arm-smmu-v3.c 96.1 KB
Newer Older
A
Andrew Murray 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

12 13
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
14
#include <linux/bitops.h>
15
#include <linux/crash_dump.h>
16
#include <linux/delay.h>
17
#include <linux/dma-iommu.h>
18 19
#include <linux/err.h>
#include <linux/interrupt.h>
20
#include <linux/io-pgtable.h>
21
#include <linux/iopoll.h>
22
#include <linux/module.h>
23
#include <linux/msi.h>
24 25
#include <linux/of.h>
#include <linux/of_address.h>
26
#include <linux/of_iommu.h>
27
#include <linux/of_platform.h>
28
#include <linux/pci.h>
29
#include <linux/pci-ats.h>
30 31
#include <linux/platform_device.h>

32 33
#include <linux/amba/bus.h>

34
#include "arm-smmu-v3.h"
35

36
static bool disable_bypass = true;
37
module_param(disable_bypass, bool, 0444);
38 39 40
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

41 42 43 44 45
static bool disable_msipolling;
module_param(disable_msipolling, bool, 0444);
MODULE_PARM_DESC(disable_msipolling,
	"Disable MSI-based polling for CMD_SYNC completion.");

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

71 72 73 74 75
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

76 77
DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa);
DEFINE_MUTEX(arm_smmu_asid_lock);
78

79 80 81 82 83 84
/*
 * Special value used by SVA when a process dies, to quiesce a CD without
 * disabling it.
 */
struct arm_smmu_ctx_desc quiet_cd = { 0 };

85 86
static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
87
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
88 89 90
	{ 0, NULL},
};

91 92 93
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
94 95
	if (offset > SZ_64K)
		return smmu->page1 + offset - SZ_64K;
96 97 98 99

	return smmu->base + offset;
}

100 101 102 103 104 105 106 107 108 109 110 111 112 113
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

114
/* Low-level queue manipulation functions */
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
{
	u32 space, prod, cons;

	prod = Q_IDX(q, q->prod);
	cons = Q_IDX(q, q->cons);

	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
		space = (1 << q->max_n_shift) - (prod - cons);
	else
		space = cons - prod;

	return space >= n;
}

130
static bool queue_full(struct arm_smmu_ll_queue *q)
131 132 133 134 135
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

136
static bool queue_empty(struct arm_smmu_ll_queue *q)
137 138 139 140 141
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

142
static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
143
{
144 145 146 147
	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
148 149
}

150
static void queue_sync_cons_out(struct arm_smmu_queue *q)
151
{
152 153 154 155
	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
156
	__iomb();
157
	writel_relaxed(q->llq.cons, q->cons_reg);
158 159
}

160
static void queue_inc_cons(struct arm_smmu_ll_queue *q)
161
{
162 163
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
164 165
}

166
static int queue_sync_prod_in(struct arm_smmu_queue *q)
167
{
168
	u32 prod;
169
	int ret = 0;
170 171 172 173 174 175 176

	/*
	 * We can't use the _relaxed() variant here, as we must prevent
	 * speculative reads of the queue before we have determined that
	 * prod has indeed moved.
	 */
	prod = readl(q->prod_reg);
177

178
	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
179 180
		ret = -EOVERFLOW;

181
	q->llq.prod = prod;
182 183 184
	return ret;
}

185
static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
186
{
187 188
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
189 190
}

191 192
static void queue_poll_init(struct arm_smmu_device *smmu,
			    struct arm_smmu_queue_poll *qp)
193
{
194 195 196 197
	qp->delay = 1;
	qp->spin_cnt = 0;
	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
198 199
}

200
static int queue_poll(struct arm_smmu_queue_poll *qp)
201
{
202 203
	if (ktime_compare(ktime_get(), qp->timeout) > 0)
		return -ETIMEDOUT;
204

205 206 207 208 209 210 211 212
	if (qp->wfe) {
		wfe();
	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
		cpu_relax();
	} else {
		udelay(qp->delay);
		qp->delay *= 2;
		qp->spin_cnt = 0;
213 214 215 216 217 218 219 220 221 222 223 224 225
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

226
static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
227 228 229 230 231 232 233 234 235
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
236
	if (queue_empty(&q->llq))
237 238
		return -EAGAIN;

239
	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
240
	queue_inc_cons(&q->llq);
241
	queue_sync_cons_out(q);
242 243 244 245 246 247
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
248
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
249
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
250 251 252 253 254 255

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
256 257
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
258 259
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
260 261
	case CMDQ_OP_CFGI_CD:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
262
		fallthrough;
263
	case CMDQ_OP_CFGI_STE:
264 265
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
266
		break;
267 268 269
	case CMDQ_OP_CFGI_CD_ALL:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		break;
270 271
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
272
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
273 274
		break;
	case CMDQ_OP_TLBI_NH_VA:
275 276
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
277
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
278 279
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
280 281
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
282 283
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
284
	case CMDQ_OP_TLBI_S2_IPA:
285 286
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
287 288
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
289 290
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
291
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
292 293
		break;
	case CMDQ_OP_TLBI_NH_ASID:
294
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
295
		fallthrough;
296
	case CMDQ_OP_TLBI_S12_VMALL:
297
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
298
		break;
299 300 301 302 303 304 305 306
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
307
	case CMDQ_OP_PRI_RESP:
308 309 310 311
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
312 313 314 315 316 317 318 319
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
320
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
321 322
		break;
	case CMDQ_OP_CMD_SYNC:
323
		if (ent->sync.msiaddr) {
324
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
325 326
			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		} else {
327
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
328
		}
329 330
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
331 332 333 334 335 336 337 338
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

339 340 341 342 343 344 345 346 347 348 349 350
static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
					 u32 prod)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	/*
	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
	 * payload, so the write will zero the entire command on that platform.
	 */
351
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
352 353 354 355 356 357 358
		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
				   q->ent_dwords * 8;
	}

	arm_smmu_cmdq_build_cmd(cmd, &ent);
}

359 360 361 362 363 364
static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
365
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
366 367 368 369 370 371
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
372
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
373 374 375 376 377
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
378
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
379 380 381 382 383 384

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
385 386 387 388 389 390 391 392
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
393 394 395
	case CMDQ_ERR_CERROR_ILL_IDX:
	default:
		break;
396 397 398 399 400 401
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
402
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
403 404 405 406 407 408 409 410 411 412
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

413
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
414 415
}

416 417 418 419 420 421 422 423 424 425 426 427 428
/*
 * Command queue locking.
 * This is a form of bastardised rwlock with the following major changes:
 *
 * - The only LOCK routines are exclusive_trylock() and shared_lock().
 *   Neither have barrier semantics, and instead provide only a control
 *   dependency.
 *
 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
 *   fails if the caller appears to be the last lock holder (yes, this is
 *   racy). All successful UNLOCK routines have RELEASE semantics.
 */
static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
429
{
430
	int val;
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	/*
	 * We can try to avoid the cmpxchg() loop by simply incrementing the
	 * lock counter. When held in exclusive state, the lock counter is set
	 * to INT_MIN so these increments won't hurt as the value will remain
	 * negative.
	 */
	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
		return;

	do {
		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
}

static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
{
	(void)atomic_dec_return_release(&cmdq->lock);
}

static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
{
	if (atomic_read(&cmdq->lock) == 1)
		return false;

	arm_smmu_cmdq_shared_unlock(cmdq);
	return true;
}

#define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
({									\
	bool __ret;							\
	local_irq_save(flags);						\
	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
	if (!__ret)							\
		local_irq_restore(flags);				\
	__ret;								\
})

#define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
({									\
	atomic_set_release(&cmdq->lock, 0);				\
	local_irq_restore(flags);					\
})


