arm-smmu-v3.c 92.5 KB
Newer Older
A
Andrew Murray 已提交
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

12 13
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
14
#include <linux/bitops.h>
15
#include <linux/crash_dump.h>
16
#include <linux/delay.h>
17
#include <linux/dma-iommu.h>
18 19
#include <linux/err.h>
#include <linux/interrupt.h>
20
#include <linux/io-pgtable.h>
21
#include <linux/iopoll.h>
22
#include <linux/module.h>
23
#include <linux/msi.h>
24 25
#include <linux/of.h>
#include <linux/of_address.h>
26
#include <linux/of_iommu.h>
27
#include <linux/of_platform.h>
28
#include <linux/pci.h>
29
#include <linux/pci-ats.h>
30 31
#include <linux/platform_device.h>

32 33
#include <linux/amba/bus.h>

34
#include "arm-smmu-v3.h"
35

36
static bool disable_bypass = 1;
37
module_param(disable_bypass, bool, 0444);
38 39 40
MODULE_PARM_DESC(disable_bypass,
	"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");

41 42 43 44 45
static bool disable_msipolling;
module_param(disable_msipolling, bool, 0444);
MODULE_PARM_DESC(disable_msipolling,
	"Disable MSI-based polling for CMD_SYNC completion.");

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

71 72 73 74 75
struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

76 77
static DEFINE_XARRAY_ALLOC1(asid_xa);

78 79
static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
80
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
81 82 83
	{ 0, NULL},
};

84 85 86
static inline void __iomem *arm_smmu_page1_fixup(unsigned long offset,
						 struct arm_smmu_device *smmu)
{
87 88
	if (offset > SZ_64K)
		return smmu->page1 + offset - SZ_64K;
89 90 91 92

	return smmu->base + offset;
}

93 94 95 96 97
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct arm_smmu_domain, domain);
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111
static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

112
/* Low-level queue manipulation functions */
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
{
	u32 space, prod, cons;

	prod = Q_IDX(q, q->prod);
	cons = Q_IDX(q, q->cons);

	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
		space = (1 << q->max_n_shift) - (prod - cons);
	else
		space = cons - prod;

	return space >= n;
}

128
static bool queue_full(struct arm_smmu_ll_queue *q)
129 130 131 132 133
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

134
static bool queue_empty(struct arm_smmu_ll_queue *q)
135 136 137 138 139
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

140
static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
141
{
142 143 144 145
	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
146 147
}

148
static void queue_sync_cons_out(struct arm_smmu_queue *q)
149
{
150 151 152 153
	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
154
	__iomb();
155
	writel_relaxed(q->llq.cons, q->cons_reg);
156 157
}

158
static void queue_inc_cons(struct arm_smmu_ll_queue *q)
159
{
160 161
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
162 163
}

164
static int queue_sync_prod_in(struct arm_smmu_queue *q)
165
{
166
	u32 prod;
167
	int ret = 0;
168 169 170 171 172 173 174

	/*
	 * We can't use the _relaxed() variant here, as we must prevent
	 * speculative reads of the queue before we have determined that
	 * prod has indeed moved.
	 */
	prod = readl(q->prod_reg);
175

176
	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
177 178
		ret = -EOVERFLOW;

179
	q->llq.prod = prod;
180 181 182
	return ret;
}

183
static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
184
{
185 186
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
187 188
}

189 190
static void queue_poll_init(struct arm_smmu_device *smmu,
			    struct arm_smmu_queue_poll *qp)
191
{
192 193 194 195
	qp->delay = 1;
	qp->spin_cnt = 0;
	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
196 197
}

198
static int queue_poll(struct arm_smmu_queue_poll *qp)
199
{
200 201
	if (ktime_compare(ktime_get(), qp->timeout) > 0)
		return -ETIMEDOUT;
202

203 204 205 206 207 208 209 210
	if (qp->wfe) {
		wfe();
	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
		cpu_relax();
	} else {
		udelay(qp->delay);
		qp->delay *= 2;
		qp->spin_cnt = 0;
211 212 213 214 215 216 217 218 219 220 221 222 223
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

224
static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
225 226 227 228 229 230 231 232 233
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
234
	if (queue_empty(&q->llq))
235 236
		return -EAGAIN;

237
	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
238
	queue_inc_cons(&q->llq);
239
	queue_sync_cons_out(q);
240 241 242 243 244 245
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
246
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
247
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);
248 249 250 251 252 253

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
254 255
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PREFETCH_1_SIZE, ent->prefetch.size);
256 257
		cmd[1] |= ent->prefetch.addr & CMDQ_PREFETCH_1_ADDR_MASK;
		break;
258 259
	case CMDQ_OP_CFGI_CD:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
260
		fallthrough;
261
	case CMDQ_OP_CFGI_STE:
262 263
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
264
		break;
265 266 267
	case CMDQ_OP_CFGI_CD_ALL:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		break;
268 269
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
270
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
271 272
		break;
	case CMDQ_OP_TLBI_NH_VA:
273 274
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
275
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
276 277
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
278 279
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
280 281
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
282
	case CMDQ_OP_TLBI_S2_IPA:
283 284
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
285 286
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
287 288
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
289
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
290 291
		break;
	case CMDQ_OP_TLBI_NH_ASID:
292
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
293
		fallthrough;
294
	case CMDQ_OP_TLBI_S12_VMALL:
295
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
296
		break;
297 298 299 300 301 302 303 304
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
305
	case CMDQ_OP_PRI_RESP:
306 307 308 309
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
310 311 312 313 314 315 316 317
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
318
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
319 320
		break;
	case CMDQ_OP_CMD_SYNC:
321
		if (ent->sync.msiaddr) {
322
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
323 324
			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		} else {
325
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
326
		}
327 328
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
329 330 331 332 333 334 335 336
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

337 338 339 340 341 342 343 344 345 346 347 348
static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
					 u32 prod)
{
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	/*
	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
	 * payload, so the write will zero the entire command on that platform.
	 */
349
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
350 351 352 353 354 355 356
		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
				   q->ent_dwords * 8;
	}

	arm_smmu_cmdq_build_cmd(cmd, &ent);
}

357 358 359 360 361 362
static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	static const char *cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
363
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
364 365 366 367 368 369
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	struct arm_smmu_queue *q = &smmu->cmdq.q;
	u32 cons = readl_relaxed(q->cons_reg);
370
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
371 372 373 374 375
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
376
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");
377 378 379 380 381 382

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
383 384 385 386 387 388 389 390
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
391 392 393
	case CMDQ_ERR_CERROR_ILL_IDX:
	default:
		break;
394 395 396 397 398 399
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
400
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
401 402 403 404 405 406 407 408 409 410
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	if (arm_smmu_cmdq_build_cmd(cmd, &cmd_sync)) {
		dev_err(smmu->dev, "failed to convert to CMD_SYNC\n");
		return;
	}

411
	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
412 413
}

414 415 416 417 418 419 420 421 422 423 424 425 426
/*
 * Command queue locking.
 * This is a form of bastardised rwlock with the following major changes:
 *
 * - The only LOCK routines are exclusive_trylock() and shared_lock().
 *   Neither have barrier semantics, and instead provide only a control
 *   dependency.
 *
 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
 *   fails if the caller appears to be the last lock holder (yes, this is
 *   racy). All successful UNLOCK routines have RELEASE semantics.
 */
static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
427
{
428
	int val;
429

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	/*
	 * We can try to avoid the cmpxchg() loop by simply incrementing the
	 * lock counter. When held in exclusive state, the lock counter is set
	 * to INT_MIN so these increments won't hurt as the value will remain
	 * negative.
	 */
	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
		return;

	do {
		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
}

static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
{
	(void)atomic_dec_return_release(&cmdq->lock);
}

static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
{
	if (atomic_read(&cmdq->lock) == 1)
		return false;

	arm_smmu_cmdq_shared_unlock(cmdq);
	return true;
}

#define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
({									\
	bool __ret;							\
	local_irq_save(flags);						\
	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
	if (!__ret)							\
		local_irq_restore(flags);				\
	__ret;								\
})

#define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
({									\
	atomic_set_release(&cmdq->lock, 0);				\
	local_irq_restore(flags);					\
})


/*
 * Command queue insertion.
 * This is made fiddly by our attempts to achieve some sort of scalability
 * since there is one queue shared amongst all of the CPUs in the system.  If
 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
 * then you'll *love* this monstrosity.
 *
 * The basic idea is to split the queue up into ranges of commands that are
 * owned by a given CPU; the owner may not have written all of the commands
 * itself, but is responsible for advancing the hardware prod pointer when
 * the time comes. The algorithm is roughly:
 *
 * 	1. Allocate some space in the queue. At this point we also discover
 *	   whether the head of the queue is currently owned by another CPU,
 *	   or whether we are the owner.
 *
 *	2. Write our commands into our allocated slots in the queue.
 *
 *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
 *
 *	4. If we are an owner:
 *		a. Wait for the previous owner to finish.
 *		b. Mark the queue head as unowned, which tells us the range
 *		   that we are responsible for publishing.
 *		c. Wait for all commands in our owned range to become valid.
 *		d. Advance the hardware prod pointer.
 *		e. Tell the next owner we've finished.
 *
 *	5. If we are inserting a CMD_SYNC (we may or may not have been an
 *	   owner), then we need to stick around until it has completed:
 *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
 *		   to clear the first 4 bytes.
 *		b. Otherwise, we spin waiting for the hardware cons pointer to
 *		   advance past our command.
 *
 * The devil is in the details, particularly the use of locking for handling
 * SYNC completion and freeing up space in the queue before we think that it is
 * full.
 */
static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
					       u32 sprod, u32 eprod, bool set)
{
	u32 swidx, sbidx, ewidx, ebidx;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= sprod,
	};
522

