc_inv_master(master);
2087
	atomic_dec(&smmu_domain->nr_ats_masters);
2088 2089
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
{
	int ret;
	int features;
	int num_pasids;
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return -ENODEV;

	pdev = to_pci_dev(master->dev);

	features = pci_pasid_features(pdev);
	if (features < 0)
		return features;

	num_pasids = pci_max_pasids(pdev);
	if (num_pasids <= 0)
		return num_pasids;

	ret = pci_enable_pasid(pdev, features);
	if (ret) {
		dev_err(&pdev->dev, "Failed to enable PASID\n");
		return ret;
	}

	master->ssid_bits = min_t(u8, ilog2(num_pasids),
				  master->smmu->ssid_bits);
	return 0;
}

static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return;

	pdev = to_pci_dev(master->dev);

	if (!pdev->pasid_enabled)
		return;

	master->ssid_bits = 0;
	pci_disable_pasid(pdev);
}

2137
static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2138
{
2139 2140 2141 2142
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
2143 2144
		return;

2145 2146
	arm_smmu_disable_ats(master);

2147 2148 2149 2150
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2151
	master->domain = NULL;
2152
	master->ats_enabled = false;
2153
	arm_smmu_install_ste_for_dev(master);
2154 2155
}

2156 2157 2158
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
2159
	unsigned long flags;
2160
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2161 2162
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2163
	struct arm_smmu_master *master;
2164

2165
	if (!fwspec)
2166 2167
		return -ENOENT;

2168
	master = dev_iommu_priv_get(dev);
2169 2170
	smmu = master->smmu;

2171
	arm_smmu_detach_dev(master);
2172 2173 2174 2175 2176

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
2177
		ret = arm_smmu_domain_finalise(domain, master);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
2189 2190 2191 2192 2193 2194 2195
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
		   master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
		dev_err(dev,
			"cannot attach to incompatible domain (%u SSID bits != %u)\n",
			smmu_domain->s1_cfg.s1cdmax, master->ssid_bits);
		ret = -EINVAL;
		goto out_unlock;
2196 2197
	}

2198
	master->domain = smmu_domain;
2199

2200
	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2201
		master->ats_enabled = arm_smmu_ats_supported(master);
2202

2203
	arm_smmu_install_ste_for_dev(master);
2204 2205 2206 2207 2208

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2209
	arm_smmu_enable_ats(master);
2210

2211 2212 2213 2214 2215 2216
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
2217
			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2218
{
2219
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2220 2221 2222 2223

	if (!ops)
		return -ENODEV;

2224
	return ops->map(ops, iova, paddr, size, prot, gfp);
2225 2226
}

2227 2228
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size, struct iommu_iotlb_gather *gather)
2229
{
2230 2231
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2232 2233 2234 2235

	if (!ops)
		return 0;

2236
	return ops->unmap(ops, iova, size, gather);
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

2247 2248
static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
				struct iommu_iotlb_gather *gather)
2249
{
2250
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2251

2252 2253
	arm_smmu_tlb_inv_range(gather->start, gather->end - gather->start,
			       gather->pgsize, true, smmu_domain);
2254 2255
}

2256 2257 2258
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
2259
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2260

2261 2262 2263
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

2264 2265 2266
	if (!ops)
		return 0;

2267
	return ops->iova_to_phys(ops, iova);
2268 2269
}

2270
static struct platform_driver arm_smmu_driver;
2271

2272 2273
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2274
{
2275 2276
	struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
							  fwnode);
2277 2278
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

2291 2292
static struct iommu_ops arm_smmu_ops;

2293
static struct iommu_device *arm_smmu_probe_device(struct device *dev)
2294 2295 2296
{
	int i, ret;
	struct arm_smmu_device *smmu;
2297
	struct arm_smmu_master *master;
2298
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2299

2300
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2301
		return ERR_PTR(-ENODEV);
2302

2303
	if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
2304
		return ERR_PTR(-EBUSY);
2305 2306 2307

	smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
	if (!smmu)
2308
		return ERR_PTR(-ENODEV);
2309 2310 2311