/*
 * Command queue insertion.
 * This is made fiddly by our attempts to achieve some sort of scalability
 * since there is one queue shared amongst all of the CPUs in the system.  If
 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
 * then you'll *love* this monstrosity.
 *
 * The basic idea is to split the queue up into ranges of commands that are
 * owned by a given CPU; the owner may not have written all of the commands
 * itself, but is responsible for advancing the hardware prod pointer when
 * the time comes. The algorithm is roughly:
 *
 * 	1. Allocate some space in the queue. At this point we also discover
 *	   whether the head of the queue is currently owned by another CPU,
 *	   or whether we are the owner.
 *
 *	2. Write our commands into our allocated slots in the queue.
 *
 *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
 *
 *	4. If we are an owner:
 *		a. Wait for the previous owner to finish.
 *		b. Mark the queue head as unowned, which tells us the range
 *		   that we are responsible for publishing.
 *		c. Wait for all commands in our owned range to become valid.
 *		d. Advance the hardware prod pointer.
 *		e. Tell the next owner we've finished.
 *
 *	5. If we are inserting a CMD_SYNC (we may or may not have been an
 *	   owner), then we need to stick around until it has completed:
 *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
 *		   to clear the first 4 bytes.
 *		b. Otherwise, we spin waiting for the hardware cons pointer to
 *		   advance past our command.
 *
 * The devil is in the details, particularly the use of locking for handling
 * SYNC completion and freeing up space in the queue before we think that it is
 * full.
 */
static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
					       u32 sprod, u32 eprod, bool set)
{
	u32 swidx, sbidx, ewidx, ebidx;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= sprod,
	};
524

525 526
	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
527

528 529 530 531
	while (llq.prod != eprod) {
		unsigned long mask;
		atomic_long_t *ptr;
		u32 limit = BITS_PER_LONG;
532

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;

		ptr = &cmdq->valid_map[swidx];

		if ((swidx == ewidx) && (sbidx < ebidx))
			limit = ebidx;

		mask = GENMASK(limit - 1, sbidx);

		/*
		 * The valid bit is the inverse of the wrap bit. This means
		 * that a zero-initialised queue is invalid and, after marking
		 * all entries as valid, they become invalid again when we
		 * wrap.
		 */
		if (set) {
			atomic_long_xor(mask, ptr);
		} else { /* Poll */
			unsigned long valid;

			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
		}

		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
559 560 561
	}
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/* Mark all entries in the range [sprod, eprod) as valid */
static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
					u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
}

/* Wait for all entries in the range [sprod, eprod) to become valid */
static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
					 u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
}

/* Wait for the command queue to become non-full */
static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
					     struct arm_smmu_ll_queue *llq)
579
{
580
	unsigned long flags;
581 582 583
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	int ret = 0;
584

585 586 587 588 589 590 591 592 593
	/*
	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
	 * that fails, spin until somebody else updates it for us.
	 */
	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
		llq->val = READ_ONCE(cmdq->q.llq.val);
		return 0;
594 595
	}

596 597 598 599 600 601 602 603 604 605
	queue_poll_init(smmu, &qp);
	do {
		llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
		if (!queue_full(llq))
			break;

		ret = queue_poll(&qp);
	} while (!ret);

	return ret;
606
}
607

608
/*
609 610
 * Wait until the SMMU signals a CMD_SYNC completion MSI.
 * Must be called with the cmdq lock held in some capacity.
611
 */
612 613
static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
					  struct arm_smmu_ll_queue *llq)
614
{
615 616 617 618
	int ret = 0;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
619

620
	queue_poll_init(smmu, &qp);
621

622 623 624 625 626 627 628 629
	/*
	 * The MSI won't generate an event, since it's being written back
	 * into the command queue.
	 */
	qp.wfe = false;
	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
	return ret;
630 631
}

632 633 634 635 636 637
/*
 * Wait until the SMMU cons index passes llq->prod.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
					       struct arm_smmu_ll_queue *llq)
638
{
639 640 641 642
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 prod = llq->prod;
	int ret = 0;
643

644 645 646 647 648
	queue_poll_init(smmu, &qp);
	llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
	do {
		if (queue_consumed(llq, prod))
			break;
649

650
		ret = queue_poll(&qp);
651

652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		/*
		 * This needs to be a readl() so that our subsequent call
		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
		 *
		 * Specifically, we need to ensure that we observe all
		 * shared_lock()s by other CMD_SYNCs that share our owner,
		 * so that a failing call to tryunlock() means that we're
		 * the last one out and therefore we can safely advance
		 * cmdq->q.llq.cons. Roughly speaking:
		 *
		 * CPU 0		CPU1			CPU2 (us)
		 *
		 * if (sync)
		 * 	shared_lock();
		 *
		 * dma_wmb();
		 * set_valid_map();
		 *
		 * 			if (owner) {
		 *				poll_valid_map();
		 *				<control dependency>
		 *				writel(prod_reg);
		 *
		 *						readl(cons_reg);
		 *						tryunlock();
		 *
		 * Requires us to see CPU 0's shared_lock() acquisition.
		 */
		llq->cons = readl(cmdq->q.cons_reg);
	} while (!ret);
682

683
	return ret;
684 685
}

686 687
static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
					 struct arm_smmu_ll_queue *llq)
688
{
689
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL)
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);

	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
}

static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
					u32 prod, int n)
{
	int i;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= prod,
	};

	for (i = 0; i < n; ++i) {
		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];

		prod = queue_inc_prod_n(&llq, i);
		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
	}
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/*
 * This is the actual insertion function, and provides the following
 * ordering guarantees to callers:
 *
 * - There is a dma_wmb() before publishing any commands to the queue.
 *   This can be relied upon to order prior writes to data structures
 *   in memory (such as a CD or an STE) before the command.
 *
 * - On completion of a CMD_SYNC, there is a control dependency.
 *   This can be relied upon to order subsequent writes to memory (e.g.
 *   freeing an IOVA) after completion of the CMD_SYNC.
 *
 * - Command insertion is totally ordered, so if two CPUs each race to
 *   insert their own list of commands then all of the commands from one
 *   CPU will appear before any of the commands from the other CPU.
 */
728 729 730 731 732
static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
				       u64 *cmds, int n, bool sync)
{
	u64 cmd_sync[CMDQ_ENT_DWORDS];
	u32 prod;
733
	unsigned long flags;
734 735 736 737 738 739
	bool owner;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift = cmdq->q.llq.max_n_shift,
	}, head = llq;
	int ret = 0;
740

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
	/* 1. Allocate some space in the queue */
	local_irq_save(flags);
	llq.val = READ_ONCE(cmdq->q.llq.val);
	do {
		u64 old;

		while (!queue_has_space(&llq, n + sync)) {
			local_irq_restore(flags);
			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
			local_irq_save(flags);
		}

		head.cons = llq.cons;
		head.prod = queue_inc_prod_n(&llq, n + sync) |
					     CMDQ_PROD_OWNED_FLAG;

		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
		if (old == llq.val)
			break;

		llq.val = old;
	} while (1);
	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;

	/*
	 * 2. Write our commands into the queue
	 * Dependency ordering from the cmpxchg() loop above.
	 */
	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
	if (sync) {
		prod = queue_inc_prod_n(&llq, n);
		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, prod);
		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);

		/*
		 * In order to determine completion of our CMD_SYNC, we must
		 * ensure that the queue can't wrap twice without us noticing.
		 * We achieve that by taking the cmdq lock as shared before
		 * marking our slot as valid.
		 */
		arm_smmu_cmdq_shared_lock(cmdq);
	}
786

787 788 789
	/* 3. Mark our slots as valid, ensuring commands are visible first */
	dma_wmb();
	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
790

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
	/* 4. If we are the owner, take control of the SMMU hardware */
	if (owner) {
		/* a. Wait for previous owner to finish */
		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);

		/* b. Stop gathering work by clearing the owned flag */
		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
						   &cmdq->q.llq.atomic.prod);
		prod &= ~CMDQ_PROD_OWNED_FLAG;

		/*
		 * c. Wait for any gathered work to be written to the queue.
		 * Note that we read our own entries so that we have the control
		 * dependency required by (d).
		 */
		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);