523 524
	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;
525

526 527 528 529
	while (llq.prod != eprod) {
		unsigned long mask;
		atomic_long_t *ptr;
		u32 limit = BITS_PER_LONG;
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;

		ptr = &cmdq->valid_map[swidx];

		if ((swidx == ewidx) && (sbidx < ebidx))
			limit = ebidx;

		mask = GENMASK(limit - 1, sbidx);

		/*
		 * The valid bit is the inverse of the wrap bit. This means
		 * that a zero-initialised queue is invalid and, after marking
		 * all entries as valid, they become invalid again when we
		 * wrap.
		 */
		if (set) {
			atomic_long_xor(mask, ptr);
		} else { /* Poll */
			unsigned long valid;

			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
		}

		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
557 558 559
	}
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/* Mark all entries in the range [sprod, eprod) as valid */
static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
					u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
}

/* Wait for all entries in the range [sprod, eprod) to become valid */
static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
					 u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
}

/* Wait for the command queue to become non-full */
static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
					     struct arm_smmu_ll_queue *llq)
577
{
578
	unsigned long flags;
579 580 581
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	int ret = 0;
582

583 584 585 586 587 588 589 590 591
	/*
	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
	 * that fails, spin until somebody else updates it for us.
	 */
	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
		llq->val = READ_ONCE(cmdq->q.llq.val);
		return 0;
592 593
	}

594 595 596 597 598 599 600 601 602 603
	queue_poll_init(smmu, &qp);
	do {
		llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
		if (!queue_full(llq))
			break;

		ret = queue_poll(&qp);
	} while (!ret);

	return ret;
604
}
605

606
/*
607 608
 * Wait until the SMMU signals a CMD_SYNC completion MSI.
 * Must be called with the cmdq lock held in some capacity.
609
 */
610 611
static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
					  struct arm_smmu_ll_queue *llq)
612
{
613 614 615 616
	int ret = 0;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));
617

618
	queue_poll_init(smmu, &qp);
619

620 621 622 623 624 625 626 627
	/*
	 * The MSI won't generate an event, since it's being written back
	 * into the command queue.
	 */
	qp.wfe = false;
	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
	return ret;
628 629
}

630 631 632 633 634 635
/*
 * Wait until the SMMU cons index passes llq->prod.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
					       struct arm_smmu_ll_queue *llq)
636
{
637 638 639 640
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	u32 prod = llq->prod;
	int ret = 0;
641

642 643 644 645 646
	queue_poll_init(smmu, &qp);
	llq->val = READ_ONCE(smmu->cmdq.q.llq.val);
	do {
		if (queue_consumed(llq, prod))
			break;
647

648
		ret = queue_poll(&qp);
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
		/*
		 * This needs to be a readl() so that our subsequent call
		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
		 *
		 * Specifically, we need to ensure that we observe all
		 * shared_lock()s by other CMD_SYNCs that share our owner,
		 * so that a failing call to tryunlock() means that we're
		 * the last one out and therefore we can safely advance
		 * cmdq->q.llq.cons. Roughly speaking:
		 *
		 * CPU 0		CPU1			CPU2 (us)
		 *
		 * if (sync)
		 * 	shared_lock();
		 *
		 * dma_wmb();
		 * set_valid_map();
		 *
		 * 			if (owner) {
		 *				poll_valid_map();
		 *				<control dependency>
		 *				writel(prod_reg);
		 *
		 *						readl(cons_reg);
		 *						tryunlock();
		 *
		 * Requires us to see CPU 0's shared_lock() acquisition.
		 */
		llq->cons = readl(cmdq->q.cons_reg);
	} while (!ret);
680

681
	return ret;
682 683
}

684 685
static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
					 struct arm_smmu_ll_queue *llq)
686
{
687
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL)
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);

	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
}

static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
					u32 prod, int n)
{
	int i;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= prod,
	};

	for (i = 0; i < n; ++i) {
		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];

		prod = queue_inc_prod_n(&llq, i);
		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
	}
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
/*
 * This is the actual insertion function, and provides the following
 * ordering guarantees to callers:
 *
 * - There is a dma_wmb() before publishing any commands to the queue.
 *   This can be relied upon to order prior writes to data structures
 *   in memory (such as a CD or an STE) before the command.
 *
 * - On completion of a CMD_SYNC, there is a control dependency.
 *   This can be relied upon to order subsequent writes to memory (e.g.
 *   freeing an IOVA) after completion of the CMD_SYNC.
 *
 * - Command insertion is totally ordered, so if two CPUs each race to
 *   insert their own list of commands then all of the commands from one
 *   CPU will appear before any of the commands from the other CPU.
 */
726 727 728 729 730
static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
				       u64 *cmds, int n, bool sync)
{
	u64 cmd_sync[CMDQ_ENT_DWORDS];
	u32 prod;
731
	unsigned long flags;
732 733 734 735 736 737
	bool owner;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift = cmdq->q.llq.max_n_shift,
	}, head = llq;
	int ret = 0;
738

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	/* 1. Allocate some space in the queue */
	local_irq_save(flags);
	llq.val = READ_ONCE(cmdq->q.llq.val);
	do {
		u64 old;

		while (!queue_has_space(&llq, n + sync)) {
			local_irq_restore(flags);
			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
			local_irq_save(flags);
		}

		head.cons = llq.cons;
		head.prod = queue_inc_prod_n(&llq, n + sync) |
					     CMDQ_PROD_OWNED_FLAG;

		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
		if (old == llq.val)
			break;

		llq.val = old;
	} while (1);
	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;

	/*
	 * 2. Write our commands into the queue
	 * Dependency ordering from the cmpxchg() loop above.
	 */
	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
	if (sync) {
		prod = queue_inc_prod_n(&llq, n);
		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, prod);
		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);

		/*
		 * In order to determine completion of our CMD_SYNC, we must
		 * ensure that the queue can't wrap twice without us noticing.
		 * We achieve that by taking the cmdq lock as shared before
		 * marking our slot as valid.
		 */
		arm_smmu_cmdq_shared_lock(cmdq);
	}
784

785 786 787
	/* 3. Mark our slots as valid, ensuring commands are visible first */
	dma_wmb();
	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);
788

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	/* 4. If we are the owner, take control of the SMMU hardware */
	if (owner) {
		/* a. Wait for previous owner to finish */
		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);

		/* b. Stop gathering work by clearing the owned flag */
		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
						   &cmdq->q.llq.atomic.prod);
		prod &= ~CMDQ_PROD_OWNED_FLAG;

		/*
		 * c. Wait for any gathered work to be written to the queue.
		 * Note that we read our own entries so that we have the control
		 * dependency required by (d).
		 */
		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);

		/*
		 * d. Advance the hardware prod pointer
		 * Control dependency ordering from the entries becoming valid.
		 */
		writel_relaxed(prod, cmdq->q.prod_reg);

		/*
		 * e. Tell the next owner we're done
		 * Make sure we've updated the hardware first, so that we don't
		 * race to update prod and potentially move it backwards.
		 */
		atomic_set_release(&cmdq->owner_prod, prod);
	}

	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
	if (sync) {
		llq.prod = queue_inc_prod_n(&llq, n);
		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
		if (ret) {
			dev_err_ratelimited(smmu->dev,
					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
					    llq.prod,
					    readl_relaxed(cmdq->q.prod_reg),
					    readl_relaxed(cmdq->q.cons_reg));
		}
831

832
		/*
J
John Garry 已提交
833
		 * Try to unlock the cmdq lock. This will fail if we're the last
834 835 836 837 838 839 840
		 * reader, in which case we can safely update cmdq->q.llq.cons
		 */
		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
			arm_smmu_cmdq_shared_unlock(cmdq);
		}
	}
841

842
	local_irq_restore(flags);
843 844 845
	return ret;
}

846 847
static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				   struct arm_smmu_cmdq_ent *ent)
848
{
849
	u64 cmd[CMDQ_ENT_DWORDS];
850

851 852 853 854 855 856 857 858 859 860 861 862
	if (arm_smmu_cmdq_build_cmd(cmd, ent)) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return -EINVAL;
	}

	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, false);
}

static int arm_smmu_cmdq_issue_sync(struct arm_smmu_device *smmu)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, NULL, 0, true);
863 864
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_batch *cmds,
				    struct arm_smmu_cmdq_ent *cmd)
{
	if (cmds->num == CMDQ_BATCH_ENTRIES) {
		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false);
		cmds->num = 0;
	}
	arm_smmu_cmdq_build_cmd(&cmds->cmds[cmds->num * CMDQ_ENT_DWORDS], cmd);
	cmds->num++;
}

static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
				      struct arm_smmu_cmdq_batch *cmds)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
}

883
/* Context descriptor manipulation functions */
884 885
static void arm_smmu_sync_cd(struct arm_smmu_domain *smmu_domain,
			     int ssid, bool leaf)
886
{
887 888 889
	size_t i;
	unsigned long flags;
	struct arm_smmu_master *master;
890
	struct arm_smmu_cmdq_batch cmds = {};
891 892 893 894 895 896 897 898 899 900 901 902 903
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_CD,
		.cfgi	= {
			.ssid	= ssid,
			.leaf	= leaf,
		},
	};