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master)
2312
		return ERR_PTR(-ENOMEM);
2313 2314 2315 2316 2317

	master->dev = dev;
	master->smmu = smmu;
	master->sids = fwspec->ids;
	master->num_sids = fwspec->num_ids;
2318
	dev_iommu_priv_set(dev, master);
2319

2320
	/* Check the SIDs are in range of the SMMU and our stream table */
2321 2322
	for (i = 0; i < master->num_sids; i++) {
		u32 sid = master->sids[i];
2323

2324 2325 2326 2327
		if (!arm_smmu_sid_in_range(smmu, sid)) {
			ret = -ERANGE;
			goto err_free_master;
		}
2328

2329 2330 2331 2332
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
2333
				goto err_free_master;
2334
		}
2335 2336
	}

2337 2338
	master->ssid_bits = min(smmu->ssid_bits, fwspec->num_pasid_bits);

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	/*
	 * Note that PASID must be enabled before, and disabled after ATS:
	 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
	 *
	 *   Behavior is undefined if this bit is Set and the value of the PASID
	 *   Enable, Execute Requested Enable, or Privileged Mode Requested bits
	 *   are changed.
	 */
	arm_smmu_enable_pasid(master);

2349 2350 2351 2352
	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
		master->ssid_bits = min_t(u8, master->ssid_bits,
					  CTXDESC_LINEAR_CDMAX);

2353
	return &smmu->iommu;
2354

2355 2356
err_free_master:
	kfree(master);
2357
	dev_iommu_priv_set(dev, NULL);
2358
	return ERR_PTR(ret);
2359 2360
}

2361
static void arm_smmu_release_device(struct device *dev)
2362
{
2363
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2364
	struct arm_smmu_master *master;
2365 2366 2367 2368

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

2369
	master = dev_iommu_priv_get(dev);
2370
	arm_smmu_detach_dev(master);
2371
	arm_smmu_disable_pasid(master);
2372 2373
	kfree(master);
	iommu_fwspec_free(dev);
2374 2375
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

2393 2394 2395 2396 2397
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
			return 0;
		default:
			return -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = smmu_domain->non_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
2417
	default:
2418
		return -EINVAL;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			if (smmu_domain->smmu) {
				ret = -EPERM;
				goto out_unlock;
			}

			if (*(int *)data)
				smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
			else
				smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
			break;
		default:
			ret = -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch(attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			smmu_domain->non_strict = *(int *)data;
			break;
		default:
			ret = -ENODEV;
2455 2456 2457
		}
		break;
	default:
2458
		ret = -EINVAL;
2459 2460 2461 2462 2463 2464 2465
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

2466 2467 2468 2469 2470
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

2471 2472 2473 2474 2475 2476 2477
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2478
					 prot, IOMMU_RESV_SW_MSI);
2479 2480 2481 2482
	if (!region)
		return;

	list_add_tail(&region->list, head);
2483 2484

	iommu_dma_get_resv_regions(dev, head);
2485 2486
}

2487 2488 2489 2490 2491 2492 2493
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2494
	.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2495
	.iotlb_sync		= arm_smmu_iotlb_sync,
2496
	.iova_to_phys		= arm_smmu_iova_to_phys,
2497 2498
	.probe_device		= arm_smmu_probe_device,
	.release_device		= arm_smmu_release_device,
2499
	.device_group		= arm_smmu_device_group,
2500 2501
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2502
	.of_xlate		= arm_smmu_of_xlate,
2503
	.get_resv_regions	= arm_smmu_get_resv_regions,
2504
	.put_resv_regions	= generic_iommu_put_resv_regions,
2505 2506 2507 2508 2509 2510 2511 2512
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
2513
				   size_t dwords, const char *name)
2514
{
2515 2516 2517
	size_t qsz;

	do {
2518
		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2519 2520 2521 2522 2523
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

2524
		q->llq.max_n_shift--;
2525
	} while (1);
2526 2527

	if (!q->base) {
2528 2529 2530
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
2531 2532 2533
		return -ENOMEM;
	}