		/*
		 * d. Advance the hardware prod pointer
		 * Control dependency ordering from the entries becoming valid.
		 */
		writel_relaxed(prod, cmdq->q.prod_reg);

		/*
		 * e. Tell the next owner we're done
		 * Make sure we've updated the hardware first, so that we don't
		 * race to update prod and potentially move it backwards.
		 */
		atomic_set_release(&cmdq->owner_prod, prod);
	}

	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
	if (sync) {
		llq.prod = queue_inc_prod_n(&llq, n);
		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
		if (ret) {
			dev_err_ratelimited(smmu->dev,
					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
					    llq.prod,
					    readl_relaxed(cmdq->q.prod_reg),
					    readl_relaxed(cmdq->q.cons_reg));
		}
833

834
		/*
J
John Garry 已提交
835
		 * Try to unlock the cmdq lock. This will fail if we're the last
836 837 838 839 840 841 842
		 * reader, in which case we can safely update cmdq->q.llq.cons
		 */
		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
			arm_smmu_cmdq_shared_unlock(cmdq);
		}
	}
843

844
	local_irq_restore(flags);
845 846 847
	return ret;
}

848 849
static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				   struct arm_smmu_cmdq_ent *ent)
850
{
851
	u64 cmd[CMDQ_ENT_DWORDS];
852

853 854 855 856 857 858 859 860 861 862 863 864
	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return -EINVAL;
	}

	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, false);
}

static int arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, NULL, 0, true);
865 866
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_batch *cmds,
				    struct arm_smmu_cmdq_ent *cmd)
{
	if (cmds->num == CMDQ_BATCH_ENTRIES) {
		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false);
		cmds->num = 0;
	}
	arm_smmu_cmdq_build_cmd(&cmds->cmds[cmds->num * CMDQ_ENT_DWORDS], cmd);
	cmds->num++;
}

static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
				      struct arm_smmu_cmdq_batch *cmds)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
}

885
/* Context descriptor manipulation functions */
886 887 888 889 890 891 892 893 894 895 896
void arm_smmu_tlb_inv_asid(struct arm_smmu_device *smmu, u16 asid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode = CMDQ_OP_TLBI_NH_ASID,
		.tlbi.asid = asid,
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	arm_smmu_cmdq_issue_sync(smmu);
}

897 898
static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
			     int ssid, bool leaf)
899
{
900 901 902
	size_t i;
	unsigned long flags;
	struct arm_smmu_master *master;
903
	struct arm_smmu_cmdq_batch cmds = {};
904 905 906 907 908 909 910 911 912 913 914 915 916
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_CD,
		.cfgi	= {
			.ssid	= ssid,
			.leaf	= leaf,
		},
	};

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		for (i = 0; i < master->num_sids; i++) {
			cmd.cfgi.sid = master->sids[i];
917
			arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
918 919 920
		}
	}
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
921

922
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
923
}
924

925 926 927 928
static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
					struct arm_smmu_l1_ctx_desc *l1_desc)
{
	size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
929

930 931 932 933 934 935 936 937
	l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
					     &l1_desc->l2ptr_dma, GFP_KERNEL);
	if (!l1_desc->l2ptr) {
		dev_warn(smmu->dev,
			 "failed to allocate context descriptor table\n");
		return -ENOMEM;
	}
	return 0;
938 939
}

940 941
static void arm_smmu_write_cd_l1_desc(__le64 *dst,
				      struct arm_smmu_l1_ctx_desc *l1_desc)
942
{
943 944 945
	u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
		  CTXDESC_L1_DESC_V;

946
	/* See comment in arm_smmu_write_ctx_desc() */
947 948 949 950 951 952 953 954 955 956 957
	WRITE_ONCE(*dst, cpu_to_le64(val));
}

static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain,
				   u32 ssid)
{
	__le64 *l1ptr;
	unsigned int idx;
	struct arm_smmu_l1_ctx_desc *l1_desc;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
958

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
		return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS;

	idx = ssid >> CTXDESC_SPLIT;
	l1_desc = &cdcfg->l1_desc[idx];
	if (!l1_desc->l2ptr) {
		if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
			return NULL;

		l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
		arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
		/* An invalid L1CD can be cached */
		arm_smmu_sync_cd(smmu_domain, ssid, false);
	}
	idx = ssid & (CTXDESC_L2_ENTRIES - 1);
	return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS;
}

977 978
int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain, int ssid,
			    struct arm_smmu_ctx_desc *cd)
979
{
980
	/*
981 982 983 984 985 986
	 * This function handles the following cases:
	 *
	 * (1) Install primary CD, for normal DMA traffic (SSID = 0).
	 * (2) Install a secondary CD, for SID+SSID traffic.
	 * (3) Update ASID of a CD. Atomically write the first 64 bits of the
	 *     CD, then invalidate the old entry and mappings.
987 988 989
	 * (4) Quiesce the context without clearing the valid bit. Disable
	 *     translation, and ignore any translation fault.
	 * (5) Remove a secondary CD.
990
	 */
991 992
	u64 val;
	bool cd_live;
993
	__le64 *cdptr;
994
	struct arm_smmu_device *smmu = smmu_domain->smmu;
995 996 997 998 999 1000 1001

	if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax)))
		return -E2BIG;

	cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid);
	if (!cdptr)
		return -ENOMEM;
1002 1003 1004

	val = le64_to_cpu(cdptr[0]);
	cd_live = !!(val & CTXDESC_CD_0_V);
1005

1006
	if (!cd) { /* (5) */
1007
		val = 0;
1008 1009
	} else if (cd == &quiet_cd) { /* (4) */
		val |= CTXDESC_CD_0_TCR_EPD0;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	} else if (cd_live) { /* (3) */
		val &= ~CTXDESC_CD_0_ASID;
		val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
		/*
		 * Until CD+TLB invalidation, both ASIDs may be used for tagging
		 * this substream's traffic
		 */
	} else { /* (1) and (2) */
		cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
		cdptr[2] = 0;
		cdptr[3] = cpu_to_le64(cd->mair);
1021

1022 1023 1024 1025 1026 1027
		/*
		 * STE is live, and the SMMU might read dwords of this CD in any
		 * order. Ensure that it observes valid values before reading
		 * V=1.
		 */
		arm_smmu_sync_cd(smmu_domain, ssid, true);
1028

1029
		val = cd->tcr |
1030
#ifdef __BIG_ENDIAN
1031
			CTXDESC_CD_0_ENDI |
1032
#endif
1033 1034
			CTXDESC_CD_0_R | CTXDESC_CD_0_A |
			(cd->mm ? 0 : CTXDESC_CD_0_ASET) |
1035 1036 1037
			CTXDESC_CD_0_AA64 |
			FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
			CTXDESC_CD_0_V;
1038

1039 1040 1041 1042
		/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
		if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
			val |= CTXDESC_CD_0_S;
	}
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3
	 * "Configuration structures and configuration invalidation completion"
	 *
	 *   The size of single-copy atomic reads made by the SMMU is
	 *   IMPLEMENTATION DEFINED but must be at least 64 bits. Any single
	 *   field within an aligned 64-bit span of a structure can be altered
	 *   without first making the structure invalid.
	 */
	WRITE_ONCE(cdptr[0], cpu_to_le64(val));
	arm_smmu_sync_cd(smmu_domain, ssid, true);
	return 0;
1056 1057
}

1058 1059
static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1060
	int ret;
1061
	size_t l1size;
1062
	size_t max_contexts;
1063 1064 1065 1066
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;

1067 1068 1069 1070 1071 1072
	max_contexts = 1 << cfg->s1cdmax;

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
	    max_contexts <= CTXDESC_L2_ENTRIES) {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
		cdcfg->num_l1_ents = max_contexts;
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
	} else {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
		cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts,
						  CTXDESC_L2_ENTRIES);

		cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents,
					      sizeof(*cdcfg->l1_desc),
					      GFP_KERNEL);
		if (!cdcfg->l1_desc)
			return -ENOMEM;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	}
1088