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		for (i = 0; i < master->num_sids; i++) {
			cmd.cfgi.sid = master->sids[i];
904
			arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
905 906 907
		}
	}
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
908

909
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
910
}
911

912 913 914 915
static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
					struct arm_smmu_l1_ctx_desc *l1_desc)
{
	size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);
916

917 918 919 920 921 922 923 924
	l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
					     &l1_desc->l2ptr_dma, GFP_KERNEL);
	if (!l1_desc->l2ptr) {
		dev_warn(smmu->dev,
			 "failed to allocate context descriptor table\n");
		return -ENOMEM;
	}
	return 0;
925 926
}

927 928
static void arm_smmu_write_cd_l1_desc(__le64 *dst,
				      struct arm_smmu_l1_ctx_desc *l1_desc)
929
{
930 931 932
	u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
		  CTXDESC_L1_DESC_V;

933
	/* See comment in arm_smmu_write_ctx_desc() */
934 935 936 937 938 939 940 941 942 943 944
	WRITE_ONCE(*dst, cpu_to_le64(val));
}

static __le64 *arm_smmu_get_cd_ptr(struct arm_smmu_domain *smmu_domain,
				   u32 ssid)
{
	__le64 *l1ptr;
	unsigned int idx;
	struct arm_smmu_l1_ctx_desc *l1_desc;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	if (smmu_domain->s1_cfg.s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
		return cdcfg->cdtab + ssid * CTXDESC_CD_DWORDS;

	idx = ssid >> CTXDESC_SPLIT;
	l1_desc = &cdcfg->l1_desc[idx];
	if (!l1_desc->l2ptr) {
		if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
			return NULL;

		l1ptr = cdcfg->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
		arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
		/* An invalid L1CD can be cached */
		arm_smmu_sync_cd(smmu_domain, ssid, false);
	}
	idx = ssid & (CTXDESC_L2_ENTRIES - 1);
	return l1_desc->l2ptr + idx * CTXDESC_CD_DWORDS;
}

964 965 966
static int arm_smmu_write_ctx_desc(struct arm_smmu_domain *smmu_domain,
				   int ssid, struct arm_smmu_ctx_desc *cd)
{
967
	/*
968 969 970 971 972 973 974
	 * This function handles the following cases:
	 *
	 * (1) Install primary CD, for normal DMA traffic (SSID = 0).
	 * (2) Install a secondary CD, for SID+SSID traffic.
	 * (3) Update ASID of a CD. Atomically write the first 64 bits of the
	 *     CD, then invalidate the old entry and mappings.
	 * (4) Remove a secondary CD.
975
	 */
976 977
	u64 val;
	bool cd_live;
978
	__le64 *cdptr;
979
	struct arm_smmu_device *smmu = smmu_domain->smmu;
980 981 982 983 984 985 986

	if (WARN_ON(ssid >= (1 << smmu_domain->s1_cfg.s1cdmax)))
		return -E2BIG;

	cdptr = arm_smmu_get_cd_ptr(smmu_domain, ssid);
	if (!cdptr)
		return -ENOMEM;
987 988 989

	val = le64_to_cpu(cdptr[0]);
	cd_live = !!(val & CTXDESC_CD_0_V);
990

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	if (!cd) { /* (4) */
		val = 0;
	} else if (cd_live) { /* (3) */
		val &= ~CTXDESC_CD_0_ASID;
		val |= FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid);
		/*
		 * Until CD+TLB invalidation, both ASIDs may be used for tagging
		 * this substream's traffic
		 */
	} else { /* (1) and (2) */
		cdptr[1] = cpu_to_le64(cd->ttbr & CTXDESC_CD_1_TTB0_MASK);
		cdptr[2] = 0;
		cdptr[3] = cpu_to_le64(cd->mair);
1004

1005 1006 1007 1008 1009 1010
		/*
		 * STE is live, and the SMMU might read dwords of this CD in any
		 * order. Ensure that it observes valid values before reading
		 * V=1.
		 */
		arm_smmu_sync_cd(smmu_domain, ssid, true);
1011

1012
		val = cd->tcr |
1013
#ifdef __BIG_ENDIAN
1014
			CTXDESC_CD_0_ENDI |
1015
#endif
1016 1017 1018 1019
			CTXDESC_CD_0_R | CTXDESC_CD_0_A | CTXDESC_CD_0_ASET |
			CTXDESC_CD_0_AA64 |
			FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid) |
			CTXDESC_CD_0_V;
1020

1021 1022 1023 1024
		/* STALL_MODEL==0b10 && CD.S==0 is ILLEGAL */
		if (smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
			val |= CTXDESC_CD_0_S;
	}
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	/*
	 * The SMMU accesses 64-bit values atomically. See IHI0070Ca 3.21.3
	 * "Configuration structures and configuration invalidation completion"
	 *
	 *   The size of single-copy atomic reads made by the SMMU is
	 *   IMPLEMENTATION DEFINED but must be at least 64 bits. Any single
	 *   field within an aligned 64-bit span of a structure can be altered
	 *   without first making the structure invalid.
	 */
	WRITE_ONCE(cdptr[0], cpu_to_le64(val));
	arm_smmu_sync_cd(smmu_domain, ssid, true);
	return 0;
1038 1039
}

1040 1041
static int arm_smmu_alloc_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1042
	int ret;
1043
	size_t l1size;
1044
	size_t max_contexts;
1045 1046 1047 1048
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &cfg->cdcfg;

1049 1050 1051 1052 1053 1054
	max_contexts = 1 << cfg->s1cdmax;

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
	    max_contexts <= CTXDESC_L2_ENTRIES) {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
		cdcfg->num_l1_ents = max_contexts;
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
	} else {
		cfg->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
		cdcfg->num_l1_ents = DIV_ROUND_UP(max_contexts,
						  CTXDESC_L2_ENTRIES);

		cdcfg->l1_desc = devm_kcalloc(smmu->dev, cdcfg->num_l1_ents,
					      sizeof(*cdcfg->l1_desc),
					      GFP_KERNEL);
		if (!cdcfg->l1_desc)
			return -ENOMEM;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	}
1070

1071 1072 1073 1074
	cdcfg->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cdcfg->cdtab_dma,
					   GFP_KERNEL);
	if (!cdcfg->cdtab) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
1075 1076
		ret = -ENOMEM;
		goto err_free_l1;
1077
	}
1078

1079
	return 0;
1080

1081 1082 1083 1084 1085 1086
err_free_l1:
	if (cdcfg->l1_desc) {
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;
	}
	return ret;
1087 1088 1089 1090
}

static void arm_smmu_free_cd_tables(struct arm_smmu_domain *smmu_domain)
{
1091 1092
	int i;
	size_t size, l1size;
1093 1094
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_ctx_desc_cfg *cdcfg = &smmu_domain->s1_cfg.cdcfg;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	if (cdcfg->l1_desc) {
		size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);

		for (i = 0; i < cdcfg->num_l1_ents; i++) {
			if (!cdcfg->l1_desc[i].l2ptr)
				continue;

			dmam_free_coherent(smmu->dev, size,
					   cdcfg->l1_desc[i].l2ptr,
					   cdcfg->l1_desc[i].l2ptr_dma);
		}
		devm_kfree(smmu->dev, cdcfg->l1_desc);
		cdcfg->l1_desc = NULL;

		l1size = cdcfg->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	} else {
		l1size = cdcfg->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
	}
1114 1115 1116 1117

	dmam_free_coherent(smmu->dev, l1size, cdcfg->cdtab, cdcfg->cdtab_dma);
	cdcfg->cdtab_dma = 0;
	cdcfg->cdtab = NULL;
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127
static void arm_smmu_free_asid(struct arm_smmu_ctx_desc *cd)
{
	if (!cd->asid)
		return;

	xa_erase(&asid_xa, cd->asid);
}

1128 1129 1130 1131 1132 1133
/* Stream table manipulation functions */
static void
arm_smmu_write_strtab_l1_desc(__le64 *dst, struct arm_smmu_strtab_l1_desc *desc)
{
	u64 val = 0;

1134
	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, desc->span);
1135
	val |= desc->l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;
1136

1137 1138
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(*dst, cpu_to_le64(val));
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
}

static void arm_smmu_sync_ste_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1152
	arm_smmu_cmdq_issue_sync(smmu);
1153 1154
}

1155 1156
static void arm_smmu_write_strtab_ent(struct arm_smmu_master *master, u32 sid,
				      __le64 *dst)
1157 1158 1159 1160 1161
{
	/*
	 * This is hideously complicated, but we only really care about
	 * three cases at the moment:
	 *
1162 1163 1164
	 * 1. Invalid (all zero) -> bypass/fault (init)
	 * 2. Bypass/fault -> translation/bypass (attach)
	 * 3. Translation/bypass -> bypass/fault (detach)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
	 *
	 * Given that we can't update the STE atomically and the SMMU
	 * doesn't read the thing in a defined order, that leaves us
	 * with the following maintenance requirements:
	 *
	 * 1. Update Config, return (init time STEs aren't live)
	 * 2. Write everything apart from dword 0, sync, write dword 0, sync
	 * 3. Update Config, sync
	 */
	u64 val = le64_to_cpu(dst[0]);
	bool ste_live = false;
1176 1177 1178 1179
	struct arm_smmu_device *smmu = NULL;
	struct arm_smmu_s1_cfg *s1_cfg = NULL;
	struct arm_smmu_s2_cfg *s2_cfg = NULL;
	struct arm_smmu_domain *smmu_domain = NULL;
1180 1181 1182 1183 1184 1185 1186
	struct arm_smmu_cmdq_ent prefetch_cmd = {
		.opcode		= CMDQ_OP_PREFETCH_CFG,
		.prefetch	= {
			.sid	= sid,
		},
	};