2534 2535
	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
2536
			 1 << q->llq.max_n_shift, name);
2537 2538
	}

2539 2540
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
2541 2542 2543
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2544
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2545
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2546

2547
	q->llq.prod = q->llq.cons = 0;
2548 2549 2550
	return 0;
}

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
static void arm_smmu_cmdq_free_bitmap(void *data)
{
	unsigned long *bitmap = data;
	bitmap_free(bitmap);
}

static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
{
	int ret = 0;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
	atomic_long_t *bitmap;

	atomic_set(&cmdq->owner_prod, 0);
	atomic_set(&cmdq->lock, 0);

	bitmap = (atomic_long_t *)bitmap_zalloc(nents, GFP_KERNEL);
	if (!bitmap) {
		dev_err(smmu->dev, "failed to allocate cmdq bitmap\n");
		ret = -ENOMEM;
	} else {
		cmdq->valid_map = bitmap;
		devm_add_action(smmu->dev, arm_smmu_cmdq_free_bitmap, bitmap);
	}

	return ret;
}

2579 2580 2581 2582 2583 2584
static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2585 2586
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS,
				      "cmdq");
2587
	if (ret)
2588
		return ret;
2589

2590 2591 2592 2593
	ret = arm_smmu_cmdq_init(smmu);
	if (ret)
		return ret;

2594 2595
	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2596 2597
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS,
				      "evtq");
2598
	if (ret)
2599
		return ret;
2600 2601 2602 2603 2604

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2605
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2606 2607
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS,
				       "priq");
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2635
	u32 size, l1size;
2636 2637
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2638 2639 2640
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2641 2642 2643 2644
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2645 2646
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2647
			 size, smmu->sid_bits);
2648

2649
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2650
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2651
				     GFP_KERNEL);
2652 2653 2654
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
2655
			l1size);
2656 2657 2658 2659 2660
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
2661 2662 2663
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2664 2665
	cfg->strtab_base_cfg = reg;

2666
	return arm_smmu_init_l1_strtab(smmu);
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2677
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2678
				     GFP_KERNEL);
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2689 2690
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
2711
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

2728
	return arm_smmu_init_strtab(smmu);
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
2755 2756 2757 2758 2759 2760
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
2761 2762
}

2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2777
	doorbell &= MSI_CFG0_ADDR_MASK;
2778 2779 2780

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
2781
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

2802 2803 2804 2805 2806
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

2807 2808 2809
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
2810
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

2834
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2835
{
2836
	int irq, ret;
2837

2838
	arm_smmu_setup_msis(smmu);
2839

2840
	/* Request interrupt lines */
2841 2842
	irq = smmu->evtq.q.irq;
	if (irq) {
2843
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2844
						arm_smmu_evtq_thread,
2845 2846
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
2847
		if (ret < 0)
2848
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
2849 2850
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
2851 2852 2853 2854 2855 2856
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
2857
		if (ret < 0)
2858
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
2859 2860
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
2861 2862 2863 2864 2865
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
2866
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2867
							arm_smmu_priq_thread,
2868 2869
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
2870
							smmu);
2871
			if (ret < 0)
2872 2873
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
2874 2875
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
2876 2877
		}
	}
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
2896 2897
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2911 2912

	/* Enable interrupt generation on the SMMU */
2913
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

2932
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2933 2934 2935 2936 2937 2938 2939
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2940
	if (reg & CR0_SMMUEN) {
2941
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2942 2943
		WARN_ON(is_kdump_kernel() && !disable_bypass);
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
2944
	}
2945 2946 2947 2948 2949 2950

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
2951 2952 2953 2954 2955 2956
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2971 2972
	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2985
	arm_smmu_cmdq_issue_sync(smmu);
2986 2987 2988 2989 2990 2991 2992 2993 2994

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2995
	arm_smmu_cmdq_issue_sync(smmu);
2996 2997 2998

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2999
	writel_relaxed(smmu->evtq.q.llq.prod,
3000
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
3001
	writel_relaxed(smmu->evtq.q.llq.cons,
3002
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
3016
		writel_relaxed(smmu->priq.q.llq.prod,
3017
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
3018
		writel_relaxed(smmu->priq.q.llq.cons,
3019
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