1089 1090 1091 1092
	cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
					   GFP_KERNEL);
	if (!cdcfg->cdtab) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1093 1094
		ret = -ENOMEM;
		goto err_free_l1;
1095
	}
1096

1097
	return 0;
1098

1099 1100 1101 1102 1103 1104
err_free_l1:
	if (cdcfg->l1_desc) {
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;
	}
	return ret;
1105 1106 1107 1108
}

static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1109 1110
	int i;
	size_t size, l1size;
1111 1112
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	if (cdcfg->l1_desc) {
		size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);

		for (i = 0; i < cdcfg->num_l1_ents; i++) {
			if (!cdcfg->l1_desc[i].l2ptr)
				continue;

			dmam_free_coherent(smmu->dev, size,
					   cdcfg->l1_desc[i].l2ptr,
					   cdcfg->l1_desc[i].l2ptr_dma);
		}
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	} else {
		l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
	}
1132 1133 1134 1135

	dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma);
	cdcfg->cdtab_dma = 0;
	cdcfg->cdtab = NULL;
1136 1137
}

1138
bool arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd)
1139
{
1140 1141 1142
	bool free;
	struct arm_smmu_ctx_desc *old_cd;

1143
	if (!cd->asid)
1144
		return false;
1145

1146 1147 1148 1149 1150 1151
	free = refcount_dec_and_test(&cd->refs);
	if (free) {
		old_cd = xa_erase(&arm_smmu_asid_xa, cd->asid);
		WARN_ON(old_cd != cd);
	}
	return free;
1152 1153
}

1154 1155 1156 1157 1158 1159
/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1160
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1161
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1162

1163 1164
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(*dst, cpu_to_le64(val));
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1178
	arm_smmu_cmdq_issue_sync(smmu);
1179 1180
}

1181 1182
static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
1183 1184 1185 1186 1187
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1188 1189 1190
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
1202 1203 1204 1205
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
1206 1207 1208 1209 1210 1211 1212
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

1232
	if (val & STRTAB_STE_0_V) {
1233
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1234 1235 1236 1237 1238 1239
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1240
		case STRTAB_STE_0_CFG_ABORT:
1241 1242
			BUG_ON(!disable_bypass);
			break;
1243 1244 1245 1246 1247
		default:
			BUG(); /* STE corruption */
		}
	}

1248
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1249 1250 1251
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
1252 1253
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
1254
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1255
		else
1256
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1257 1258

		dst[0] = cpu_to_le64(val);
1259 1260
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1261
		dst[2] = 0; /* Nuke the VMID */
1262 1263 1264 1265 1266
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1267 1268 1269 1270
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

1271
	if (s1_cfg) {
1272 1273
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1274
			 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
1275 1276 1277 1278
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1279

1280 1281
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1282 1283
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1284
		val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1285 1286 1287
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
			FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
			FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
1288 1289
	}

1290
	if (s2_cfg) {
1291 1292
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1293 1294
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1295 1296 1297 1298 1299 1300
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1301
		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1302

1303
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1304 1305
	}

1306 1307 1308 1309
	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

1310
	arm_smmu_sync_ste_for_sid(smmu, sid);
1311 1312
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(dst[0], cpu_to_le64(val));
1313 1314 1315
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1316 1317
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1318 1319
}

1320
static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent)
1321 1322 1323 1324
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
1325
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1341
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1342 1343

	desc->span = STRTAB_SPLIT + 1;
1344
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1345
					  GFP_KERNEL);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
1364
	struct arm_smmu_ll_queue *llq = &q->llq;
1365 1366
	u64 evt[EVTQ_ENT_DWORDS];

1367 1368
	do {
		while (!queue_remove_raw(q, evt)) {
1369
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
1382
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1383
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1384
	} while (!queue_empty(llq));
1385 1386

	/* Sync our overflow flag, as we believe we're up to speed */
1387 1388
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		    Q_IDX(llq, llq->cons);
1389 1390 1391
	return IRQ_HANDLED;
}

1392 1393 1394 1395 1396 1397
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1398 1399 1400 1401 1402
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1403 1404 1405 1406 1407 1408 1409 1410 1411

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1412
		 evt[1] & PRIQ_1_ADDR_MASK);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1425

1426 1427
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1428 1429 1430 1431 1432 1433
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
1434
	struct arm_smmu_ll_queue *llq = &q->llq;
1435 1436
	u64 evt[PRIQ_ENT_DWORDS];

1437 1438 1439
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1440

1441
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1442
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1443
	} while (!queue_empty(llq));
1444 1445

	/* Sync our overflow flag, as we believe we're up to speed */
1446 1447 1448
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		      Q_IDX(llq, llq->cons);
	queue_sync_cons_out(q);
1449 1450 1451 1452 1453 1454 1455
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1456
	u32 gerror, gerrorn, active;
1457 1458 1459 1460 1461
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1462 1463
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1464 1465 1466 1467
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1468
		 active);
1469

1470
	if (active & GERROR_SFM_ERR) {
1471 1472 1473 1474
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1475
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1476 1477
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1478
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1479 1480
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1481
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1482 1483
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1484
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1485 1486
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1487
	if (active & GERROR_PRIQ_ABT_ERR)
1488 1489
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1490
	if (active & GERROR_EVTQ_ABT_ERR)
1491 1492
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1493
	if (active & GERROR_CMDQ_ERR)
1494 1495 1496 1497 1498 1499
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	/*
	 * ATS and PASID:
	 *
	 * If substream_valid is clear, the PCIe TLP is sent without a PASID
	 * prefix. In that case all ATC entries within the address range are
	 * invalidated, including those that were requested with a PASID! There
	 * is no way to invalidate only entries without PASID.
	 *
	 * When using STRTAB_STE_1_S1DSS_SSID0 (reserving CD 0 for non-PASID
	 * traffic), translation requests without PASID create ATC entries
	 * without PASID, which must be invalidated with substream_valid clear.
	 * This has the unpleasant side-effect of invalidating all PASID-tagged
	 * ATC entries within the address range.
	 */
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= !!ssid,
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

1584
static int arm_smmu_atc_inv_master(struct arm_smmu_master *master)
1585 1586
{
	int i;
1587
	struct arm_smmu_cmdq_ent cmd;
1588

1589
	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
1590 1591

	for (i = 0; i < master->num_sids; i++) {
1592 1593
		cmd.atc.sid = master->sids[i];
		arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
1594 1595 1596 1597 1598
	}

	return arm_smmu_cmdq_issue_sync(master->smmu);
}

1599 1600
int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain, int ssid,
			    unsigned long iova, size_t size)
1601
{
1602
	int i;
1603 1604 1605
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_master *master;
1606
	struct arm_smmu_cmdq_batch cmds = {};
1607 1608 1609 1610

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	/*
	 * Ensure that we've completed prior invalidation of the main TLBs
	 * before we read 'nr_ats_masters' in case of a concurrent call to
	 * arm_smmu_enable_ats():
	 *
	 *	// unmap()			// arm_smmu_enable_ats()
	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
	 *	smp_mb();			[...]
	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
	 *
	 * Ensures that we always see the incremented 'nr_ats_masters' count if
	 * ATS was enabled at the PCI device before completion of the TLBI.
	 */
	smp_mb();
	if (!atomic_read(&smmu_domain->nr_ats_masters))
		return 0;

1628 1629 1630
	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
1631 1632 1633 1634 1635 1636 1637 1638 1639
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		if (!master->ats_enabled)
			continue;

		for (i = 0; i < master->num_sids; i++) {
			cmd.atc.sid = master->sids[i];
			arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
		}
	}
1640 1641
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

1642
	return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
1643 1644
}

1645 1646 1647 1648 1649 1650 1651
/* IO_PGTABLE API */
static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