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	if (master) {
		smmu_domain = master->domain;
		smmu = master->smmu;
	}

	if (smmu_domain) {
		switch (smmu_domain->stage) {
		case ARM_SMMU_DOMAIN_S1:
			s1_cfg = &smmu_domain->s1_cfg;
			break;
		case ARM_SMMU_DOMAIN_S2:
		case ARM_SMMU_DOMAIN_NESTED:
			s2_cfg = &smmu_domain->s2_cfg;
			break;
		default:
			break;
		}
	}

1206
	if (val & STRTAB_STE_0_V) {
1207
		switch (FIELD_GET(STRTAB_STE_0_CFG, val)) {
1208 1209 1210 1211 1212 1213
		case STRTAB_STE_0_CFG_BYPASS:
			break;
		case STRTAB_STE_0_CFG_S1_TRANS:
		case STRTAB_STE_0_CFG_S2_TRANS:
			ste_live = true;
			break;
1214
		case STRTAB_STE_0_CFG_ABORT:
1215 1216
			BUG_ON(!disable_bypass);
			break;
1217 1218 1219 1220 1221
		default:
			BUG(); /* STE corruption */
		}
	}

1222
	/* Nuke the existing STE_0 value, as we're going to rewrite it */
1223 1224 1225
	val = STRTAB_STE_0_V;

	/* Bypass/fault */
1226 1227
	if (!smmu_domain || !(s1_cfg || s2_cfg)) {
		if (!smmu_domain && disable_bypass)
1228
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT);
1229
		else
1230
			val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS);
1231 1232

		dst[0] = cpu_to_le64(val);
1233 1234
		dst[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
						STRTAB_STE_1_SHCFG_INCOMING));
1235
		dst[2] = 0; /* Nuke the VMID */
1236 1237 1238 1239 1240
		/*
		 * The SMMU can perform negative caching, so we must sync
		 * the STE regardless of whether the old value was live.
		 */
		if (smmu)
1241 1242 1243 1244
			arm_smmu_sync_ste_for_sid(smmu, sid);
		return;
	}

1245
	if (s1_cfg) {
1246 1247
		BUG_ON(ste_live);
		dst[1] = cpu_to_le64(
1248
			 FIELD_PREP(STRTAB_STE_1_S1DSS, STRTAB_STE_1_S1DSS_SSID0) |
1249 1250 1251 1252
			 FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
			 FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
			 FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));
1253

1254 1255
		if (smmu->features & ARM_SMMU_FEAT_STALLS &&
		   !(smmu->features & ARM_SMMU_FEAT_STALL_FORCE))
1256 1257
			dst[1] |= cpu_to_le64(STRTAB_STE_1_S1STALLD);

1258
		val |= (s1_cfg->cdcfg.cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
1259 1260 1261
			FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
			FIELD_PREP(STRTAB_STE_0_S1CDMAX, s1_cfg->s1cdmax) |
			FIELD_PREP(STRTAB_STE_0_S1FMT, s1_cfg->s1fmt);
1262 1263
	}

1264
	if (s2_cfg) {
1265 1266
		BUG_ON(ste_live);
		dst[2] = cpu_to_le64(
1267 1268
			 FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
			 FIELD_PREP(STRTAB_STE_2_VTCR, s2_cfg->vtcr) |
1269 1270 1271 1272 1273 1274
#ifdef __BIG_ENDIAN
			 STRTAB_STE_2_S2ENDI |
#endif
			 STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2AA64 |
			 STRTAB_STE_2_S2R);

1275
		dst[3] = cpu_to_le64(s2_cfg->vttbr & STRTAB_STE_3_S2TTB_MASK);
1276

1277
		val |= FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS);
1278 1279
	}

1280 1281 1282 1283
	if (master->ats_enabled)
		dst[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_EATS,
						 STRTAB_STE_1_EATS_TRANS));

1284
	arm_smmu_sync_ste_for_sid(smmu, sid);
1285 1286
	/* See comment in arm_smmu_write_ctx_desc() */
	WRITE_ONCE(dst[0], cpu_to_le64(val));
1287 1288 1289
	arm_smmu_sync_ste_for_sid(smmu, sid);

	/* It's likely that we'll want to use the new STE soon */
1290 1291
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH))
		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
1292 1293
}

1294
static void arm_smmu_init_bypass_stes(__le64 *strtab, unsigned int nent)
1295 1296 1297 1298
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
1299
		arm_smmu_write_strtab_ent(NULL, -1, strtab);
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
		strtab += STRTAB_STE_DWORDS;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
1315
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];
1316 1317

	desc->span = STRTAB_SPLIT + 1;
1318
	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &desc->l2ptr_dma,
1319
					  GFP_KERNEL);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_bypass_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, desc);
	return 0;
}

/* IRQ and event handlers */
static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
1338
	struct arm_smmu_ll_queue *llq = &q->llq;
1339 1340
	u64 evt[EVTQ_ENT_DWORDS];

1341 1342
	do {
		while (!queue_remove_raw(q, evt)) {
1343
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);
1344

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
1356
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1357
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
1358
	} while (!queue_empty(llq));
1359 1360

	/* Sync our overflow flag, as we believe we're up to speed */
1361 1362
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		    Q_IDX(llq, llq->cons);
1363 1364 1365
	return IRQ_HANDLED;
}

1366 1367 1368 1369 1370 1371
static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

1372 1373 1374 1375 1376
	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : 0;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);
1377 1378 1379 1380 1381 1382 1383 1384 1385

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
1386
		 evt[1] & PRIQ_1_ADDR_MASK);
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};
1399

1400 1401
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
1402 1403 1404 1405 1406 1407
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
1408
	struct arm_smmu_ll_queue *llq = &q->llq;
1409 1410
	u64 evt[PRIQ_ENT_DWORDS];

1411 1412 1413
	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);
1414

1415
		if (queue_sync_prod_in(q) == -EOVERFLOW)
1416
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
1417
	} while (!queue_empty(llq));
1418 1419

	/* Sync our overflow flag, as we believe we're up to speed */
1420 1421 1422
	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		      Q_IDX(llq, llq->cons);
	queue_sync_cons_out(q);
1423 1424 1425 1426 1427 1428 1429
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
1430
	u32 gerror, gerrorn, active;
1431 1432 1433 1434 1435
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

1436 1437
	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
1438 1439 1440 1441
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
1442
		 active);
1443

1444
	if (active & GERROR_SFM_ERR) {
1445 1446 1447 1448
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

1449
	if (active & GERROR_MSI_GERROR_ABT_ERR)
1450 1451
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

1452
	if (active & GERROR_MSI_PRIQ_ABT_ERR)
1453 1454
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

1455
	if (active & GERROR_MSI_EVTQ_ABT_ERR)
1456 1457
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

1458
	if (active & GERROR_MSI_CMDQ_ABT_ERR)
1459 1460
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

1461
	if (active & GERROR_PRIQ_ABT_ERR)
1462 1463
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

1464
	if (active & GERROR_EVTQ_ABT_ERR)
1465 1466
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

1467
	if (active & GERROR_CMDQ_ERR)
1468 1469 1470 1471 1472 1473
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= !!ssid,
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

1544
static int arm_smmu_atc_inv_master(struct arm_smmu_master *master)
1545 1546
{
	int i;
1547
	struct arm_smmu_cmdq_ent cmd;
1548

1549
	arm_smmu_atc_inv_to_cmd(0, 0, 0, &cmd);
1550 1551

	for (i = 0; i < master->num_sids; i++) {
1552 1553
		cmd.atc.sid = master->sids[i];
		arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
1554 1555 1556 1557 1558 1559 1560 1561
	}

	return arm_smmu_cmdq_issue_sync(master->smmu);
}

static int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain,
				   int ssid, unsigned long iova, size_t size)
{
1562
	int i;
1563 1564 1565
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_master *master;
1566
	struct arm_smmu_cmdq_batch cmds = {};
1567 1568 1569 1570

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	/*
	 * Ensure that we've completed prior invalidation of the main TLBs
	 * before we read 'nr_ats_masters' in case of a concurrent call to
	 * arm_smmu_enable_ats():
	 *
	 *	// unmap()			// arm_smmu_enable_ats()
	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
	 *	smp_mb();			[...]
	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
	 *
	 * Ensures that we always see the incremented 'nr_ats_masters' count if
	 * ATS was enabled at the PCI device before completion of the TLBI.
	 */
	smp_mb();
	if (!atomic_read(&smmu_domain->nr_ats_masters))
		return 0;

1588 1589 1590
	arm_smmu_atc_inv_to_cmd(ssid, iova, size, &cmd);

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
1591 1592 1593 1594 1595 1596 1597 1598 1599
	list_for_each_entry(master, &smmu_domain->devices, domain_head) {
		if (!master->ats_enabled)
			continue;

		for (i = 0; i < master->num_sids; i++) {
			cmd.atc.sid = master->sids[i];
			arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
		}
	}
1600 1601
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