3040 3041 3042 3043 3044 3045
	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

3046 3047
	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3048 3049 3050 3051 3052 3053

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3054
		if (ret)
3055 3056
			return ret;
	}
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

3067
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3068 3069
{
	u32 reg;
3070
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3071 3072 3073 3074 3075

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
3076
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
3087
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

3115
	if (reg & IDR0_MSI) {
3116
		smmu->features |= ARM_SMMU_FEAT_MSI;
3117 3118 3119
		if (coherent && !disable_msipolling)
			smmu->options |= ARM_SMMU_OPT_MSIPOLL;
	}
3120 3121 3122 3123 3124

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
3125
	 * The coherency feature as set by FW is used in preference to the ID
3126 3127 3128
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
3129
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3130 3131
			 coherent ? "true" : "false");

3132
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3133
	case IDR0_STALL_MODEL_FORCE:
3134
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
3135
		fallthrough;
3136
	case IDR0_STALL_MODEL_STALL:
3137
		smmu->features |= ARM_SMMU_FEAT_STALLS;
3138
	}
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
3152
	switch (FIELD_GET(IDR0_TTF, reg)) {
3153 3154
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
3155
		fallthrough;
3156 3157 3158
	case IDR0_TTF_AARCH64:
		break;
	default:
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

3174
	/* Queue sizes, capped to ensure natural alignment */
3175 3176
	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_CMDQS, reg));
3177
	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3178
		/*
3179 3180 3181 3182
		 * We don't support splitting up batches, so one batch of
		 * commands plus an extra sync needs to fit inside the command
		 * queue. There's also no way we can handle the weird alignment
		 * restrictions on the base pointer for a unit-length queue.
3183
		 */
3184 3185
		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
			CMDQ_BATCH_ENTRIES);
3186 3187 3188
		return -ENXIO;
	}

3189 3190 3191 3192
	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_PRIQS, reg));
3193 3194

	/* SID/SSID sizes */
3195 3196
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3197

3198 3199 3200 3201 3202 3203 3204
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

3205 3206 3207 3208 3209
	/* IDR3 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
	if (FIELD_GET(IDR3_RIL, reg))
		smmu->features |= ARM_SMMU_FEAT_RANGE_INV;

3210 3211 3212 3213
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
3214
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3215 3216 3217

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
3218
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3219
	if (reg & IDR5_GRAN16K)
3220
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3221
	if (reg & IDR5_GRAN4K)
3222
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3223

3224 3225 3226 3227
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

3228
	/* Output address size */
3229
	switch (FIELD_GET(IDR5_OAS, reg)) {
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
3245 3246 3247 3248
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
3249 3250 3251
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
3252
		fallthrough;
3253 3254 3255 3256
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

3257 3258 3259 3260 3261
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

3262 3263 3264 3265 3266
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

3267
	smmu->ias = max(smmu->ias, smmu->oas);
3268 3269 3270 3271 3272 3273

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

3274
#ifdef CONFIG_ACPI
3275 3276
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
3277 3278
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3279
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3280
		break;
3281
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3282 3283 3284
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
3285 3286 3287 3288

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

3301 3302
	acpi_smmu_get_options(iort_smmu->model, smmu);

3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

3316 3317
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
3318 3319
{
	struct device *dev = &pdev->dev;
3320
	u32 cells;
3321
	int ret = -EINVAL;
3322 3323 3324 3325 3326 3327

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

3338 3339 3340 3341 3342 3343 3344 3345
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
static int arm_smmu_set_bus_ops(struct iommu_ops *ops)
{
	int err;