1652 1653 1654
	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
1655 1656 1657
	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
	 * insertion to guarantee those are observed before the TLBI. Do be
	 * careful, 007.
1658
	 */
1659 1660 1661 1662 1663 1664 1665 1666
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		arm_smmu_tlb_inv_asid(smmu, smmu_domain->s1_cfg.cd.asid);
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
		arm_smmu_cmdq_issue_sync(smmu);
	}
1667
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
1668 1669
}

1670 1671 1672
static void arm_smmu_tlb_inv_range(unsigned long iova, size_t size,
				   size_t granule, bool leaf,
				   struct arm_smmu_domain *smmu_domain)
1673 1674
{
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1675 1676
	unsigned long start = iova, end = iova + size, num_pages = 0, tg = 0;
	size_t inv_range = granule;
1677
	struct arm_smmu_cmdq_batch cmds = {};
1678 1679 1680 1681 1682 1683
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
		},
	};

1684 1685 1686
	if (!size)
		return;

1687 1688 1689 1690 1691 1692 1693 1694
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
		/* Get the leaf page size */
		tg = __ffs(smmu_domain->domain.pgsize_bitmap);

		/* Convert page size of 12,14,16 (log2) to 1,2,3 */
		cmd.tlbi.tg = (tg - 10) / 2;

		/* Determine what level the granule is at */
		cmd.tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));

		num_pages = size >> tg;
	}

1708
	while (iova < end) {
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
			/*
			 * On each iteration of the loop, the range is 5 bits
			 * worth of the aligned size remaining.
			 * The range in pages is:
			 *
			 * range = (num_pages & (0x1f << __ffs(num_pages)))
			 */
			unsigned long scale, num;

			/* Determine the power of 2 multiple number of pages */
			scale = __ffs(num_pages);
			cmd.tlbi.scale = scale;

			/* Determine how many chunks of 2^scale size we have */
			num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
			cmd.tlbi.num = num - 1;

			/* range is num * 2^scale * pgsize */
			inv_range = num << (scale + tg);

			/* Clear out the lower order bits for the next iteration */
			num_pages -= num << scale;
1732 1733 1734
		}

		cmd.tlbi.addr = iova;
1735
		arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
1736
		iova += inv_range;
1737
	}
1738
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
1739 1740 1741 1742 1743 1744

	/*
	 * Unfortunately, this can't be leaf-only since we may have
	 * zapped an entire table.
	 */
	arm_smmu_atc_inv_domain(smmu_domain, 0, start, size);
1745 1746
}

1747 1748
static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
					 unsigned long iova, size_t granule,
1749 1750
					 void *cookie)
{
1751 1752 1753 1754
	struct arm_smmu_domain *smmu_domain = cookie;
	struct iommu_domain *domain = &smmu_domain->domain;

	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
1755 1756
}

1757 1758 1759
static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
1760
	arm_smmu_tlb_inv_range(iova, size, granule, false, cookie);
1761 1762
}

1763
static const struct iommu_flush_ops arm_smmu_flush_ops = {
1764
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
1765
	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
1766
	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

1786 1787 1788
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

1800 1801 1802 1803 1804 1805
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1806
	mutex_init(&smmu_domain->init_mutex);
1807 1808
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);
1809
	INIT_LIST_HEAD(&smmu_domain->mmu_notifiers);
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1837
	iommu_put_dma_cookie(domain);
1838
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1839 1840 1841 1842 1843

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

1844 1845
		/* Prevent SVA from touching the CD while we're freeing it */
		mutex_lock(&arm_smmu_asid_lock);
1846
		if (cfg->cdcfg.cdtab)
1847
			arm_smmu_free_cd_tables(smmu_domain);
1848
		arm_smmu_free_asid(&cfg->cd);
1849
		mutex_unlock(&arm_smmu_asid_lock);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1860
				       struct arm_smmu_master *master,
1861 1862 1863
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
1864
	u32 asid;
1865 1866
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1867
	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1868

1869 1870 1871 1872 1873
	refcount_set(&cfg->cd.refs, 1);

	/* Prevent SVA from modifying the ASID until it is written to the CD */
	mutex_lock(&arm_smmu_asid_lock);
	ret = xa_alloc(&arm_smmu_asid_xa, &asid, &cfg->cd,
1874 1875
		       XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
	if (ret)
1876
		goto out_unlock;
1877

1878 1879
	cfg->s1cdmax = master->ssid_bits;

1880 1881
	ret = arm_smmu_alloc_cd_tables(smmu_domain);
	if (ret)
1882 1883
		goto out_free_asid;

1884
	cfg->cd.asid	= (u16)asid;
1885
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
1886 1887 1888 1889 1890 1891 1892
	cfg->cd.tcr	= FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
			  CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
1893
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair;
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

	/*
	 * Note that this will end up calling arm_smmu_sync_cd() before
	 * the master has been added to the devices list for this domain.
	 * This isn't an issue because the STE hasn't been installed yet.
	 */
	ret = arm_smmu_write_ctx_desc(smmu_domain, 0, &cfg->cd);
	if (ret)
		goto out_free_cd_tables;

1904
	mutex_unlock(&arm_smmu_asid_lock);
1905 1906
	return 0;

1907 1908
out_free_cd_tables:
	arm_smmu_free_cd_tables(smmu_domain);
1909
out_free_asid:
1910
	arm_smmu_free_asid(&cfg->cd);
1911 1912
out_unlock:
	mutex_unlock(&arm_smmu_asid_lock);
1913 1914 1915 1916
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1917
				       struct arm_smmu_master *master,
1918 1919
				       struct io_pgtable_cfg *pgtbl_cfg)
{
1920
	int vmid;
1921 1922
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1923
	typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr;
1924 1925

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1926
	if (vmid < 0)
1927 1928
		return vmid;

1929
	vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1930
	cfg->vmid	= (u16)vmid;
1931
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1932 1933 1934 1935 1936 1937 1938
	cfg->vtcr	= FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
1939 1940 1941
	return 0;
}

1942 1943
static int arm_smmu_domain_finalise(struct iommu_domain *domain,
				    struct arm_smmu_master *master)
1944 1945 1946 1947 1948 1949 1950
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
1951
				 struct arm_smmu_master *,
1952 1953 1954 1955
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1956 1957 1958 1959 1960
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

1961 1962 1963 1964 1965 1966 1967 1968
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
1969 1970
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
1987
		.pgsize_bitmap	= smmu->pgsize_bitmap,
1988 1989
		.ias		= ias,
		.oas		= oas,
1990
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
1991
		.tlb		= &arm_smmu_flush_ops,
1992
		.iommu_dev	= smmu->dev,
1993 1994
	};

1995 1996 1997
	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;

1998 1999 2000 2001
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

2002
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
2003
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
2004
	domain->geometry.force_aperture = true;
2005

2006
	ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
2007
	if (ret < 0) {
2008
		free_io_pgtable_ops(pgtbl_ops);
2009 2010
		return ret;
	}
2011

2012 2013
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

2038
static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
2039
{
2040
	int i, j;
2041
	struct arm_smmu_device *smmu = master->smmu;
2042

2043 2044
	for (i = 0; i < master->num_sids; ++i) {
		u32 sid = master->sids[i];
2045 2046
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

2047 2048
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
2049
			if (master->sids[j] == sid)
2050 2051 2052 2053
				break;
		if (j < i)
			continue;

2054
		arm_smmu_write_strtab_ent(master, sid, step);
2055 2056 2057
	}
}

2058
static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2059
{
2060
	struct device *dev = master->dev;
2061
	struct arm_smmu_device *smmu = master->smmu;
2062
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2063

2064
	if (!(smmu->features & ARM_SMMU_FEAT_ATS))
2065
		return false;
2066

2067 2068 2069 2070
	if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
		return false;

	return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
2071
}
2072

2073 2074 2075 2076 2077
static void arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
2078
	struct arm_smmu_domain *smmu_domain = master->domain;
2079

2080 2081 2082
	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
	if (!master->ats_enabled)
		return;
2083 2084 2085

	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);
2086
	pdev = to_pci_dev(master->dev);
2087