1602
	return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
1603 1604
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
/* IO_PGTABLE API */
static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_ASID;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
		cmd.tlbi.vmid	= 0;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1621 1622 1623
	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
1624 1625 1626
	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
	 * insertion to guarantee those are observed before the TLBI. Do be
	 * careful, 007.
1627
	 */
1628
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
1629
	arm_smmu_cmdq_issue_sync(smmu);
1630
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
1631 1632
}

1633 1634 1635
static void arm_smmu_tlb_inv_range(unsigned long iova, size_t size,
				   size_t granule, bool leaf,
				   struct arm_smmu_domain *smmu_domain)
1636 1637
{
	struct arm_smmu_device *smmu = smmu_domain->smmu;
1638 1639
	unsigned long start = iova, end = iova + size, num_pages = 0, tg = 0;
	size_t inv_range = granule;
1640
	struct arm_smmu_cmdq_batch cmds = {};
1641 1642 1643 1644 1645 1646
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
		},
	};

1647 1648 1649
	if (!size)
		return;

1650 1651 1652 1653 1654 1655 1656 1657
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->s1_cfg.cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
		/* Get the leaf page size */
		tg = __ffs(smmu_domain->domain.pgsize_bitmap);

		/* Convert page size of 12,14,16 (log2) to 1,2,3 */
		cmd.tlbi.tg = (tg - 10) / 2;

		/* Determine what level the granule is at */
		cmd.tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));

		num_pages = size >> tg;
	}

1671
	while (iova < end) {
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
			/*
			 * On each iteration of the loop, the range is 5 bits
			 * worth of the aligned size remaining.
			 * The range in pages is:
			 *
			 * range = (num_pages & (0x1f << __ffs(num_pages)))
			 */
			unsigned long scale, num;

			/* Determine the power of 2 multiple number of pages */
			scale = __ffs(num_pages);
			cmd.tlbi.scale = scale;

			/* Determine how many chunks of 2^scale size we have */
			num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
			cmd.tlbi.num = num - 1;

			/* range is num * 2^scale * pgsize */
			inv_range = num << (scale + tg);

			/* Clear out the lower order bits for the next iteration */
			num_pages -= num << scale;
1695 1696 1697
		}

		cmd.tlbi.addr = iova;
1698
		arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
1699
		iova += inv_range;
1700
	}
1701
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
1702 1703 1704 1705 1706 1707

	/*
	 * Unfortunately, this can't be leaf-only since we may have
	 * zapped an entire table.
	 */
	arm_smmu_atc_inv_domain(smmu_domain, 0, start, size);
1708 1709
}

1710 1711
static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
					 unsigned long iova, size_t granule,
1712 1713
					 void *cookie)
{
1714 1715 1716 1717
	struct arm_smmu_domain *smmu_domain = cookie;
	struct iommu_domain *domain = &smmu_domain->domain;

	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
1718 1719
}

1720 1721 1722
static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
1723
	arm_smmu_tlb_inv_range(iova, size, granule, false, cookie);
1724 1725 1726 1727 1728
}

static void arm_smmu_tlb_inv_leaf(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
1729
	arm_smmu_tlb_inv_range(iova, size, granule, true, cookie);
1730 1731
}

1732
static const struct iommu_flush_ops arm_smmu_flush_ops = {
1733
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
1734 1735
	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
	.tlb_flush_leaf = arm_smmu_tlb_inv_leaf,
1736
	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
};

/* IOMMU API */
static bool arm_smmu_capable(enum iommu_cap cap)
{
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return true;
	case IOMMU_CAP_NOEXEC:
		return true;
	default:
		return false;
	}
}

static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
	struct arm_smmu_domain *smmu_domain;

1756 1757 1758
	if (type != IOMMU_DOMAIN_UNMANAGED &&
	    type != IOMMU_DOMAIN_DMA &&
	    type != IOMMU_DOMAIN_IDENTITY)
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
		return NULL;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return NULL;

1770 1771 1772 1773 1774 1775
	if (type == IOMMU_DOMAIN_DMA &&
	    iommu_get_dma_cookie(&smmu_domain->domain)) {
		kfree(smmu_domain);
		return NULL;
	}

1776
	mutex_init(&smmu_domain->init_mutex);
1777 1778 1779
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	return &smmu_domain->domain;
}

static int arm_smmu_bitmap_alloc(unsigned long *map, int span)
{
	int idx, size = 1 << span;

	do {
		idx = find_first_zero_bit(map, size);
		if (idx == size)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void arm_smmu_bitmap_free(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

static void arm_smmu_domain_free(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1806
	iommu_put_dma_cookie(domain);
1807
	free_io_pgtable_ops(smmu_domain->pgtbl_ops);
1808 1809 1810 1811 1812

	/* Free the CD and ASID, if we allocated them */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;

1813
		if (cfg->cdcfg.cdtab)
1814
			arm_smmu_free_cd_tables(smmu_domain);
1815
		arm_smmu_free_asid(&cfg->cd);
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			arm_smmu_bitmap_free(smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_domain *smmu_domain,
1826
				       struct arm_smmu_master *master,
1827 1828 1829
				       struct io_pgtable_cfg *pgtbl_cfg)
{
	int ret;
1830
	u32 asid;
1831 1832
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s1_cfg *cfg = &smmu_domain->s1_cfg;
1833
	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr = &pgtbl_cfg->arm_lpae_s1_cfg.tcr;
1834

1835 1836 1837 1838
	ret = xa_alloc(&asid_xa, &asid, &cfg->cd,
		       XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
	if (ret)
		return ret;
1839

1840 1841
	cfg->s1cdmax = master->ssid_bits;

1842 1843
	ret = arm_smmu_alloc_cd_tables(smmu_domain);
	if (ret)
1844 1845
		goto out_free_asid;

1846
	cfg->cd.asid	= (u16)asid;
1847
	cfg->cd.ttbr	= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
1848 1849 1850 1851 1852 1853 1854
	cfg->cd.tcr	= FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
			  FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
			  CTXDESC_CD_0_TCR_EPD1 | CTXDESC_CD_0_AA64;
1855
	cfg->cd.mair	= pgtbl_cfg->arm_lpae_s1_cfg.mair;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865

	/*
	 * Note that this will end up calling arm_smmu_sync_cd() before
	 * the master has been added to the devices list for this domain.
	 * This isn't an issue because the STE hasn't been installed yet.
	 */
	ret = arm_smmu_write_ctx_desc(smmu_domain, 0, &cfg->cd);
	if (ret)
		goto out_free_cd_tables;

1866 1867
	return 0;

1868 1869
out_free_cd_tables:
	arm_smmu_free_cd_tables(smmu_domain);
1870
out_free_asid:
1871
	arm_smmu_free_asid(&cfg->cd);
1872 1873 1874 1875
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_domain *smmu_domain,
1876
				       struct arm_smmu_master *master,
1877 1878
				       struct io_pgtable_cfg *pgtbl_cfg)
{
1879
	int vmid;
1880 1881
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
1882
	typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr;
1883 1884

	vmid = arm_smmu_bitmap_alloc(smmu->vmid_map, smmu->vmid_bits);
1885
	if (vmid < 0)
1886 1887
		return vmid;

1888
	vtcr = &pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
1889
	cfg->vmid	= (u16)vmid;
1890
	cfg->vttbr	= pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
1891 1892 1893 1894 1895 1896 1897
	cfg->vtcr	= FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
			  FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
1898 1899 1900
	return 0;
}

1901 1902
static int arm_smmu_domain_finalise(struct iommu_domain *domain,
				    struct arm_smmu_master *master)
1903 1904 1905 1906 1907 1908 1909
{
	int ret;
	unsigned long ias, oas;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_domain *,
1910
				 struct arm_smmu_master *,
1911 1912 1913 1914
				 struct io_pgtable_cfg *);
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

1915 1916 1917 1918 1919
	if (domain->type == IOMMU_DOMAIN_IDENTITY) {
		smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
		return 0;
	}

1920 1921 1922 1923 1924 1925 1926 1927
	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1:
1928 1929
		ias = (smmu->features & ARM_SMMU_FEAT_VAX) ? 52 : 48;
		ias = min_t(unsigned long, ias, VA_BITS);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		oas = smmu->ias;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	case ARM_SMMU_DOMAIN_NESTED:
	case ARM_SMMU_DOMAIN_S2:
		ias = smmu->ias;
		oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_cfg = (struct io_pgtable_cfg) {
1946
		.pgsize_bitmap	= smmu->pgsize_bitmap,
1947 1948
		.ias		= ias,
		.oas		= oas,
1949
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
1950
		.tlb		= &arm_smmu_flush_ops,
1951
		.iommu_dev	= smmu->dev,
1952 1953
	};

1954 1955 1956
	if (smmu_domain->non_strict)
		pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;

1957 1958 1959 1960
	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

1961
	domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
1962
	domain->geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
1963
	domain->geometry.force_aperture = true;
1964

1965
	ret = finalise_stage_fn(smmu_domain, master, &pgtbl_cfg);
1966
	if (ret < 0) {
1967
		free_io_pgtable_ops(pgtbl_ops);
1968 1969
		return ret;
	}
1970

1971 1972
	smmu_domain->pgtbl_ops = pgtbl_ops;
	return 0;
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

static __le64 *arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	__le64 *step;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		struct arm_smmu_strtab_l1_desc *l1_desc;
		int idx;