#ifdef CONFIG_PCI
	if (pci_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&pci_bus_type, ops);
		if (err)
			return err;
	}
#endif
#ifdef CONFIG_ARM_AMBA
	if (amba_bustype.iommu_ops != ops) {
		err = bus_set_iommu(&amba_bustype, ops);
		if (err)
			goto err_reset_pci_ops;
	}
#endif
	if (platform_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&platform_bus_type, ops);
		if (err)
			goto err_reset_amba_ops;
	}

	return 0;

err_reset_amba_ops:
#ifdef CONFIG_ARM_AMBA
	bus_set_iommu(&amba_bustype, NULL);
#endif
err_reset_pci_ops: __maybe_unused;
#ifdef CONFIG_PCI
	bus_set_iommu(&pci_bus_type, NULL);
#endif
	return err;
}

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
				      resource_size_t size)
{
	struct resource res = {
		.flags = IORESOURCE_MEM,
		.start = start,
		.end = start + size - 1,
	};

	return devm_ioremap_resource(dev, &res);
}

3395 3396 3397 3398
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
3399
	resource_size_t ioaddr;
3400 3401 3402
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
3403 3404 3405 3406 3407 3408 3409 3410

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

3422 3423
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3424
	if (resource_size(res) < arm_smmu_resource_size(smmu)) {
3425 3426 3427
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
3428
	ioaddr = res->start;
3429

3430 3431 3432 3433 3434
	/*
	 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain
	 * the PMCG registers which are reserved by the PMU driver.
	 */
	smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
3435 3436 3437
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

3438 3439 3440 3441 3442 3443 3444 3445 3446
	if (arm_smmu_resource_size(smmu) > SZ_64K) {
		smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
					       ARM_SMMU_REG_SZ);
		if (IS_ERR(smmu->page1))
			return PTR_ERR(smmu->page1);
	} else {
		smmu->page1 = smmu->base;
	}

3447 3448
	/* Interrupt lines */

3449
	irq = platform_get_irq_byname_optional(pdev, "combined");
3450
	if (irq > 0)
3451 3452
		smmu->combined_irq = irq;
	else {
3453
		irq = platform_get_irq_byname_optional(pdev, "eventq");
3454 3455
		if (irq > 0)
			smmu->evtq.q.irq = irq;
3456

3457
		irq = platform_get_irq_byname_optional(pdev, "priq");
3458 3459
		if (irq > 0)
			smmu->priq.q.irq = irq;
3460

3461
		irq = platform_get_irq_byname_optional(pdev, "gerror");
3462 3463 3464
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
3465
	/* Probe the h/w */
3466
	ret = arm_smmu_device_hw_probe(smmu);
3467 3468 3469 3470 3471 3472 3473 3474
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

3475 3476 3477
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

3478
	/* Reset the device */
3479 3480 3481 3482 3483
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
3484 3485
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
3486 3487
	if (ret)
		return ret;
3488 3489 3490 3491 3492

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
3493 3494 3495 3496
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
3497

3498
	return arm_smmu_set_bus_ops(&arm_smmu_ops);
3499 3500
}

3501
static int arm_smmu_device_remove(struct platform_device *pdev)
3502
{
3503
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3504

3505 3506 3507
	arm_smmu_set_bus_ops(NULL);
	iommu_device_unregister(&smmu->iommu);
	iommu_device_sysfs_remove(&smmu->iommu);
3508
	arm_smmu_device_disable(smmu);
3509 3510 3511 3512 3513 3514 3515

	return 0;
}

static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
3516 3517
}

3518
static const struct of_device_id arm_smmu_of_match[] = {
3519 3520 3521
	{ .compatible = "arm,smmu-v3", },
	{ },
};
3522
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
3523 3524 3525

static struct platform_driver arm_smmu_driver = {
	.driver	= {
3526
		.name			= "arm-smmu-v3",
3527
		.of_match_table		= arm_smmu_of_match,
3528
		.suppress_bind_attrs	= true,
3529
	},
3530
	.probe	= arm_smmu_device_probe,
3531
	.remove	= arm_smmu_device_remove,
3532
	.shutdown = arm_smmu_device_shutdown,
3533
};
3534 3535 3536
module_platform_driver(arm_smmu_driver);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
3537
MODULE_AUTHOR("Will Deacon <will@kernel.org>");
3538
MODULE_ALIAS("platform:arm-smmu-v3");
3539
MODULE_LICENSE("GPL v2");