2088 2089
	atomic_inc(&smmu_domain->nr_ats_masters);
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2090 2091
	if (pci_enable_ats(pdev, stu))
		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2092 2093 2094 2095
}

static void arm_smmu_disable_ats(struct arm_smmu_master *master)
{
2096
	struct arm_smmu_domain *smmu_domain = master->domain;
2097

2098
	if (!master->ats_enabled)
2099 2100
		return;

2101 2102 2103 2104 2105 2106
	pci_disable_ats(to_pci_dev(master->dev));
	/*
	 * Ensure ATS is disabled at the endpoint before we issue the
	 * ATC invalidation via the SMMU.
	 */
	wmb();
2107
	arm_smmu_atc_inv_master(master);
2108
	atomic_dec(&smmu_domain->nr_ats_masters);
2109 2110
}

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
{
	int ret;
	int features;
	int num_pasids;
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return -ENODEV;

	pdev = to_pci_dev(master->dev);

	features = pci_pasid_features(pdev);
	if (features < 0)
		return features;

	num_pasids = pci_max_pasids(pdev);
	if (num_pasids <= 0)
		return num_pasids;

	ret = pci_enable_pasid(pdev, features);
	if (ret) {
		dev_err(&pdev->dev, "Failed to enable PASID\n");
		return ret;
	}

	master->ssid_bits = min_t(u8, ilog2(num_pasids),
				  master->smmu->ssid_bits);
	return 0;
}

static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return;

	pdev = to_pci_dev(master->dev);

	if (!pdev->pasid_enabled)
		return;

	master->ssid_bits = 0;
	pci_disable_pasid(pdev);
}

2158
static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2159
{
2160 2161 2162 2163
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
2164 2165
		return;

2166 2167
	arm_smmu_disable_ats(master);

2168 2169 2170 2171
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2172
	master->domain = NULL;
2173
	master->ats_enabled = false;
2174
	arm_smmu_install_ste_for_dev(master);
2175 2176
}

2177 2178 2179
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
2180
	unsigned long flags;
2181
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2182 2183
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2184
	struct arm_smmu_master *master;
2185

2186
	if (!fwspec)
2187 2188
		return -ENOENT;

2189
	master = dev_iommu_priv_get(dev);
2190 2191
	smmu = master->smmu;

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
	/*
	 * Checking that SVA is disabled ensures that this device isn't bound to
	 * any mm, and can be safely detached from its old domain. Bonds cannot
	 * be removed concurrently since we're holding the group mutex.
	 */
	if (arm_smmu_master_sva_enabled(master)) {
		dev_err(dev, "cannot attach - SVA enabled\n");
		return -EBUSY;
	}

2202
	arm_smmu_detach_dev(master);
2203 2204 2205 2206 2207

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
2208
		ret = arm_smmu_domain_finalise(domain, master);
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
2220 2221 2222 2223 2224 2225 2226
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
		   master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
		dev_err(dev,
			"cannot attach to incompatible domain (%u SSID bits != %u)\n",
			smmu_domain->s1_cfg.s1cdmax, master->ssid_bits);
		ret = -EINVAL;
		goto out_unlock;
2227 2228
	}

2229
	master->domain = smmu_domain;
2230

2231
	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2232
		master->ats_enabled = arm_smmu_ats_supported(master);
2233

2234
	arm_smmu_install_ste_for_dev(master);
2235 2236 2237 2238 2239

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2240
	arm_smmu_enable_ats(master);
2241

2242 2243 2244 2245 2246 2247
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
2248
			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2249
{
2250
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2251 2252 2253 2254

	if (!ops)
		return -ENODEV;

2255
	return ops->map(ops, iova, paddr, size, prot, gfp);
2256 2257
}

2258 2259
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size, struct iommu_iotlb_gather *gather)
2260
{
2261 2262
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2263 2264 2265 2266

	if (!ops)
		return 0;

2267
	return ops->unmap(ops, iova, size, gather);
2268 2269
}

2270 2271 2272 2273 2274 2275 2276 2277
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

2278 2279
static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
				struct iommu_iotlb_gather *gather)
2280
{
2281
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2282

2283 2284
	arm_smmu_tlb_inv_range(gather->start, gather->end - gather->start,
			       gather->pgsize, true, smmu_domain);
2285 2286
}

2287 2288 2289
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
2290
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2291

2292 2293 2294
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

2295 2296 2297
	if (!ops)
		return 0;

2298
	return ops->iova_to_phys(ops, iova);
2299 2300
}

2301
static struct platform_driver arm_smmu_driver;
2302

2303 2304
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2305
{
2306 2307
	struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
							  fwnode);
2308 2309
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

2322 2323
static struct iommu_ops arm_smmu_ops;

2324
static struct iommu_device *arm_smmu_probe_device(struct device *dev)
2325 2326 2327
{
	int i, ret;
	struct arm_smmu_device *smmu;
2328
	struct arm_smmu_master *master;
2329
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2330

2331
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2332
		return ERR_PTR(-ENODEV);
2333

2334
	if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
2335
		return ERR_PTR(-EBUSY);
2336 2337 2338

	smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
	if (!smmu)
2339
		return ERR_PTR(-ENODEV);
2340 2341 2342

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master)
2343
		return ERR_PTR(-ENOMEM);
2344 2345 2346 2347 2348

	master->dev = dev;
	master->smmu = smmu;
	master->sids = fwspec->ids;
	master->num_sids = fwspec->num_ids;
2349
	INIT_LIST_HEAD(&master->bonds);
2350
	dev_iommu_priv_set(dev, master);
2351

2352
	/* Check the SIDs are in range of the SMMU and our stream table */
2353 2354
	for (i = 0; i < master->num_sids; i++) {
		u32 sid = master->sids[i];
2355

2356 2357 2358 2359
		if (!arm_smmu_sid_in_range(smmu, sid)) {
			ret = -ERANGE;
			goto err_free_master;
		}
2360

2361 2362 2363 2364
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
2365
				goto err_free_master;
2366
		}
2367 2368
	}

2369 2370
	master->ssid_bits = min(smmu->ssid_bits, fwspec->num_pasid_bits);

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	/*
	 * Note that PASID must be enabled before, and disabled after ATS:
	 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
	 *
	 *   Behavior is undefined if this bit is Set and the value of the PASID
	 *   Enable, Execute Requested Enable, or Privileged Mode Requested bits
	 *   are changed.
	 */
	arm_smmu_enable_pasid(master);

2381 2382 2383 2384
	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
		master->ssid_bits = min_t(u8, master->ssid_bits,
					  CTXDESC_LINEAR_CDMAX);

2385
	return &smmu->iommu;
2386

2387 2388
err_free_master:
	kfree(master);
2389
	dev_iommu_priv_set(dev, NULL);
2390
	return ERR_PTR(ret);
2391 2392
}

2393
static void arm_smmu_release_device(struct device *dev)
2394
{
2395
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2396
	struct arm_smmu_master *master;
2397 2398 2399 2400

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

2401
	master = dev_iommu_priv_get(dev);
2402
	WARN_ON(arm_smmu_master_sva_enabled(master));
2403
	arm_smmu_detach_dev(master);
2404
	arm_smmu_disable_pasid(master);
2405 2406
	kfree(master);
	iommu_fwspec_free(dev);
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

2426 2427 2428 2429 2430
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
			return 0;
		default:
			return -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = smmu_domain->non_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
2450
	default:
2451
		return -EINVAL;
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			if (smmu_domain->smmu) {
				ret = -EPERM;
				goto out_unlock;
			}

			if (*(int *)data)
				smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
			else
				smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
			break;
		default:
			ret = -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch(attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			smmu_domain->non_strict = *(int *)data;
			break;
		default:
			ret = -ENODEV;
2488 2489 2490
		}
		break;
	default:
2491
		ret = -EINVAL;
2492 2493 2494 2495 2496 2497 2498
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