		/* Two-level walk */
		idx = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		l1_desc = &cfg->l1_desc[idx];
		idx = (sid & ((1 << STRTAB_SPLIT) - 1)) * STRTAB_STE_DWORDS;
		step = &l1_desc->l2ptr[idx];
	} else {
		/* Simple linear lookup */
		step = &cfg->strtab[sid * STRTAB_STE_DWORDS];
	}

	return step;
}

1997
static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master)
1998
{
1999
	int i, j;
2000
	struct arm_smmu_device *smmu = master->smmu;
2001

2002 2003
	for (i = 0; i < master->num_sids; ++i) {
		u32 sid = master->sids[i];
2004 2005
		__le64 *step = arm_smmu_get_step_for_sid(smmu, sid);

2006 2007
		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
2008
			if (master->sids[j] == sid)
2009 2010 2011 2012
				break;
		if (j < i)
			continue;

2013
		arm_smmu_write_strtab_ent(master, sid, step);
2014 2015 2016
	}
}

2017
static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
2018
{
2019
	struct device *dev = master->dev;
2020
	struct arm_smmu_device *smmu = master->smmu;
2021
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2022

2023
	if (!(smmu->features & ARM_SMMU_FEAT_ATS))
2024
		return false;
2025

2026 2027 2028 2029
	if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
		return false;

	return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
2030
}
2031

2032 2033 2034 2035 2036
static void arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;
2037
	struct arm_smmu_domain *smmu_domain = master->domain;
2038

2039 2040 2041
	/* Don't enable ATS at the endpoint if it's not enabled in the STE */
	if (!master->ats_enabled)
		return;
2042 2043 2044

	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);
2045
	pdev = to_pci_dev(master->dev);
2046

2047 2048
	atomic_inc(&smmu_domain->nr_ats_masters);
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0, 0);
2049 2050
	if (pci_enable_ats(pdev, stu))
		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
2051 2052 2053 2054
}

static void arm_smmu_disable_ats(struct arm_smmu_master *master)
{
2055
	struct arm_smmu_domain *smmu_domain = master->domain;
2056

2057
	if (!master->ats_enabled)
2058 2059
		return;

2060 2061 2062 2063 2064 2065
	pci_disable_ats(to_pci_dev(master->dev));
	/*
	 * Ensure ATS is disabled at the endpoint before we issue the
	 * ATC invalidation via the SMMU.
	 */
	wmb();
2066
	arm_smmu_atc_inv_master(master);
2067
	atomic_dec(&smmu_domain->nr_ats_masters);
2068 2069
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
{
	int ret;
	int features;
	int num_pasids;
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return -ENODEV;

	pdev = to_pci_dev(master->dev);

	features = pci_pasid_features(pdev);
	if (features < 0)
		return features;

	num_pasids = pci_max_pasids(pdev);
	if (num_pasids <= 0)
		return num_pasids;

	ret = pci_enable_pasid(pdev, features);
	if (ret) {
		dev_err(&pdev->dev, "Failed to enable PASID\n");
		return ret;
	}

	master->ssid_bits = min_t(u8, ilog2(num_pasids),
				  master->smmu->ssid_bits);
	return 0;
}

static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return;

	pdev = to_pci_dev(master->dev);

	if (!pdev->pasid_enabled)
		return;

	master->ssid_bits = 0;
	pci_disable_pasid(pdev);
}

2117
static void arm_smmu_detach_dev(struct arm_smmu_master *master)
2118
{
2119 2120 2121 2122
	unsigned long flags;
	struct arm_smmu_domain *smmu_domain = master->domain;

	if (!smmu_domain)
2123 2124
		return;

2125 2126
	arm_smmu_disable_ats(master);

2127 2128 2129 2130
	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_del(&master->domain_head);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2131
	master->domain = NULL;
2132
	master->ats_enabled = false;
2133
	arm_smmu_install_ste_for_dev(master);
2134 2135
}

2136 2137 2138
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
2139
	unsigned long flags;
2140
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2141 2142
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2143
	struct arm_smmu_master *master;
2144

2145
	if (!fwspec)
2146 2147
		return -ENOENT;

2148
	master = dev_iommu_priv_get(dev);
2149 2150
	smmu = master->smmu;

2151
	arm_smmu_detach_dev(master);
2152 2153 2154 2155 2156

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		smmu_domain->smmu = smmu;
2157
		ret = arm_smmu_domain_finalise(domain, master);
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		if (ret) {
			smmu_domain->smmu = NULL;
			goto out_unlock;
		}
	} else if (smmu_domain->smmu != smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s (upstream of %s)\n",
			dev_name(smmu_domain->smmu->dev),
			dev_name(smmu->dev));
		ret = -ENXIO;
		goto out_unlock;
2169 2170 2171 2172 2173 2174 2175
	} else if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1 &&
		   master->ssid_bits != smmu_domain->s1_cfg.s1cdmax) {
		dev_err(dev,
			"cannot attach to incompatible domain (%u SSID bits != %u)\n",
			smmu_domain->s1_cfg.s1cdmax, master->ssid_bits);
		ret = -EINVAL;
		goto out_unlock;
2176 2177
	}

2178
	master->domain = smmu_domain;
2179

2180
	if (smmu_domain->stage != ARM_SMMU_DOMAIN_BYPASS)
2181
		master->ats_enabled = arm_smmu_ats_supported(master);
2182

2183
	arm_smmu_install_ste_for_dev(master);
2184 2185 2186 2187 2188

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_add(&master->domain_head, &smmu_domain->devices);
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

2189
	arm_smmu_enable_ats(master);
2190

2191 2192 2193 2194 2195 2196
out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
2197
			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
2198
{
2199
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2200 2201 2202 2203

	if (!ops)
		return -ENODEV;

2204
	return ops->map(ops, iova, paddr, size, prot, gfp);
2205 2206
}

2207 2208
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size, struct iommu_iotlb_gather *gather)
2209
{
2210 2211
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
2212 2213 2214 2215

	if (!ops)
		return 0;

2216
	return ops->unmap(ops, iova, size, gather);
2217 2218
}

2219 2220 2221 2222 2223 2224 2225 2226
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

2227 2228
static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
				struct iommu_iotlb_gather *gather)
2229
{
2230
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
2231

2232 2233
	arm_smmu_tlb_inv_range(gather->start, gather->end - gather->start,
			       gather->pgsize, true, smmu_domain);
2234 2235
}

2236 2237 2238
static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
2239
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
2240

2241 2242 2243
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
		return iova;

2244 2245 2246
	if (!ops)
		return 0;

2247
	return ops->iova_to_phys(ops, iova);
2248 2249
}

2250
static struct platform_driver arm_smmu_driver;
2251

2252 2253
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
2254
{
2255 2256
	struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
							  fwnode);
2257 2258
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

2271 2272
static struct iommu_ops arm_smmu_ops;

2273
static struct iommu_device *arm_smmu_probe_device(struct device *dev)
2274 2275 2276
{
	int i, ret;
	struct arm_smmu_device *smmu;
2277
	struct arm_smmu_master *master;
2278
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2279

2280
	if (!fwspec || fwspec->ops != &arm_smmu_ops)
2281
		return ERR_PTR(-ENODEV);
2282

2283
	if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
2284
		return ERR_PTR(-EBUSY);
2285 2286 2287

	smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
	if (!smmu)
2288
		return ERR_PTR(-ENODEV);
2289 2290 2291

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master)
2292
		return ERR_PTR(-ENOMEM);
2293 2294 2295 2296 2297

	master->dev = dev;
	master->smmu = smmu;
	master->sids = fwspec->ids;
	master->num_sids = fwspec->num_ids;
2298
	dev_iommu_priv_set(dev, master);
2299

2300
	/* Check the SIDs are in range of the SMMU and our stream table */
2301 2302
	for (i = 0; i < master->num_sids; i++) {
		u32 sid = master->sids[i];
2303

2304 2305 2306 2307
		if (!arm_smmu_sid_in_range(smmu, sid)) {
			ret = -ERANGE;
			goto err_free_master;
		}
2308

2309 2310 2311 2312
		/* Ensure l2 strtab is initialised */
		if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
			ret = arm_smmu_init_l2_strtab(smmu, sid);
			if (ret)
2313
				goto err_free_master;
2314
		}
2315 2316
	}

2317 2318
	master->ssid_bits = min(smmu->ssid_bits, fwspec->num_pasid_bits);

2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	/*
	 * Note that PASID must be enabled before, and disabled after ATS:
	 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
	 *
	 *   Behavior is undefined if this bit is Set and the value of the PASID
	 *   Enable, Execute Requested Enable, or Privileged Mode Requested bits
	 *   are changed.
	 */
	arm_smmu_enable_pasid(master);

2329 2330 2331 2332
	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
		master->ssid_bits = min_t(u8, master->ssid_bits,
					  CTXDESC_LINEAR_CDMAX);

2333
	return &smmu->iommu;
2334

2335 2336
err_free_master:
	kfree(master);
2337
	dev_iommu_priv_set(dev, NULL);
2338
	return ERR_PTR(ret);
2339 2340
}

2341
static void arm_smmu_release_device(struct device *dev)
2342
{
2343
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
2344
	struct arm_smmu_master *master;
2345 2346 2347 2348

	if (!fwspec || fwspec->ops != &arm_smmu_ops)
		return;

2349
	master = dev_iommu_priv_get(dev);
2350
	arm_smmu_detach_dev(master);
2351
	arm_smmu_disable_pasid(master);
2352 2353
	kfree(master);
	iommu_fwspec_free(dev);
2354 2355
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

2373 2374 2375 2376 2377
static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			*(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
			return 0;
		default:
			return -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch (attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			*(int *)data = smmu_domain->non_strict;
			return 0;
		default:
			return -ENODEV;
		}
		break;
2397
	default:
2398
		return -EINVAL;
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	}
}

static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
				    enum iommu_attr attr, void *data)
{
	int ret = 0;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	mutex_lock(&smmu_domain->init_mutex);

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	switch (domain->type) {
	case IOMMU_DOMAIN_UNMANAGED:
		switch (attr) {
		case DOMAIN_ATTR_NESTING:
			if (smmu_domain->smmu) {
				ret = -EPERM;
				goto out_unlock;
			}

			if (*(int *)data)
				smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
			else
				smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
			break;
		default:
			ret = -ENODEV;
		}
		break;
	case IOMMU_DOMAIN_DMA:
		switch(attr) {
		case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
			smmu_domain->non_strict = *(int *)data;
			break;
		default:
			ret = -ENODEV;
2435 2436 2437
		}
		break;
	default:
2438
		ret = -EINVAL;
2439 2440 2441 2442 2443 2444 2445
	}

out_unlock:
	mutex_unlock(&smmu_domain->init_mutex);
	return ret;
}

2446 2447 2448 2449 2450
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

2451 2452 2453 2454 2455 2456 2457
static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
2458
					 prot, IOMMU_RESV_SW_MSI);
2459 2460 2461 2462
	if (!region)
		return;

	list_add_tail(&region->list, head);
2463 2464

	iommu_dma_get_resv_regions(dev, head);
2465 2466
}

2467 2468 2469 2470 2471 2472 2473
static struct iommu_ops arm_smmu_ops = {
	.capable		= arm_smmu_capable,
	.domain_alloc		= arm_smmu_domain_alloc,
	.domain_free		= arm_smmu_domain_free,
	.attach_dev		= arm_smmu_attach_dev,
	.map			= arm_smmu_map,
	.unmap			= arm_smmu_unmap,
2474
	.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
2475
	.iotlb_sync		= arm_smmu_iotlb_sync,
2476
	.iova_to_phys		= arm_smmu_iova_to_phys,
2477 2478
	.probe_device		= arm_smmu_probe_device,
	.release_device		= arm_smmu_release_device,
2479
	.device_group		= arm_smmu_device_group,
2480 2481
	.domain_get_attr	= arm_smmu_domain_get_attr,
	.domain_set_attr	= arm_smmu_domain_set_attr,
2482
	.of_xlate		= arm_smmu_of_xlate,
2483
	.get_resv_regions	= arm_smmu_get_resv_regions,
2484
	.put_resv_regions	= generic_iommu_put_resv_regions,
2485 2486 2487 2488 2489 2490 2491 2492
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   unsigned long prod_off,
				   unsigned long cons_off,
2493
				   size_t dwords, const char *name)
2494
{
2495 2496 2497
	size_t qsz;

	do {
2498
		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
2499 2500 2501 2502 2503
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

2504
		q->llq.max_n_shift--;
2505
	} while (1);
2506 2507

	if (!q->base) {
2508 2509 2510
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
2511 2512 2513
		return -ENOMEM;
	}

2514 2515
	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
2516
			 1 << q->llq.max_n_shift, name);
2517 2518
	}

2519 2520
	q->prod_reg	= arm_smmu_page1_fixup(prod_off, smmu);
	q->cons_reg	= arm_smmu_page1_fixup(cons_off, smmu);
2521 2522 2523
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
2524
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
2525
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);
2526

2527
	q->llq.prod = q->llq.cons = 0;
2528 2529 2530
	return 0;
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
static void arm_smmu_cmdq_free_bitmap(void *data)
{
	unsigned long *bitmap = data;
	bitmap_free(bitmap);
}

static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
{
	int ret = 0;
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;
	atomic_long_t *bitmap;

	atomic_set(&cmdq->owner_prod, 0);
	atomic_set(&cmdq->lock, 0);

	bitmap = (atomic_long_t *)bitmap_zalloc(nents, GFP_KERNEL);
	if (!bitmap) {
		dev_err(smmu->dev, "failed to allocate cmdq bitmap\n");
		ret = -ENOMEM;
	} else {
		cmdq->valid_map = bitmap;
		devm_add_action(smmu->dev, arm_smmu_cmdq_free_bitmap, bitmap);
	}

	return ret;
}

2559 2560 2561 2562 2563 2564
static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, ARM_SMMU_CMDQ_PROD,
2565 2566
				      ARM_SMMU_CMDQ_CONS, CMDQ_ENT_DWORDS,
				      "cmdq");
2567
	if (ret)
2568
		return ret;
2569

2570 2571 2572 2573
	ret = arm_smmu_cmdq_init(smmu);
	if (ret)
		return ret;

2574 2575
	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, ARM_SMMU_EVTQ_PROD,
2576 2577
				      ARM_SMMU_EVTQ_CONS, EVTQ_ENT_DWORDS,
				      "evtq");
2578
	if (ret)
2579
		return ret;
2580 2581 2582 2583 2584

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

2585
	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, ARM_SMMU_PRIQ_PROD,
2586 2587
				       ARM_SMMU_PRIQ_CONS, PRIQ_ENT_DWORDS,
				       "priq");
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
}

static int arm_smmu_init_l1_strtab(struct arm_smmu_device *smmu)
{
	unsigned int i;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	size_t size = sizeof(*cfg->l1_desc) * cfg->num_l1_ents;
	void *strtab = smmu->strtab_cfg.strtab;

	cfg->l1_desc = devm_kzalloc(smmu->dev, size, GFP_KERNEL);
	if (!cfg->l1_desc) {
		dev_err(smmu->dev, "failed to allocate l1 stream table desc\n");
		return -ENOMEM;
	}

	for (i = 0; i < cfg->num_l1_ents; ++i) {
		arm_smmu_write_strtab_l1_desc(strtab, &cfg->l1_desc[i]);
		strtab += STRTAB_L1_DESC_DWORDS << 3;
	}

	return 0;
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
2615
	u32 size, l1size;
2616 2617
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

2618 2619 2620
	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
2621 2622 2623 2624
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
2625 2626
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
2627
			 size, smmu->sid_bits);
2628

2629
	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
2630
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
2631
				     GFP_KERNEL);
2632 2633 2634
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
2635
			l1size);
2636 2637 2638 2639 2640
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
2641 2642 2643
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
2644 2645
	cfg->strtab_base_cfg = reg;

2646
	return arm_smmu_init_l1_strtab(smmu);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
2657
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
2658
				     GFP_KERNEL);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
2669 2670
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_bypass_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
2691
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	/* Allocate the first VMID for stage-2 bypass STEs */
	set_bit(0, smmu->vmid_map);
	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

2708
	return arm_smmu_init_strtab(smmu);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
2735 2736 2737 2738 2739 2740
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
2741 2742
}

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;
	platform_msi_domain_free_irqs(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->platform.msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
2757
	doorbell &= MSI_CFG0_ADDR_MASK;
2758 2759 2760

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
2761
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	struct msi_desc *desc;
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

2782 2783 2784 2785 2786
	if (!dev->msi_domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

2787 2788 2789
	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_msi_domain_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
2790
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
		return;
	}

	for_each_msi_entry(desc, dev) {
		switch (desc->platform.msi_index) {
		case EVTQ_MSI_INDEX:
			smmu->evtq.q.irq = desc->irq;
			break;
		case GERROR_MSI_INDEX:
			smmu->gerr_irq = desc->irq;
			break;
		case PRIQ_MSI_INDEX:
			smmu->priq.q.irq = desc->irq;
			break;
		default:	/* Unknown */
			continue;
		}
	}

	/* Add callback to free MSIs on teardown */
	devm_add_action(dev, arm_smmu_free_msis, dev);
}

2814
static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
2815
{
2816
	int irq, ret;
2817

2818
	arm_smmu_setup_msis(smmu);
2819

2820
	/* Request interrupt lines */
2821 2822
	irq = smmu->evtq.q.irq;
	if (irq) {
2823
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2824
						arm_smmu_evtq_thread,
2825 2826
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
2827
		if (ret < 0)
2828
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
2829 2830
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
2831 2832 2833 2834 2835 2836
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
2837
		if (ret < 0)
2838
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
2839 2840
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
2841 2842 2843 2844 2845
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
2846
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
2847
							arm_smmu_priq_thread,
2848 2849
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
2850
							smmu);
2851
			if (ret < 0)
2852 2853
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
2854 2855
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
2856 2857
		}
	}
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
2876 2877
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;
2891 2892

	/* Enable interrupt generation on the SMMU */
2893
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

2912
static int arm_smmu_device_reset(struct arm_smmu_device *smmu, bool bypass)
2913 2914 2915 2916 2917 2918 2919
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
2920
	if (reg & CR0_SMMUEN) {
2921
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
2922 2923
		WARN_ON(is_kdump_kernel() && !disable_bypass);
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
2924
	}
2925 2926 2927 2928 2929 2930

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
2931 2932 2933 2934 2935 2936
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID | CR2_E2H;
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
2951 2952
	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2965
	arm_smmu_cmdq_issue_sync(smmu);
2966 2967 2968 2969 2970 2971 2972 2973 2974