2499 2500 2501 2502 2503
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

2504 2505 2506 2507 2508 2509 2510
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2511
					 prot, IOMMU_RESV_SW_MSI);
2512 2513 2514 2515
	if (!region)
		return;

	list_add_tail(&region->list, head);
2516 2517

	iommu_dma_get_resv_regions(dev, head);
2518 2519
}

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
static bool arm_smmu_dev_has_feature(struct device *dev,
				     enum iommu_dev_features feat)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);

	if (!master)
		return false;

	switch (feat) {
	case IOMMU_DEV_FEAT_SVA:
		return arm_smmu_master_sva_supported(master);
	default:
		return false;
	}
}

static bool arm_smmu_dev_feature_enabled(struct device *dev,
					 enum iommu_dev_features feat)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);

	if (!master)
		return false;

	switch (feat) {
	case IOMMU_DEV_FEAT_SVA:
		return arm_smmu_master_sva_enabled(master);
	default:
		return false;
	}
}

static int arm_smmu_dev_enable_feature(struct device *dev,
				       enum iommu_dev_features feat)
{
	if (!arm_smmu_dev_has_feature(dev, feat))
		return -ENODEV;

	if (arm_smmu_dev_feature_enabled(dev, feat))
		return -EBUSY;

	switch (feat) {
	case IOMMU_DEV_FEAT_SVA:
		return arm_smmu_master_enable_sva(dev_iommu_priv_get(dev));
	default:
		return -EINVAL;
	}
}

static int arm_smmu_dev_disable_feature(struct device *dev,
					enum iommu_dev_features feat)
{
	if (!arm_smmu_dev_feature_enabled(dev, feat))
		return -EINVAL;

	switch (feat) {
	case IOMMU_DEV_FEAT_SVA:
		return arm_smmu_master_disable_sva(dev_iommu_priv_get(dev));
	default:
		return -EINVAL;
	}
}

2583 2584 2585 2586 2587 2588 2589
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2590
	.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2591
	.iotlb_sync		= arm_smmu_iotlb_sync,
2592
	.iova_to_phys		= arm_smmu_iova_to_phys,
2593 2594
	.probe_device		= arm_smmu_probe_device,
	.release_device		= arm_smmu_release_device,
2595
	.device_group		= arm_smmu_device_group,
2596 2597
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2598
	.of_xlate		= arm_smmu_of_xlate,
2599
	.get_resv_regions	= arm_smmu_get_resv_regions,
2600
	.put_resv_regions	= generic_iommu_put_resv_regions,
2601 2602 2603 2604
	.dev_has_feat		= arm_smmu_dev_has_feature,
	.dev_feat_enabled	= arm_smmu_dev_feature_enabled,
	.dev_enable_feat	= arm_smmu_dev_enable_feature,
	.dev_disable_feat	= arm_smmu_dev_disable_feature,
2605 2606 2607
	.sva_bind		= arm_smmu_sva_bind,
	.sva_unbind		= arm_smmu_sva_unbind,
	.sva_get_pasid		= arm_smmu_sva_get_pasid,
2608 2609 2610 2611 2612 2613 2614 2615
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
2616
				   size_t dwords, const char *name)
2617
{
2618 2619 2620
	size_t qsz;

	do {
2621
		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2622 2623 2624 2625 2626
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

2627
		q->llq.max_n_shift--;
2628
	} while (1);
2629 2630

	if (!q->base) {
2631 2632 2633
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
2634 2635 2636
		return -ENOMEM;
	}

2637 2638
	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
2639
			 1 << q->llq.max_n_shift, name);
2640 2641
	}

2642 2643
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
2644 2645 2646
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2647
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2648
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2649

2650
	q->llq.prod = q->llq.cons = 0;
2651 2652 2653
	return 0;
}

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
static void arm_smmu_cmdq_free_bitmap(void *data)
{
	unsigned long *bitmap = data;
	bitmap_free(bitmap);
}

static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
{
	int ret = 0;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
	atomic_long_t *bitmap;

	atomic_set(&cmdq->owner_prod, 0);
	atomic_set(&cmdq->lock, 0);

	bitmap = (atomic_long_t *)bitmap_zalloc(nents, GFP_KERNEL);
	if (!bitmap) {
		dev_err(smmu->dev, "failed to allocate cmdq bitmap\n");
		ret = -ENOMEM;
	} else {
		cmdq->valid_map = bitmap;
		devm_add_action(smmu->dev, arm_smmu_cmdq_free_bitmap, bitmap);
	}

	return ret;
}

2682 2683 2684 2685 2686 2687
static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2688 2689
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS,
				      "cmdq");
2690
	if (ret)
2691
		return ret;
2692

2693 2694 2695 2696
	ret = arm_smmu_cmdq_init(smmu);
	if (ret)
		return ret;

2697 2698
	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2699 2700
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS,
				      "evtq");
2701
	if (ret)
2702
		return ret;
2703 2704 2705 2706 2707

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2708
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2709 2710
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS,
				       "priq");
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2738
	u32 size, l1size;
2739 2740
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2741 2742 2743
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2744 2745 2746 2747
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2748 2749
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2750
			 size, smmu->sid_bits);
2751

2752
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2753
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2754
				     GFP_KERNEL);
2755 2756 2757
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
2758
			l1size);
2759 2760 2761 2762 2763
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
2764 2765 2766
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2767 2768
	cfg->strtab_base_cfg = reg;

2769
	return arm_smmu_init_l1_strtab(smmu);
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2780
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2781
				     GFP_KERNEL);
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2792 2793
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
2814
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

2831
	return arm_smmu_init_strtab(smmu);
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
2858 2859 2860 2861 2862 2863
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
2864 2865
}

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2880
	doorbell &= MSI_CFG0_ADDR_MASK;
2881 2882 2883

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
2884
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

2905 2906 2907 2908 2909
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

2910 2911 2912
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
2913
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

2937
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2938
{
2939
	int irq, ret;
2940

2941
	arm_smmu_setup_msis(smmu);
2942

2943
	/* Request interrupt lines */
2944 2945
	irq = smmu->evtq.q.irq;
	if (irq) {
2946
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2947
						arm_smmu_evtq_thread,
2948 2949
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
2950
		if (ret < 0)
2951
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
2952 2953
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
2954 2955 2956 2957 2958 2959
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
2960
		if (ret < 0)
2961
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
2962 2963
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
2964 2965 2966 2967 2968
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
2969
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2970
							arm_smmu_priq_thread,
2971 2972
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
2973
							smmu);
2974
			if (ret < 0)
2975 2976
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
2977 2978
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
2979 2980
		}
	}
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
2999 3000
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
3014 3015

	/* Enable interrupt generation on the SMMU */
3016
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

3035
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
3036 3037 3038 3039 3040 3041 3042
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
3043
	if (reg & CR0_SMMUEN) {
3044
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
3045 3046
		WARN_ON(is_kdump_kernel() && !disable_bypass);
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
3047
	}
3048 3049 3050 3051 3052 3053

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
3054 3055 3056 3057 3058 3059
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
3074 3075
	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3088
	arm_smmu_cmdq_issue_sync(smmu);
3089 3090 3091 3092 3093 3094 3095 3096 3097

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
3098
	arm_smmu_cmdq_issue_sync(smmu);
3099 3100 3101

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
3102
	writel_relaxed(smmu->evtq.q.llq.prod,
3103
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
3104
	writel_relaxed(smmu->evtq.q.llq.cons,
3105
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
3119
		writel_relaxed(smmu->priq.q.llq.prod,
3120
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
3121
		writel_relaxed(smmu->priq.q.llq.cons,
3122
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
3123 3124 3125 3126 3127 3128 3129 3130 3131 3132

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

3143 3144 3145 3146 3147 3148
	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

3149 3150
	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3151 3152 3153 3154 3155 3156

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3157
		if (ret)
3158 3159
			return ret;
	}
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

3170
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3171 3172
{
	u32 reg;
3173
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3174 3175 3176 3177 3178

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
3179
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
3190
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

3218
	if (reg & IDR0_MSI) {
3219
		smmu->features |= ARM_SMMU_FEAT_MSI;
3220 3221 3222
		if (coherent && !disable_msipolling)
			smmu->options |= ARM_SMMU_OPT_MSIPOLL;
	}
3223 3224 3225 3226 3227

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
3228
	 * The coherency feature as set by FW is used in preference to the ID
3229 3230 3231
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
3232
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3233 3234
			 coherent ? "true" : "false");

3235
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3236
	case IDR0_STALL_MODEL_FORCE:
3237
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
3238
		fallthrough;
3239
	case IDR0_STALL_MODEL_STALL:
3240
		smmu->features |= ARM_SMMU_FEAT_STALLS;
3241
	}
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
3255
	switch (FIELD_GET(IDR0_TTF, reg)) {
3256 3257
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
3258
		fallthrough;
3259 3260 3261
	case IDR0_TTF_AARCH64:
		break;
	default:
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

3277
	/* Queue sizes, capped to ensure natural alignment */
3278 3279
	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_CMDQS, reg));
3280
	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3281
		/*
3282 3283 3284 3285
		 * We don't support splitting up batches, so one batch of
		 * commands plus an extra sync needs to fit inside the command
		 * queue. There's also no way we can handle the weird alignment
		 * restrictions on the base pointer for a unit-length queue.
3286
		 */
3287 3288
		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
			CMDQ_BATCH_ENTRIES);
3289 3290 3291
		return -ENXIO;
	}

3292 3293 3294 3295
	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_PRIQS, reg));
3296 3297

	/* SID/SSID sizes */
3298 3299
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3300

3301 3302 3303 3304 3305 3306 3307
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

3308 3309 3310 3311 3312
	/* IDR3 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
	if (FIELD_GET(IDR3_RIL, reg))
		smmu->features |= ARM_SMMU_FEAT_RANGE_INV;

3313 3314 3315 3316
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
3317
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3318 3319 3320

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
3321
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3322
	if (reg & IDR5_GRAN16K)
3323
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3324
	if (reg & IDR5_GRAN4K)
3325
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3326

3327 3328 3329 3330
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

3331
	/* Output address size */
3332
	switch (FIELD_GET(IDR5_OAS, reg)) {
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
3348 3349 3350 3351
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
3352 3353 3354
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
3355
		fallthrough;
3356 3357 3358 3359
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

3360 3361 3362 3363 3364
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

3365 3366 3367 3368 3369
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

3370
	smmu->ias = max(smmu->ias, smmu->oas);
3371

3372 3373 3374
	if (arm_smmu_sva_supported(smmu))
		smmu->features |= ARM_SMMU_FEAT_SVA;

3375 3376 3377 3378 3379
	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

3380
#ifdef CONFIG_ACPI
3381 3382
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
3383 3384
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3385
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3386
		break;
3387
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3388 3389 3390
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
3391 3392 3393 3394

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

3407 3408
	acpi_smmu_get_options(iort_smmu->model, smmu);

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

3422 3423
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
3424 3425
{
	struct device *dev = &pdev->dev;
3426
	u32 cells;
3427
	int ret = -EINVAL;
3428 3429 3430 3431 3432 3433

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

3444 3445 3446 3447 3448 3449 3450 3451
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
static int arm_smmu_set_bus_ops(struct iommu_ops *ops)
{
	int err;

#ifdef CONFIG_PCI
	if (pci_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&pci_bus_type, ops);
		if (err)
			return err;
	}
#endif
#ifdef CONFIG_ARM_AMBA
	if (amba_bustype.iommu_ops != ops) {
		err = bus_set_iommu(&amba_bustype, ops);
		if (err)
			goto err_reset_pci_ops;
	}
#endif
	if (platform_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&platform_bus_type, ops);
		if (err)
			goto err_reset_amba_ops;
	}

	return 0;

err_reset_amba_ops:
#ifdef CONFIG_ARM_AMBA
	bus_set_iommu(&amba_bustype, NULL);
#endif
err_reset_pci_ops: __maybe_unused;
#ifdef CONFIG_PCI
	bus_set_iommu(&pci_bus_type, NULL);
#endif
	return err;
}

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
				      resource_size_t size)
{
	struct resource res = {
		.flags = IORESOURCE_MEM,
		.start = start,
		.end = start + size - 1,
	};

	return devm_ioremap_resource(dev, &res);
}

3501 3502 3503 3504
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
3505
	resource_size_t ioaddr;
3506 3507 3508
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
3509 3510 3511 3512 3513 3514 3515 3516

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

3528 3529
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3530
	if (resource_size(res) < arm_smmu_resource_size(smmu)) {
3531 3532 3533
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
3534
	ioaddr = res->start;
3535

3536 3537 3538 3539 3540
	/*
	 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain
	 * the PMCG registers which are reserved by the PMU driver.
	 */
	smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
3541 3542 3543
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

3544 3545 3546 3547 3548 3549 3550 3551 3552
	if (arm_smmu_resource_size(smmu) > SZ_64K) {
		smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
					       ARM_SMMU_REG_SZ);
		if (IS_ERR(smmu->page1))
			return PTR_ERR(smmu->page1);
	} else {
		smmu->page1 = smmu->base;
	}

3553 3554
	/* Interrupt lines */

3555
	irq = platform_get_irq_byname_optional(pdev, "combined");
3556
	if (irq > 0)
3557 3558
		smmu->combined_irq = irq;
	else {
3559
		irq = platform_get_irq_byname_optional(pdev, "eventq");
3560 3561
		if (irq > 0)
			smmu->evtq.q.irq = irq;
3562

3563
		irq = platform_get_irq_byname_optional(pdev, "priq");
3564 3565
		if (irq > 0)
			smmu->priq.q.irq = irq;
3566

3567
		irq = platform_get_irq_byname_optional(pdev, "gerror");
3568 3569 3570
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
3571
	/* Probe the h/w */
3572
	ret = arm_smmu_device_hw_probe(smmu);
3573 3574 3575 3576 3577 3578 3579 3580
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

3581 3582 3583
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

3584
	/* Reset the device */
3585 3586 3587 3588 3589
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
3590 3591
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
3592 3593
	if (ret)
		return ret;
3594 3595 3596 3597 3598

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
3599 3600 3601 3602
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
3603

3604
	return arm_smmu_set_bus_ops(&arm_smmu_ops);
3605 3606
}

3607
static int arm_smmu_device_remove(struct platform_device *pdev)
3608
{
3609
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3610

3611 3612 3613
	arm_smmu_set_bus_ops(NULL);
	iommu_device_unregister(&smmu->iommu);
	iommu_device_sysfs_remove(&smmu->iommu);
3614
	arm_smmu_device_disable(smmu);
3615 3616 3617 3618 3619 3620 3621

	return 0;
}

static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
3622 3623
}

3624
static const struct of_device_id arm_smmu_of_match[] = {
3625 3626 3627
	{ .compatible = "arm,smmu-v3", },
	{ },
};
3628
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
3629

3630 3631 3632 3633 3634 3635
static void arm_smmu_driver_unregister(struct platform_driver *drv)
{
	arm_smmu_sva_notifier_synchronize();
	platform_driver_unregister(drv);
}

3636 3637
static struct platform_driver arm_smmu_driver = {
	.driver	= {
3638
		.name			= "arm-smmu-v3",
3639
		.of_match_table		= arm_smmu_of_match,
3640
		.suppress_bind_attrs	= true,
3641
	},
3642
	.probe	= arm_smmu_device_probe,
3643
	.remove	= arm_smmu_device_remove,
3644
	.shutdown = arm_smmu_device_shutdown,
3645
};
3646 3647
module_driver(arm_smmu_driver, platform_driver_register,
	      arm_smmu_driver_unregister);
3648 3649

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
3650
MODULE_AUTHOR("Will Deacon <will@kernel.org>");
3651
MODULE_ALIAS("platform:arm-smmu-v3");
3652
MODULE_LICENSE("GPL v2");