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd(smmu, &cmd);
2975
	arm_smmu_cmdq_issue_sync(smmu);
2976 2977 2978

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
2979
	writel_relaxed(smmu->evtq.q.llq.prod,
2980
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_PROD, smmu));
2981
	writel_relaxed(smmu->evtq.q.llq.cons,
2982
		       arm_smmu_page1_fixup(ARM_SMMU_EVTQ_CONS, smmu));
2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
2996
		writel_relaxed(smmu->priq.q.llq.prod,
2997
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_PROD, smmu));
2998
		writel_relaxed(smmu->priq.q.llq.cons,
2999
			       arm_smmu_page1_fixup(ARM_SMMU_PRIQ_CONS, smmu));
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

3020 3021 3022 3023 3024 3025
	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

3026 3027
	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);
3028 3029 3030 3031 3032 3033

	/* Enable the SMMU interface, or ensure bypass */
	if (!bypass || disable_bypass) {
		enables |= CR0_SMMUEN;
	} else {
		ret = arm_smmu_update_gbpa(smmu, 0, GBPA_ABORT);
3034
		if (ret)
3035 3036
			return ret;
	}
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

3047
static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
3048 3049
{
	u32 reg;
3050
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;
3051 3052 3053 3054 3055

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
3056
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
3067
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

3095
	if (reg & IDR0_MSI) {
3096
		smmu->features |= ARM_SMMU_FEAT_MSI;
3097 3098 3099
		if (coherent && !disable_msipolling)
			smmu->options |= ARM_SMMU_OPT_MSIPOLL;
	}
3100 3101 3102 3103 3104

	if (reg & IDR0_HYP)
		smmu->features |= ARM_SMMU_FEAT_HYP;

	/*
3105
	 * The coherency feature as set by FW is used in preference to the ID
3106 3107 3108
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
3109
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
3110 3111
			 coherent ? "true" : "false");

3112
	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
3113
	case IDR0_STALL_MODEL_FORCE:
3114
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
3115
		fallthrough;
3116
	case IDR0_STALL_MODEL_STALL:
3117
		smmu->features |= ARM_SMMU_FEAT_STALLS;
3118
	}
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
3132
	switch (FIELD_GET(IDR0_TTF, reg)) {
3133 3134
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
3135
		fallthrough;
3136 3137 3138
	case IDR0_TTF_AARCH64:
		break;
	default:
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

3154
	/* Queue sizes, capped to ensure natural alignment */
3155 3156
	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_CMDQS, reg));
3157
	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
3158
		/*
3159 3160 3161 3162
		 * We don't support splitting up batches, so one batch of
		 * commands plus an extra sync needs to fit inside the command
		 * queue. There's also no way we can handle the weird alignment
		 * restrictions on the base pointer for a unit-length queue.
3163
		 */
3164 3165
		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
			CMDQ_BATCH_ENTRIES);
3166 3167 3168
		return -ENXIO;
	}

3169 3170 3171 3172
	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_PRIQS, reg));
3173 3174

	/* SID/SSID sizes */
3175 3176
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
3177

3178 3179 3180 3181 3182 3183 3184
	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

3185 3186 3187 3188 3189
	/* IDR3 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
	if (FIELD_GET(IDR3_RIL, reg))
		smmu->features |= ARM_SMMU_FEAT_RANGE_INV;

3190 3191 3192 3193
	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
3194
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);
3195 3196 3197

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
3198
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
3199
	if (reg & IDR5_GRAN16K)
3200
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
3201
	if (reg & IDR5_GRAN4K)
3202
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
3203

3204 3205 3206 3207
	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

3208
	/* Output address size */
3209
	switch (FIELD_GET(IDR5_OAS, reg)) {
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
3225 3226 3227 3228
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
3229 3230 3231
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
3232
		fallthrough;
3233 3234 3235 3236
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

3237 3238 3239 3240 3241
	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

3242 3243 3244 3245 3246
	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

3247
	smmu->ias = max(smmu->ias, smmu->oas);
3248 3249 3250 3251 3252 3253

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

3254
#ifdef CONFIG_ACPI
3255 3256
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
3257 3258
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
3259
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
3260
		break;
3261
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
3262 3263 3264
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}
3265 3266 3267 3268

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

3281 3282
	acpi_smmu_get_options(iort_smmu->model, smmu);

3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

3296 3297
static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
3298 3299
{
	struct device *dev = &pdev->dev;
3300
	u32 cells;
3301
	int ret = -EINVAL;
3302 3303 3304 3305 3306 3307

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

3318 3319 3320 3321 3322 3323 3324 3325
static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
static int arm_smmu_set_bus_ops(struct iommu_ops *ops)
{
	int err;

#ifdef CONFIG_PCI
	if (pci_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&pci_bus_type, ops);
		if (err)
			return err;
	}
#endif
#ifdef CONFIG_ARM_AMBA
	if (amba_bustype.iommu_ops != ops) {
		err = bus_set_iommu(&amba_bustype, ops);
		if (err)
			goto err_reset_pci_ops;
	}
#endif
	if (platform_bus_type.iommu_ops != ops) {
		err = bus_set_iommu(&platform_bus_type, ops);
		if (err)
			goto err_reset_amba_ops;
	}

	return 0;

err_reset_amba_ops:
#ifdef CONFIG_ARM_AMBA
	bus_set_iommu(&amba_bustype, NULL);
#endif
err_reset_pci_ops: __maybe_unused;
#ifdef CONFIG_PCI
	bus_set_iommu(&pci_bus_type, NULL);
#endif
	return err;
}

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
				      resource_size_t size)
{
	struct resource res = {
		.flags = IORESOURCE_MEM,
		.start = start,
		.end = start + size - 1,
	};

	return devm_ioremap_resource(dev, &res);
}

3375 3376 3377 3378
static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
3379
	resource_size_t ioaddr;
3380 3381 3382
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;
	bool bypass;
3383 3384 3385 3386 3387 3388 3389 3390

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
		if (ret == -ENODEV)
			return ret;
	}

	/* Set bypass mode according to firmware probing result */
	bypass = !!ret;

3402 3403
	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3404
	if (resource_size(res) < arm_smmu_resource_size(smmu)) {
3405 3406 3407
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
3408
	ioaddr = res->start;
3409

3410 3411 3412 3413 3414
	/*
	 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain
	 * the PMCG registers which are reserved by the PMU driver.
	 */
	smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
3415 3416 3417
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

3418 3419 3420 3421 3422 3423 3424 3425 3426
	if (arm_smmu_resource_size(smmu) > SZ_64K) {
		smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
					       ARM_SMMU_REG_SZ);
		if (IS_ERR(smmu->page1))
			return PTR_ERR(smmu->page1);
	} else {
		smmu->page1 = smmu->base;
	}

3427 3428
	/* Interrupt lines */

3429
	irq = platform_get_irq_byname_optional(pdev, "combined");
3430
	if (irq > 0)
3431 3432
		smmu->combined_irq = irq;
	else {
3433
		irq = platform_get_irq_byname_optional(pdev, "eventq");
3434 3435
		if (irq > 0)
			smmu->evtq.q.irq = irq;
3436

3437
		irq = platform_get_irq_byname_optional(pdev, "priq");
3438 3439
		if (irq > 0)
			smmu->priq.q.irq = irq;
3440

3441
		irq = platform_get_irq_byname_optional(pdev, "gerror");
3442 3443 3444
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
3445
	/* Probe the h/w */
3446
	ret = arm_smmu_device_hw_probe(smmu);
3447 3448 3449 3450 3451 3452 3453 3454
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

3455 3456 3457
	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

3458
	/* Reset the device */
3459 3460 3461 3462 3463
	ret = arm_smmu_device_reset(smmu, bypass);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
3464 3465
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
3466 3467
	if (ret)
		return ret;
3468 3469 3470 3471 3472

	iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
	iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);

	ret = iommu_device_register(&smmu->iommu);
3473 3474 3475 3476
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		return ret;
	}
3477

3478
	return arm_smmu_set_bus_ops(&arm_smmu_ops);
3479 3480
}

3481
static int arm_smmu_device_remove(struct platform_device *pdev)
3482
{
3483
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
3484

3485 3486 3487
	arm_smmu_set_bus_ops(NULL);
	iommu_device_unregister(&smmu->iommu);
	iommu_device_sysfs_remove(&smmu->iommu);
3488
	arm_smmu_device_disable(smmu);
3489 3490 3491 3492 3493 3494 3495

	return 0;
}

static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	arm_smmu_device_remove(pdev);
3496 3497
}

3498
static const struct of_device_id arm_smmu_of_match[] = {
3499 3500 3501
	{ .compatible = "arm,smmu-v3", },
	{ },
};
3502
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
3503 3504 3505

static struct platform_driver arm_smmu_driver = {
	.driver	= {
3506
		.name			= "arm-smmu-v3",
3507
		.of_match_table		= arm_smmu_of_match,
3508
		.suppress_bind_attrs	= true,
3509
	},
3510
	.probe	= arm_smmu_device_probe,
3511
	.remove	= arm_smmu_device_remove,
3512
	.shutdown = arm_smmu_device_shutdown,
3513
};
3514 3515 3516
module_platform_driver(arm_smmu_driver);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
3517
MODULE_AUTHOR("Will Deacon <will@kernel.org>");
3518
MODULE_ALIAS("platform:arm-smmu-v3");
3519
MODULE_LICENSE("GPL v2");